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Abstract

The goal of the George B. Moody PhysioNet Challenge
2022 was to use heart sound recordings gathered from var-
ious auscultation locations to identify murmurs and clin-
ical outcomes. Our team, CAU_UMN, proposes a deep
learning-based model that automatically identifies heart
murmurs from a phonocardiogram (PCG). We converted
the heartbeat sound into 2D features in the frequency-
time domain through feature extraction techniques such
as log-mel spectrogram, Short Time Fourier Transform
(STFT), and Constant Q Transform (CQT). The frequency-
temporal 2D features were modeled using voice classifica-
tion models such as Convolutional neural networks (CNN)
and Light CNN (LCNN). The model using log-mel spectro-
gram and LCNN was ranked 5th for murmur detection with
a weighted accuracy of 0.767 and 5th for clinical outcome
detection with a cost of 11933 in the test dataset of the
George B. Moody PhysioNet Challenge. We believe that
our deep learning based heart murmur detection system
will be a promising system for automatic heart murmur
detection from PCG.

1. Introduction

Congenital heart disease (CHD), which affects about 1%
of live births and has significant morbidity and death, is the
most prevalent hereditary birth abnormality. For the diag-
nosis and treatment of congenital cardiac disorders in chil-
dren, many underdeveloped nations do not have the nec-
essary infrastructure or cardiology specialists. An afford-
able solution for non-invasive cardiac disease diagnosis is
monitoring phonocardiography. A phonocardiography cre-
ates a phonocardiogram (PCG), a particular waveform that
accurately depicts the heartbeat intensity over time. The
tasks for George B. Moody PhysioNet Challenge 2022 are
to design systems that detect murmur and clinical outcome
events. Two subtasks are based on weighted accuracy and
expected cost[/1}2].
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The Challenge recording data were collected from a pe-
diatric population in Northeast Brazil in July-August 2014
and June-July 2015 [3]]. Each patient in the Challenge data
has one or more recordings from 5 or less auscultation lo-
cations. The recordings were collected not simultaneously
but sequentially from different auscultation locations using
a digital stethoscope. Also, each patient has demographic
information such as gender, age, and pregnancy status.

Heart Rate Variability (HRV) has been used as the tool
for assessing abnormalities in heart disease in prior com-
petitions and numerous medical studies.[4] The ECG’s
RR interval is a feature that can effectively represent
HRV[5,|6], thus we thought of the ‘Peaks Interval’ (PI),
which corresponds to the RR interval, as an extra feature
to express HRV in the PCG.

We evaluated LCNN and ResMax models on wave-
form data to develop an automated murmur event detection
system [[7,/8|]. The CNN-based models are LCNN (Light
CNN) and ResMax, and their basic technique, MFM (Max-
Feature-Map), is used in both of these models. MFM can
not only separate noisy and useful signals but also operate
as the feature selection between two feature maps.

In order to develop a robust deep learning model from a
limited quantity of data, we have experimented with sev-
eral augmentation strategies such as cutout, cutmix, and
mixup [9H11].

2. Methods

Figure [1]| depicts our murmur and clinical outcome de-
tection system architecture. The structure of the murmur
classifier was different from the outcome classifier’s, and
the main distinction between the two classifiers is whether
or not demographic information is added. In common, we
extracted 2D features and peaks interval features from the
raw data. By passing through a simple embedding, the
peaks interval feature was concatenated with the model’s
embedding.
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Figure 1: System Architecture

2.1. Feature Extraction

We utilized three methods of converting data, Log-mel
spectrogram, STFT, and CQT. Figure@visualizes (a) raw,
(b) Log-mel spectrogram, (c) STFT, and (d) CQT features
of a PCG data from a patient. We also utilized demographic
information such as gender, age, height, weight, and preg-
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Figure 2: Feature engineering

2.1.1. PI feature

Peaks Interval (PI) means the time interval between
peak points. The murmur patients have a noise which oc-
curs in the systolic or diastolic phase of the heart[4]. The
noise is also a sound, so it generates a wave form. One
of the factors of a waveform is that it has a peak point.
We thought that if a patient has a murmur, the patient has
more peak points than a normal. Having more peak points
means that the interval will be shorter. Actually, the aver-

age PI interval of normal people was 49% longer than that
of murmur patients in the challenge data.

In fact, we wanted to use the value of PI in sequence
form. However, due to the noise of the data, PI was not
calculated accurately, and thus the Mean of PI was used.
This is where further research is necessary.

2.2. Data augmentation

We applied data augmentation to the audio feature to
train the model more robustly. Data augmentation im-
proved the generalization performance of the model and
prevented overfitting by adding noise to the model trained
with a small amount of data. We experimented with vari-
ous augmentation techniques commonly used in audio data
for 2D features (stft, log-mel, cqt, etc.). We implemented
augmentation with an online generator, and tried cutmix

[10], cutout [9]), and mixup [IT].
2.3. Models

In this competition, PCG signal data was converted into
2D features like Log-mel spectrogram, STFT, and CQT,
and LCNN and ResMax models already been proven in
many audio competitions ASVspoof 2017, 2019, and 2021

were applied.
2.3.1. LCNN

Compared with the Light CNN-9 model [7], this paper
uses a deeper LCNN model which iterates nine LCNN
blocks. The LCNN block consists of convolution, MFM,
and an optional batch normalization layer, as shown in
Fig. 3] (a) (dotted block applied when b = 1). Fig. ] (a)
is the whole LCNN model architecture. Our deeper LCNN
model uses 32, 32, 48, 48, 64, 64, 32, 32, and 32 convolu-
tion filters. The kernel size of the first convolution layer is
set to 5 and the rest of the convolution layers are set to 3 or
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1. Global average pooling layer was used instead of fully
connected layers.

2.3.2. ResMax

ResMax is a model that showed excellent performance
in the ASVspoof 2019 competition dataset [8]. The Res-
Max model consists of four parameters. f is the number of
filters, and k is the kernel size. [ is an option to apply con-
volution with kernel size 1 and element-wise maximum to
convolution layers (dotted block applied when [ = 1). m
is an option that optionally applies the 2 by 2 MaxPooling.
The ResMax block is defined in Fig. E] (b) and the whole
ResMax model composed of 9 ResMax blocks is shown in

Fig. ] (b).
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Figure 3: Model Blocks
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Figure 4: Model Architectures

Training | Validation | Test | Ranking
0.828 0.734 | 0.767 5/40

Table 1: Weighted accuracy metric scores (official Chal-
lenge score) for our final selected entry (team CAU_UMN)
for the murmur detection task, including the ranking of our
team on the hidden test set.

2.4. Model training

In the Challenge data, there is a single or multiple file
depending on the stethoscope position for each patient.
Each of the files was considered as one sample in our train-
ing step. However, in the evaluation process, results had to
be derived for each patient. Therefore, we performed the
process by combining individual samples. There are some
differences depending on the model in the evaluation pro-
cess. For the murmur detection track, we used the highest
probability among the values calculated for each stetho-
scope position. For the outcome detection track, the prob-
ability value calculated for each stethoscope position was
averaged.

We divided our training set as 8 to 2 for a separate val-
idation set in our model training. We used cost-sensitive
learning because the importance of the murmur class and
the outcome class are different in the evaluation met-
rics.We trained the model by integrating the unknown class
into the absence class because the distribution of values in
the final model for the unknown class did not converge
well in murmur detection. In the evaluation, not detect-
ing the unknown class showed higher performance of the
weighted accuracy, so we made the system to detect only
by ’absent’ or 'present’.

3. Results

The models that showed the best performance through
experiments were submitted. We used an LCNN with PI
feature for Murmur detection and an LCNN with PI and
demographic information for outcome detection.

Tables[I]and 2]summarize our result. Weighted accuracy
metric scores for our proposed model were 0.828, 0.734,
and 0.767, respectively, on the training, validation, and test
sets. Cost metric scores for our proposed model were 8097,
9493, and 11933, respectively, on the training, validation,
and test sets.

4. Discussion and Conclusions

The top teams of the challenge also applied many inter-
esting methods. Impressive techniques included two-stage
classification (Present vs Unknown and Absent, Unknown
vs Absent) and a relabeling method to clarify the Unknown
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Test
11933

Validation
9493

Training
8097

Ranking
5/40

Table 2: Cost metric scores (official Challenge score) for
our final selected entry (team CAU_UMN) for the clinical
outcome identification task, including the ranking of our
team on the hidden test set.

class. It was also interesting to build a hierarchical model
with multiple mel spectrograms. When modeling using
machine learning techniques and demographic data, the
performance was usually high on cost metric. However,
most of the top teams had the disadvantage of taking a long
time to train models.

We have the advantage of having a fast training speed of
1 hour 40 minutes 45 seconds by building a murmur de-
tection system using the LCNN model, a CNN-based deep
learning model. Nevertheless, the accuracy is only 1.3%
different from that of the winning solution in the murmur
detection track. In addition, our proposed model is robust
by several augmentation techniques, so the performance
difference among the train, validation, and the test set is
not significantly high. Our novel spectrogram based deep
learning model achieved 0.767 weighted accuracy (5 out of
40 submitted systems) for murmur detection, and achieved
a cost of 11933 (5 out of 40 submitted systems) for clin-
ical outcome detection in the official phase of the George
B. Moody PhysioNet Challenge.
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