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Abstract

This work investigates the benefit of using multiple sig-
nals and preprocessing strategies for sleep staging from
cardiorespiratory signals.

We modified our previous Neural Network model to take
different signal combinations as input. To that end, we
added oxygen saturation and different respiratory signals
to the electrocardiogram. We further invoked different pre-
processing strategies that have been described previously
for such signals, namely using downsampled signals vs.
using time series of breath-to-breath intervals. We trained
and tested our model variations with 4784 polysomno-
grams from the Sleep Heart Health Study.

We found the best combination of signals to be heart
rate together with a downsampled respiratory signal. The
classification resulted in a κ of 0.68 on hold-out test data,
which outperforms our previous results and state of the art
for cardiorespiratory sleep staging.

We observe that combinations of cardiorespiratory sig-
nals can improve classification performance for automatic
cardiorespiratory sleep staging. As there are generally
more cardiorespiratory signals available and many more
options for preprocessing them, we expect that further re-
search in this area will show even more improvements.

1. Introduction

Sleep staging from cardiorespiratory signals has im-
proved significantly during the last two decades. Increas-
ingly, feature-based classifiers are replaced by approaches
that use signals or time series as inputs to Neural Net-
works. So far, usage of one-dimensional inputs from sin-
gle signals (primarily electrocardiogram (ECG)) has been
the focus of investigations, even though we know from
feature-based approaches that information from respira-
tion and cardiorespiratory coupling can result in significant
classification improvements. Also, implementations us-
ing the photoplethysmogram (PPG) at 64 Hz [1] and respi-
ratory inductance plethysmography (RIP) at 10 Hz [2] for
sleep staging, have shown that Neural Networks can learn
relevant sleep features from signals that contain heart beats

and breaths as raw waves.
Currently, many approaches based on the ECG ap-

ply QRS detection first, to gain a binary respresentation
(e. g. [2]) or the instantaneous heart rate (e. g. [3]). When
using the PPG or RIP, downsampling is often used as pre-
processing (e. g. [1, 2, 4]). Very few works, one exception
is e. g. [2], use more than one input signal.

Concerning the effort of applying QRS detection, our
hypothesis is that a lowpass filtered version of the ECG
together with respiration contains enough information for
sleep scoring. For more simplification of the cardiac input
signal, Casal et al. [5] showed that even the mere heart rate
(HR) from the pulse oximeter (PO) contains enough in-
formation for sleep-wake distinction. This would simplify
preprocessing for cardiorespiratory sleep stage classifica-
tion from QRS detection plus feature generation to mere
lowpass filtering or resampling.

This contribution investigates signal combinations with
a focus on simple preprocessing variants for cardiorespi-
ratory sleep staging. We will compare (i) generating R-R-
interval time series and breath-to-breath-interval time se-
ries from ECG and RIP (our previous approach [6]), (ii)
lowpass filtering ECG and RIP with cutoff frequency 2 Hz,
and (iii) resampling HR and oxygen saturation (SpO2)
from the PO.

2. Methods

2.1. Data

For our investigations, we used data from the first part
of the Sleep Heart Health Study [7–9]. From these 5804
polysomnograms (PSGs) of different study participants,
we excluded 1012 PSGs due to low signal quality of the
ECG. The remaining PSGs were split patient-wise into 916
PSGs as hold-out test data and 3867 PSGs for training and
validation.

The PSGs contain manually assigned sleep stage labels
according to Rechtschaffen & Kales. We summarized S3
and S4 into one stage to yield labels closer to the scoring
rules of the American Academy of Sleep Medicine [10].
Other lables, like Movement, were replaced by the label of
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Table 1: Model architecture.

Layer Output Shape Kernel
× Step

Input 240 × 1200 × 1/2/3
Conv1D 240 × 1185 × 64 16 × 1
Conv1D 240 × 585 × 64 16 × 2
Conv1D 240 × 570 × 64 16 × 1
Conv1D 240 × 278 × 64 16 × 2
Conv1D 240 × 263 × 64 16 × 1
Conv1D 240 × 124 × 64 16 × 2
Conv1D 240 × 109 × 64 16 × 1
Conv1D 240 × 47 × 64 16 × 2
Flatten 240 × 3008
Dropout 240 × 3008 (rate = 0.3)
Dense 240 × 400
Dropout 240 × 400 (rate = 0.3)
Bidirectional LSTM 240 × 80
Dense (Output) 240 × 5 (Softmax)

the succeeding sleep epoch.

2.2. Previous Model and Preprocessing

Our previous model for sleep stage classification [6]
was a Convolutional Recurrent Neural Network that used
two parallel inputs: (i) the R-R-interval time series
(RRI) from QRS detection on the ECG (specifically us-
ing the function swt detector [11] from the Python package
py ecg detectors [12]) and (i) the breath-to-breath-interval
time series (BBI) (breath detection according to respde-
tect [13]). Both time series were interpolated with 4 Hz,
normalized with z-normalisation, and cut into overlapping
segments of 300 s, centered around each 30 s sleep epoch.
Due to the recurrent architecture of the Neural Network,
240 consecutive segments are classified as a sequence at
the same time (thus classifying a full night in three to four
turns). A detailed description of RRI and BBI preprocess-
ing is found in our previous publications [6, 14].

Neither model architecture nor hyperparameters were
modified compared to [6], except for the number of par-
allel input signals. For more details, see Table 1 and [6].

2.3. Training and Evaluation

Important hyperparameters of our training process were
Adam Optimizer with a learning rate of 0.001, Categorical
Cross-Entropy as loss function, and Early Stopping with
patience of ten training epochs.

For each input (resp. input combination), we trained an
ensemble of ten models with a data split similar to ten-fold
cross-validation. Therefore, each of these models is inde-
pendent of the hold-out test data. We used the ensembles
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(b) ECG after lowpass filtering.

Figure 1: Filtering the ECG using a lowpass filter with
cutoff frequency 2 Hz.

to classify the test data by majority vote. All presented
results are mean values from the 916 PSGs in the test data.

As a key metric for evaluating classification quality, we
chose Cohen’s Kappa κ [15]. κ is a measure of inter-
rater agreement that considers both the observed agree-
ment and the expected agreement by chance. The value of
κ ranges from -1 to 1, with values less than 0 being worse
than chance. For better interpretability, κ is categorized
to show slight (0.01-0.2), fair (0.21-0.40), moderate (0.41-
0.60), substantial (0.61-0.80) and almost perfect (0.81-1.0)
agreement. [15, 16]

2.4. New Preprocessing

The preprocessing for the new inputs is very simple.
To gain dECG and dRIP, ECG and RIP were filtered us-
ing a lowpass filter with cutoff frequency 2 Hz. Note that
ECGs and RIPs in the SHHS are prefiltered with a highpass
filter with cutoff frequencies 0.15 Hz (ECG) and 0.05 Hz
(RIP). An exemplary segment of the ECG after lowpass
filtering is displayed in Figure 1. Afterwards, the signals
were downsampled to 4 Hz. HR and SpO2 are supplied by
the PSGs in the SHHS at a sampling rate of 1 Hz. There-
fore, we upsampled them to 4 Hz by sample-and-hold tech-
nique. Similar to our previous preprocessing, these new
inputs were normalized, cut into overlapping segments of
300 s, and centered around each 30 s sleep epoch.

Due to the secondary aim of using few sensors, we only
combined inputs from two of our three sensors: ECG, RIP,
and PO. This resulted in the following input combinations,
that we considered most interesting: (i) RRI, (ii) dECG,
(iii) HR, (iv) HR & SpO2, (v) RRI & BBI, (vi) dECG &
dRIP, (vii) HR & dRIP, (viii) HR & SpO2 & dRIP.
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Table 2: Confusion matrix of hold-out test data classified from the input signals HR & dRIP into five sleep stages according
to Rechtschaffen & Kales: W, REM, S1, S2, S3, and S3+S4. A total number of 866 351 epochs was classified in the hold-
out test data.

Label PrecisionW REM S1 S2 S3+S4
Pr

ed
ic

tio
n W 199 068 2 183 8 637 12 923 922 88.98 %

REM 3 907 103 902 2 959 13 720 412 83.19 %
S1 1 023 483 1 594 819 5 40.62 %
S2 25 648 15 852 18 302 307 812 54 153 72.98 %
S3+S4 722 204 55 31 083 59 963 65.16 %

Sensitivity 86.41 % 84.73 % 5.05 % 84.02 % 51.94 %
Accuracy 77.61 %

Table 3: Mean Cohen’s Kappa κ on hold-out test data for
different inputs and input combinations when classifying
into five sleep stages.

Input Signal/ Sensor κ
RRI ECG 0.58
dECG ECG 0.61
HR PO 0.60
HR & SpO2 PO 0.63
RRI & BBI ECG, RIP 0.64
dECG & dRIP ECG, RIP 0.65
HR & dRIP PO, RIP 0.68
HR & SpO2 & dRIP PO, RIP 0.68

3. Results

As Table 3 shows, using just one cardiac signal, dECG
and HR yield equal or better results than RRI around 0.6
for κ. Adding any respiration signal (BBI, dRIP) or SpO2

to these cardiac signals improves these κ classification re-
sults by 0.03 to 0.08. The best combination of input signals
is HR and dRIP yielding κ of 0.68, see detailed classifica-
tion results in Table 2. The addition of SpO2 as a third
input does not change this classification quality. This new
signal combination outperforms our previous approach by
0.04.

When further summarizing the sleep stages into three
classes - Wakefulness, NonREM sleep, and REM sleep -
this best signal combination of HR & dRIP yields κ of
0.81. This is an almost perfect agreement with the manual
annotation [16] and also slighty outperforms our previous
results of 0.80 with RRI & BBI [6].

Comparing these results to results from literature (see
Table 4), we see that most of our input combinations, but
especially HR & dRIP, outperform those results.1 Re-

1Note, that there is a preprint by Kotzen et al. with an outstanding κ

Table 4: Comparison of our results to results from litera-
ture.

Source Preprocessing Sensor κ
[1] (2020) Downsampling PPG 0.51
[2] (2020) Binary

Representation
(ECG), None (RIP)

ECG,
RIP

0.53

[3] (2020) Instantaneous Heart
Rate

ECG 0.61*

[4] (2021) Downsampling PPG 0.60
[5] (2021) None PO 0.74**
This work Up-/ Downsampling PO, RIP 0.68
* classification into four sleep stages (Wakefulness, N1+N2, N3, REM)
** classification into two sleep stages (Wakefulness, Sleep)

markably, there is only one other approach (by Sun et
al. [2]) that combines two input signals. Note that κ usually
increases distinctly when summarizing sleep stages into
fewer classes, therefore only the same number of classes
should be compared directly (see e. g. detailed results
in [6] for illustration, with κ of 0.68 for four classes and
0.80 for 3 classes).

4. Conclusion

In our investigation, input signals with very simple pre-
processing yield just as good (and better) classification re-
sults as the more elaborate RRI and BBI. Mere filtering
and downsampling proved to be a simple yet powerful pre-
processing strategy for the ECG regarding sleep stage clas-
sification with Convolutional Recurrent Neural Networks.
This preprocessing is significantly easier to implement and
faster than QRS detection. To the best of our knowledge,

of 0.75 for classification into four sleep stages from the PPG. Apparently,
the preprint is submitted and currently under peer-review. https://
arxiv.org/abs/2202.05735v4
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dECG or a comparable approach has not been used as input
for sleep stage classification or any classification task.

We assume that dECG and HR (measured by PO with
1 Hz) are more robust than RRI and therefore yield bet-
ter results. Additionally, even though this HR contains
seemingly less information than RRI, the underlying pat-
terns might be easier to learn by a Convolutional Neural
Network. dRIP seems to contain the same information as
SpO2 (and more), as the comparisons of HR & SpO2, HR
& dRIP, and HR & dRIP & SpO2 show.

New signals and signal combinations are very promis-
ing to improve classification quality. Unfortunately, sig-
nal combinations are barely investigated yet (see Table 4),
even though we know from feature-based classification ap-
proaches that cardiorespiratory coupling provides relevant
features for sleep stage classification.

Overall, the variety of inputs in our investigation sug-
gests that there might be many more sensors, signals and
preprocessing strategies, that are suitable for sleep stage
classification. As our approach demonstrates, these new
signals do not necessarily require new model architectures.
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