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Abstract

Various technologies, such as electrocardiography, opti-
cal mapping, and patch clamping, have been developed to
monitor cardiac electrophysiological behavior in live tis-
sue. One limitation is that none of the available measure-
ment methods is capable of monitoring simultaneously all
quantities, such as intracellular ionic concentrations and
ion-channel gating states, that may be important contribu-
tors to arrhythmia formation. Data assimilation strategies
such as Kalman filtering can be used to fill in missing mea-
surements, but to our knowledge, there have been few com-
parisons of different state estimation algorithms applied to
the same cardiac action potential model.

To help develop a framework for comparing perfor-
mances of estimators, we applied two estimation algo-
rithms, an unscented Kalman filter (UKF) and a gain-
scheduled Kalman filter (GSKF), to a two-variable Karma
model of a cardiac cell. We generated simulated data from
the model and compared the abilities of the algorithms to
infer the slow variable of the model from measurements of
the fast variable and vice versa. The UKF performed well
when the process noise variance was low relative to mea-
surement noise, while the opposite was often true for the
GSKE and estimation errors tended to be smaller when
the fast variable was chosen as the measurement.

1. Introduction

Data assimilation methods, including state estimation
algorithms based on the Kalman filter (KF) [1], can be used
to reconstruct quantities that are difficult or impossible to
measure directly. These algorithms combine models with
data, typically by using available measurements to correct
predictions obtained from a dynamical model of the sys-
tem of interest. KF-based estimators have been applied
to body-level cardiac measurements such as electrocardio-
graphic data [2,3]. Some studies have applied state es-
timators or related algorithms called observers to tissue or
cell-level models (see [4-6] for examples). Typically, these
studies have focused on one type of estimation algorithm,
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and to our knowledge there have been few comparisons of
different estimation algorithms on the same cardiac action
potential (AP) model, though such comparisons have been
made for other types of models [7]. Hence, we decided to
compare the abilities of two data assimilation algorithms,
an unscented Kalman filter (UKF) [8] and a gain-scheduled
Kalman filter (GSKF) design on the Karma two-variable
model of a cardiac cell [9, 10]. We selected a nonlinear
estimator, the UKF, since the UKF and its extensions have
been applied successfully to models of neurons [7] and car-
diac tissue [5]. The GSKF design, which in this instance
relies on feedback gains updated at regular intervals within
each period, was of interest because of its simplicity, along
with the observation that certain linear feedback methods
have shown promise in related studies on alternans sup-
pression [11]. The Karma model was chosen as a start-
ing point for filter designs and comparisons due to its low
dimensionality and ability to represent physiological phe-
nomena of interest, such as alternans. We used both fil-
ters to estimate the slow variable of the Karma model from
noise-corrupted simulated measurements of the fast vari-
able, then estimated the fast variable from the slow vari-
able, and examined the impact of different noise ratios and
periods on filter performance.

2. Methods

The two-variable Karma model [9, 10] of a single cell
may be written as X = f(X,t), where the system state
vector is defined as X = [V w]?, V(¢) is the membrane
potential (in mV) at time ¢, w(t) is the refractory variable
(dimensionless). The equations are
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where the stimulus current I, (t) is a rectangular pulse
with period T', amplitude -32 A cm?, and duration 2.5
ms. f and f5 are defined as
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where a Heaviside function in the original model was re-
placed with a hyperbolic tangent to aid in computing Ja-
cobians, M = 10, b = 0.7059, and other parameter val-
ues (Cony Tw, Vi v, ¢, Vi) were adapted from [12]. The
model exhibits steep depolarization, which is reflective of
Purkinje fiber AP behavior but presents challenges for lin-
earization. Here, 7y, was set to 20 ms (default is 5 ms) to
yield more gradual transitions.

The model was forward-Euler integrated with time step
dt = 0.01 ms from initial condition Xy. The result-
ing model-generated state X (¢) was considered to be the
“true” system state. The simulated measurement was ¥ =
CX + r, where r(t) was zero-mean normally-distributed
noise with variance R, produced with the randn func-
tion in Matlab at each dt interval throughout the simula-
tion. Estimating w based on measurements of V' (indicated
by C = [1 0]) was of greater interest than estimating V'
from measurements of w, since V is often accessible in a
lab setting, whereas w indicates the refractory state of the
cell rather than directly representing a measurable quan-
tity. However, C' = [0 1] was also examined.

The 2x2 process noise covariance matrix () was used as
a design parameter for both filters; large () indicates high
uncertainty in the model’s predictions, whereas small @
indicates low uncertainty. Typically, @) would represent
the covariance of a zero-mean normally-distributed pro-
cess noise signal ¢(t) that is injected into the model, for
example, by adding it to the right side of the forward-Euler
discretized version of Eq. (1). However, the Karma model
was found to be sensitive (X sometimes grows without
bound) to sufficiently large process noise injections, hence
q(t) was not included in the dynamical equations, yet @
was retained as a design parameter.

Gain scheduling typically refers to a class of feedback
design methods where a limited number of feedback gains
are computed for selected points within the state space, and
the feedback term switches among these gains according to
specified transition rules. Here, gains were calculated for
anumber, K, of points along a reference trajectory, X,.(t),
which was produced by integrating Eq. (1) from an initial
guess X, o = [—84.55 0.7064]T, chosen near a period-1
trajectory of the model for 7" = 300 ms. The true initial
state was chosen as a randomly perturbed version of the
initial guess via Xg = X, o + p, where p is a normally-
distributed 2 x 1 random vector with zero mean and covari-
ance P, which was set to a diagonal matrix with default
diagonal entries of 20 and 0.2.

To set up the GSKF for a simulation spanning N peri-
ods (j = 0,1,..., N — 1), each period was divided into K
uniformly-spaced subdivisions of duration A7 indexed by
k =0,1,..., K — 1. In general, AT > dt. Starting at
j = 1, the GSKF calculates state estimates according to
X, = rm + Tm, where m = (j — 1)K + k and the

deviational state estimate & is computed with:
iﬂerK - Aki'm + Lkem (2)

The residual is €,,, = Y,,, — C’Xm. This particular GSKF is
a collection of linear-time-invariant filters, each of which
is a period-1 estimator based on the standard Kalman fil-
ter; the filters are just initiated at different times along
an AP profile. Initial conditions were &,, = 0 for m =
0,1,..., K — 1. Ay is the state transition matrix from one
period to the next, initiated at the k-th subdivision. To
compute Ay, we evaluated the Jacobian of Eq. (1) along
X, for the first period in the simulation, where Jacobians
over time scale dt were computed explicitly by differen-
tiating the forward-Euler discretized version of Eq. (1)
with respect to its state variables. Aj, was then the prod-
uct of dt-scale Jacobians covering the first period. Gains
Lj, were obtained based on Ay, C, @, and R using the
kalman function in Matlab. Ay and Ly repeat periodi-
cally, whereas state estimates and residuals were updated
throughout the simulation. In cases where V' was the mea-
surement, rapid changes in gain sometimes destabilized
the GSKEF, hence a gain hold was imposed where Ly, ;, the
i-th component of Lj, was maintained at its most recent
value in cases where |Ly11,; — Li ;| > i, where y; = 0.2
and y2 = 1, and ¢ € {1, 2} is the state variable index.

The UKF computes state estimates and covariances by
direct application of model equations to a collection of
specially-chosen points in the state space called sigma
points. We used Matlab’s unscentedKalmanFilter
function, with default settings, to implement the UKF
based on C, ), R and the forward-Euler version of Eq. (1).
The initial guess for the UKF was X, o. The UKF pro-
duced state estimates X at every Euler time step.

Mean absolute relative estimation errors were computed
as follows for each state variable:

1 Myin A

Brits = 3= 20 |Xim = Xim)/ X
where filt refers to either the GSKF or the UKF, and er-
rors were evaluated over m € {Mjy; ... My, }, where the
initial and final indices were chosen to cover the last four

cycles for a total of Mg subdivisions.

3. Results and Discussion

The estimators were tested at 7' = 300 and 500 ms for
two noise ratios, ||Q||/R = 10° and 107¢. @ was cho-
sen as a diagonal matrix with diagonal entries ()1 and Q5.
When V' was the measured variable, the high ||Q||/ R case
corresponded to @, = 50, Q2 = 0.5, R =5 x 1075, and
for the low ||Q||/R case, Q1 = 5x 1076, Q2 = 5 x 1078,
R = 5. When w was the measured variable, all the ; and
R values listed previously were divided by 2000, which
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preserved ||Q||/R ratios but yielded measurement noise
that was more proportionate to w. Each estimator was run
for N = 10 periods, where the GSKF used K = 10 subdi-
visions per period. For T' = 300 ms, X, is close to period-
1 while X exhibits transient alternans, but at 7" = 500 ms,
both trajectories settle quickly into a period-1 rhythm.

State estimates are shown for 7' = 300 ms for the two
[|@]|/ R cases, where w was estimated from V' in Figures 1
and 2 and for V estimated from w in Figures 3 and 4. Esti-
mation errors for the two measurement scenarios are sum-
marized in Tables 1 and 2. UKF results were not available
(labeled N/A in Table 2) for the high ||Q||/ R cases where
w was measured due to a sigma-point calculation failure of
the algorithm. The figures and tables show that the UKF
estimated the unmeasured state accurately when ||Q||/R
was low. This is consistent with both true and measured
trajectories being generated from the same model, but if
V data from a real cell had been used instead, for certain
measurement devices such as microelectrodes, we would
expect the opposite scenario (high ||Q||/R) to be more re-
alistic since the data would likely be more reliable than the
model. For 7" = 300 ms, the GSKF estimates were more
accurate for high ||Q||/R (stronger feedback) compared
with low ||Q||/R for either measurement type, but there
was no benefit to stronger feedback at 7' = 500 ms.
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Figure 1. Estimates of state variables from the GSKF and
UKEF, along with true state variables and measured V', for
T = 300 ms, for high ||Q||/R.

Table 1. Mean absolute relative estimation errors for w
based on measurements of V.

T (ms) |[|Q||/R FEgskrw Fukrw
500 high 0.0004 0.7414
500 low 0.0004 0.0031
300 high 0.0512 0.7532
300 low 0.1079 0.0028
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Figure 2. Estimates of state variables from the GSKF and
UKEF, along with true state variables and measured V/, for
T =300 ms, for low ||Q||/R.
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Figure 3. [Estimates of state variables from the GSKEF,

along with true state variables and measured w, for T' =
300 ms, for high ||Q||/R.

The tables show that relative errors were typically larger
when V' was estimated from w rather than the reverse. This
appears to be consistent with our earlier result [13], which
indicated that measuring V' yielded stronger observability
than measuring w in the Karma model (in other words, it
was determined that reconstructing w from V' would be
easier than reconstructing V' from w).

A number of limitations apply to the work. Extreme
noise ratio settings were chosen to highlight differences.
Testing scenarios with a two-variable model was intended
as a starting point for extensions to higher-dimensional
systems that represent at least several distinct measurable
quantities, such as models that represent membrane poten-
tial at multiple locations within a spatially distributed sys-
tem and/or ionic concentrations in addition to membrane
potential. The GSKEF is expected to perform more reli-
ably when K is sufficiently small, whereas the UKF can
update estimates more frequently. The GSKF requires a
reference trajectory and presumably will yield better per-
formance when X, is initiated near a point along a period-
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Figure 4. Estimates of state variables from the GSKF and
UKEF, along with true state variables and measured w, for
T = 300 ms, for low ||Q]|/R.

Table 2. Mean absolute relative estimation errors for V'
based on measurements of w.

T (ms) |[Ql/R FEgskryv FEukrv
500 high 0.0017 N/A
500 low 0.0015 0.0011
300 high 0.3314 N/A
300 low 0.8213 0.0031

1 trajectory for the given 7', since steady-state methods
were used to compute the Ly gains. Many other gain-
scheduling methods and filter designs besides the ones
shown here could have been considered. The GSKF, which
in its present form is not expected to work well for com-
plex trajectories involving large deviations between X and
X, is not being offered as an advancement over the UKF,
but rather as a basis for comparison (benchmark) that we
expect to be compatible with certain systems design and
analysis tools, such as linear observability analysis, which
could aid in understanding of conditions that yield better
filter performance.

4. Conclusions

An unscented KF and a gain-scheduled KF were tested
on a two-variable nonlinear model of a cardiac cell under
different period, noise ratio, and measurement conditions.
The UKF tended to produce more accurate estimates when
process noise was low compared to measurement noise,
whereas the GSKF was more accurate for higher process
noise for the shorter of the two periods examined. In
most cases, estimating w from measurements of V' yielded
lower estimation errors than estimating V' from measure-
ments of w, for either filter.
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