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Abstract 

Cardiac auscultation is an effective method to screen 

hemodynamic abnormalities. As part of the George B. 

Moody PhysioNet Challenge 2022, this paper aims to 

propose an automated algorithm to identify the presence 

of murmurs in heart sounds from multiple auscultation 

locations and to determine whether the heart sounds signal 

is normal. Two methods are explored. In method one, we 

perform a series of pre-processing such as denoising and 

segmentation of the heart sounds signal, extract Log Mel-

Spectrogram as features, and use fastai's built-in xResNet 

18 pre-trained model for classification. In method two, we 

extract Mel-frequency cepstral coefficients (MFCCs) as 

features without any pre-processing and build a 

customized model based on deep residual networks using 

one-dimensional convolutional neural layers. Our team, 

USST_Med, received a challenging score of weighted 

accuracy of 0.642 (ranked 26th out of 40 teams) and cost of 

14529 (ranked 30th out of 39 teams) on the final hidden test 

set. 

 

 

1. Introduction 

According to the World Health Organization, it is 

estimated that 17.9 million people died from 

cardiovascular diseases (CVD). Most populations in low 

and middle-income countries do not have access to 

comprehensive primary health care systems, which may 

delay the diagnosis and treatment of CVD, and lead to 

early death. It becomes important to explore early 

prevention methods for heart diseases. Auscultation of the 

heart plays an important role in the early detection for CVD. 

However, traditional auscultation methods are highly 

dependent on physicians' experience, and large-scale 

auscultation screening of a population is a big challenge 

for doctors. Therefore, the automatic classification of heart 

sounds signal is of great practical importance for the 

screening and diagnosis of heart disease [1]. The George 

B. Moody PhysioNet Challenge 2022 [2, 3] focused on 

automated approaches for detecting heart murmurs and 

predicting clinical outcomes using a new open-source 

dataset [4]. 

The fundamental heart sounds (FHS) signal usually 

includes the first (S1) and second (S2) heart sounds. S1 

occurs at the beginning of ventricular systole and S2 occurs 

at the beginning of diastole. The diastole interval is usually 

longer than the systole interval. Although the FHS is the 

most recognizable sound in the cardiac cycle, the 

mechanical activity of the heart may also cause other 

audible sounds such as the third heart sounds (S3), the 

fourth heart sounds (S4), systolic ejection clicks (EC), 

mid-systolic clicks (MC), diastolic sounds or open pops 

(OS), and cardiac murmurs caused by turbulent, and high-

speed blood flow [5]. 

Heart sounds segmentation is a crucial step for feature 

extraction and classification of heart sounds. The primary 

purpose of segmentation is to divide the heart sounds into 

four parts: first heart sounds (S1), systole, second heart 

sounds (S2), and diastole [6]. Many heart sound 

segmentation methods have been proposed, including ECG 

signal-based segmentation methods, envelope-based 

segmentation methods, feature-based segmentation 

methods, machine learning-based segmentation methods, 

Hidden Markov Model (HMM)-based segmentation 

methods, and deep learning-based segmentation methods 

[7]. 

After the segmentation, feature extraction is used to 

convert the original high-dimensional heart sounds signal 

into low-dimensional features to facilitate the analysis of 

the heart sounds [6]. In general, the extracted features can 

be classified into three main types: time domain-based, 

frequency domain-based, and time-frequency domain-

based features. 

In the final step, the extracted features are fed into a 

classifier for feature learning and classification. Recently, 

with the rapid development of artificial intelligence, deep 

neural networks (DNN) have been explored for human 

heart sounds classification. The significant advantage of 

deep learning algorithms over traditional machine learning 

algorithms is the feature extraction function for complex 

heart sounds [8]. Most of the existing works use 1D/2D 

convolutional neural networks (CNN) [9], recurrent neural 

networks (RNN) [10], or deep convolutional and recurrent 

neural networks (CRNN) [8] as their classifiers. 
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Figure 1. The system-level flow diagram of the proposed methods, 

(a) denotes method one, (b) denotes method two. 

 

2. Methods 

Two methods are applied in this challenge, Method one 

uses the discrete wavelet transform (DWT) to denoise the 

heart sounds signal, and a proposed segmentation method 

to segment the signal. Then the Log Mel-Spectrogram is 

extracted as input features. Finally, a transfer learning 

method is used to classify the heart sounds signal. The deep 

learning model is implemented with fastai [11]. Method 

two requires feature extraction of Mel-frequency cepstral 

coefficients (MFCCs) and uses customized deep residual 

networks to classify the heart sounds. The system-level 

flow diagram of the proposed methods is shown in Figure 

1. 

 

2.1. Heart Sounds Segmentation 

Heart sounds signal is interfered by various factors and 

noises, such as electromagnetic interference (EMI) from 

the surrounding environment, industrial frequency 

interference, electrical signal interference from the human 

body, and breath sound [12]. The presence of noise makes 

it difficult to localize S1 and S2. Thus, it is necessary to 

denoise the signal before segmentation. 

In this paper, a fifth-level discrete wavelet 

decomposition using order six Daubechies filter of the 

original signal is performed to obtain the approximate 

coefficients, the third-level, fourth-level, and fifth-level  

 

 
 
Figure 2. The framework of the corresponding heart sounds 

signal wavelet denoising algorithm. 

 

 
 
Figure 3. The original heart sounds signal and the signal after 

discrete wavelet transform. 

 

detail coefficients. Then they are used to reconstruct the 

signal. The framework of the corresponding heart sounds 

signal wavelet denoising algorithm is shown in Figure 2. 

The denoising effect based on wavelet decomposition is 

shown in Figure 3. 

After denoising, the heart sounds signal was normalized 

by equation 1 and equation 2: 
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where ( )x t  is the filtered heart sounds signal,   is 

the mean of the filtered signal, and  is the standard 

deviation of the filtered signal. 
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In this work, instead of choosing the envelope-based 
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segmentation method, we directly localize the peak of the 

filtered signal. 

First, the filtered signal s(t) is differentiated to provide 

information about the slope by equation 3: 

(t) s( 1) ( )d t s t    (3) 

Then, points with a positive slope are marked as 1, and 

others are marked as 0. Only when the current point is 

marked as 1 and the next point is marked as 0, it is 

considered a potential S1 peak. We use the Python package 

PeakUtils to detect the final peak. The threshold is set as 

0.3 and the minimum distance between each detected peak 

is set as 1800 after several experiments. At last, all S1 

peaks are identified for segmentation.  

After the S1 peak detection of the heart sounds signal, 

we segment the signal to every five cardiac cycles (S1-S1) 

until the last S1. Due to the inconsistent length of the 

segmented heart sounds signal, we fixed the signal length 

to 8800 and used zero padding for insufficient length. The 

distributions of two types of labels of the segments are 

shown in Table 1 and Table 2.  

 

Labels Number Percentage  

Present  1963 17.5 

Absent 8962 80 

Unknown 290 2.5 

Total 11215 100 

Table 1. The sample distribution of “Present” “Absent” and 

“Unknown”. 

 

Labels Number Percentage  

Abnormal  5482 49 

Normal 5733 51 

Total 11215 100 

Table 2. The sample distribution of “Abnormal” and “Normal”. 

 

2.2. Feature extraction 

The Log Mel-spectrogram and MFCCs have been 

widely used in audio signal processing. In this stage, due 

to the excellent performance of CNN in image processing, 

we convert the audio signal processing problem into image 

processing by extracting frequency features. In method one, 

we extract the Log Mel-Spectrogram out of each segment 

heart sounds signal. Since the imbalance of our dataset, 

spectrogram augmentation techniques are applied [13]. A 

random time and frequency domain mask on the Log Mel-

spectrogram is used in this work.  

In method two, we consider the MFCCs features as 

time-series data instead of images. For the classification of 

the presence, absence, or unclear cases of murmurs, we 

randomly segment MFCCs in a shape of (13, 2500). For 

the classification of the normal and abnormal clinical 

outcomes, we randomly segment MFCCs in a shape of (13, 

1500). On both classification tasks, zero padding is used 

for insufficient length. 

 

 
Figure 4. The CNN network architecture used in method two 

 

2.3. Classification 

In method one, instead of building a model from scratch, 

we select the xResNet 18 pre-trained model built into fastai 

to classify the heart sounds signal. Fastai has a very easy-

to-use workflow, which makes the process of debugging 

much simpler. We use the ‘lr_find’ method to find the 

optimal learning rate, and in this work, we choose 3e-3. 

Due to the ‘fit_one_cycle’ method, the learning rate is 

uniformly varied over 20 training epochs, Callbacks and 

EarlyStopping are used to efficiently track training and 

validation losses at the specified learning rate. 

The CNN network architecture in method two is shown 

in Figure 4. One-dimensional convolution layers are used 

to extract class-related features, and the main architecture 

is based on eight residual blocks [14]. For both tasks, the 

heart sounds signal from multiple auscultation locations is 

input to the network, after convolutional and global max-

pooling layers, all the outputs are concatenated. The last 

fully connected layer with the Sigmoid function returns the 

result of classification. 

 

3. Results 

After model training, we evaluated the performance of 

the classifiers on the online validation dataset. We got a 

score of weighted accuracy of 0.518 and a cost of 11752 

with method one. The method two achieved a score of 

weighted accuracy of 0.56 and a cost of 11114 on the 
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online validation dataset. It got a score of weighted 

accuracy of 0.68 and a cost of 10852 on the hold-out 

dataset which accounted for one-fifth of the public training 

set. The official test score was based on method two. Its 

weighted accuracy was 0.64 and its cost was 14529, which 

ranked 26th and 30th in all challenge participants, 

respectively (Table 3). 

 

Metrics Training Validation Test Ranking 

Weighted 

accuracy 
0.68 0.56 0.64 26/40 

Clinical 

outcome 

10852 11114 14592 30/39 

Table 3. Cost metric scores (official Challenge score) for our final 

selected entry (team USST_Med) for the clinical outcome 

identification task on method two, including the ranking of our 

team on the hidden test set. Our algorithm was tested on part of 

the public training set, validated on the hidden validation set, and 

evaluated on the hidden test set. 

 

4. Discussion and Conclusions 

In this paper, we proposed two methods for heart sounds 

signal classification. Our results are not satisfactory. The 

pre-trained model used in method one is designed for 

natural images which are totally different from the 

extracted Log Mel-spectrogram. Due to relatively small 

amounts of data, fine-tuning does not achieve optimal 

results. The segmentation method is not robust enough to 

get an accurate result in the validation set, which limits the 

model's performance. In method two, we randomly 

segment fixed-length MFCCs features as model inputs. 

These inputs could be just some noisy signals, which may 

prevent the model from achieving good results.   

In future work, we can try different denoising methods 

to obtain better quality heart sounds signal. We can 

conduct more in-depth studies for different 

hyperparameters (window size, hop length, number of 

MFCCs features, FFT size, etc.) to obtain the optimal 

features when performing feature extraction. In addition, 

we can compare the classification effects of different types 

or sizes of pre-trained models. Finally, the CNN network 

architecture used in method two achieves a good result on 

electrocardiogram (ECG) classification, we can compare 

the differences between heart sounds and ECG to optimize 

the network architecture structure for better heart sounds 

signal classification. 

In conclusion, although we did not achieve satisfactory 

scores, our approach at least demonstrates the good 

potential of deep learning for heart sounds classification. 
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