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Abstract

Arousals during sleep give deep insights into the patho-
physiology of sleep disorders and sleep quality. Detect-
ing arousals is a time-consuming process manually per-
formed by a trained expert. The required measurement is
performed on an inpatient basis and is uncomfortable for
the patient. As arousals relate to the autonomic nervous
system, they also reflect in the electrocardiogram, which is
therefore a promising alternative biosignal. In this study,
we developed a deep learning model for automatic detec-
tion of sleep arousals from heart rate.

We developed our algorithm using 5323 recordings from
the Sleep Heart Health Study. 1003 of them were held-out
as test data. We derived RR intervals from the ECG and
interpolated them into a 4 Hz signal. Next, we developed a
convolutional neural network (CNN) for end-to-end event
detection. Model output is a continuous arousal probabil-
ity with a frequency of 1 Hz.

The optimization resulted in a twelve-layer CNN that
achieved a Cohens kappa of 0.47, an area under the
precision-recall curve of 0.54 on hold-out test data.

This study demonstrates the ability of machine learning
to detect arousals during sleep from heart rate. As our
approach uses only the heart rate, it is potentially trans-
ferable to other signals, e.g. the photoplethysmogram.

1. Introduction

Good quality and quantity of sleep have a great impact
on health and overall quality of life [1]. Arousals during
sleep provide deep insights into the pathophysiology of
sleep disorders and sleep quality [2]. According to the
American Academy of Sleep Medicine (AASM) guide-
lines, an arousal is an abrupt shift in the frequency of
the electroencephalogram (EEG) that lasts at least three
seconds and requires ten seconds of preceding sleep [J3].
During rapid eye movement (REM) sleep, scoring also
requires a simultaneous increase in the submental elec-
tromyogram (EMG) [3]]. Arousals are spontaneous or
may occur in response to sleep-disturbing events such
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as apneas, hypopneas, respiratory effort-related arousals
(RERAs), and periodic leg movements. These transient
waking reactions lead to a more fractured sleep [4].
Scoring of arousals is part of the standard procedure
for diagnosing sleep-related diseases. The medical gold
standard of arousal detection is a time-consuming process
performed manually by a trained expert. Arousals are vi-
sually detected in the EEG and EMG, which are part of
polysomnography (PSG). A scored arousal can be seen in
figure [I] Measuring the PSG requires an inpatient setup
and is uncomfortable for the patient. Since arousals are
coupled with the autonomic nervous system, they are also
reflected in the electrocardiogram (ECG) and heart rate
(HR) in general, which therefore represents a promising
alternative biosignal for the detection of arousals.
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Figure 1: A manually scored cortical arousal with some
relevant biosignals from the PSG. The start and end of
arousal are indicated by the red stars in the EEG. ECG
and RR intervals demonstrate the effects of arousal on

these signals.

Recently, convolutional neural networks (CNNs) have
shown promising results in processing raw biosignals [J5]].
They use kernels to store local features in the signal with-
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out requiring manual feature extraction. In our previous
work, RR intervals (RRI) were successfully used to clas-
sify sleep stages [6]]. In this study, we propose a deep CNN
to detect arousals with a resolution of one second using
RRI

2. Methods

The underlying data were collected as part of the Sleep
Heart Health Study (SHHS) [11}{12]. SHHS is a cohort
study investigating sleep-disordered breathing as a risk
factor for the development of cardiovascular disease. The
study involved 6600 adults aged forty years and older.
The first part of the study yielded 5804 polysomnograms
(PSG), which are publicly available and used for the fol-
lowing research. A detailed breakdown of patients can
be seen in Table 2| Certified raters manually scored the
sleep stages and sleep events. The arousal annotations
were scored using the ASDA [4] criteria. The large number
of records and the quality assurance of the study provide a
solid foundation for training a machine learning algorithm.

The included ECG was digitized with a sampling fre-
quency of 125 Hz. We use the heart rate variability
based on beat-to-beat (RR) interval times, which we have
adopted from previous work [6]]. The R-peaks are extracted
from the ECG using a QRS detector [|13[]. Records are dis-
carded if the arousal annotation is missing or more than
25 % of the initially found RR intervals were removed by
the adaptive filter [6]]. This results in 5323 nightly records,
which we split into a training set and a test set, with the
test set containing 1003 records.

We interpolated the RR intervals into a signal with a
sampling rate of 4 Hz. The different types of arousals
are merged for binary classification. To capture auto-
nomic features associated with arousals, the annotation is
extended. We added two seconds before the start of anno-
tation and ten seconds after the end based on [8]]. The same
procedure was used in the PhysioNet/Computing in Cardi-

ology Challenge 2018 [14]], so the results are comparable
to the algorithms that participated in the challenge.

An extensive grid search led to a twelve-layer CNN
model architecture. A convolution layer is followed by a
BatchNormalization layer and a ReLU activation. The first
two convolutional layers reduce the input length by using
a stride of two and expand the dimension to a total of six-
teen. We use a kernel size of 128 in the first layer and 64
in the other layers. The last ten convolutional layers have
an identical structure with 32 filters and a kernel size of
64. The last layer is a fully connected layer to generate the
arousal prediction. A sigmoid activation is used to produce
outputs ranging from zero to one, representing the arousal
probability. The overall model architecture with optimized
parameters is shown in Table[3]

The training data were divided into five folds of equal
size and trained separately. After ten epochs of training re-
sulted in no improvement in the area under the precision-
recall curve (AUPRC), training was discontinued. Each
fold produces a trained model that calculates the arousal
probability. The final model uses all five models by aver-
aging the output of each model. To calculate the confusion
matrix, a threshold must be defined. Based on the training
data and maximization of Cohens kappa coefficient (k) a
threshold of 0.30 was determined as the operating point.
If the model probability was above the threshold, the seg-
ment was marked as arousal.

3. Results

The model achieved an AUPRC of 0.54 and an area un-
der the receiver operating characteristic (AUROC) of 0.86
on hold-out test data. The prediction of arousals on the test
data yields the confusion matrix presented in Table[d] This
results in a Cohens kappa coefficient of 0.47, a precision
of 0.59, a recall of 0.46, and an F1 score of 0.53.

There are few machine learning approaches for detect-
ing arousal based on cardiac features [[15[]. In 2007, Basner

Table 1: Comparison of approaches using ECG features or the full PSG with our approach. The approaches are listed with
different types of validation metrics and the size of the test set (n).

Models Year Type Model input Test Set n AUPRC AUROC F1
proposed model 2022 CNN RRI SHHS-1 1003 0.54 0.87 0.53
o Basner et al. [[7]] 2007 handcrafted @~ HRV-Features own dataset 10 - 091 -
B Olsen et al. [8] 2018 FFNN HRV-Features WSC 77 - - 0.67
Lietal. [9] 2020 CNN-LSTM ECG MESA 311 0.62 093 0.67
SHHS-2 785 0.54 091 0.69
9} DeepSleep [10] 2021  U-Net PSG SHHS-1 250 0.63
A SHHS-2 250 0.70
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Table 2: Statistical information on the first part of the
SHHS, divided into all records and records in our test set.

Count  Mean STD  Min Max

Records 5804
Male 2765
Female 3039
o Age 63.13  11.22 39 90
A  Hypertension 2478
<=C Pacemaker 57
BMI 28.16 5.09 18 50
ESS 7.77 4.40 0 24
AHI 12.13  11.74 0 111.38
Arl 19.16  10.66 0 110.39
Records 1003
Male 473
Female 530
-~ Age 62.35 10.79 39 90
iv)! Hypertension 401
é Pacemaker 10
BMI 28.26 5.28 18 50
ESS 7.81 4.20 0 24
AHI 12.07  11.67 0 107.88
Arl 19.27  10.00 0 85.24

STD: Standard deviation, BMI: Body mass index in kg/m, ESS: Ep-
worth Sleepiness Scale AHI: Apnea-Hypopnea-Index in count/hour,
Arl: Arousal-Index in count/hour

Table 3: The final twelve layer CNN architecture as a
result of the grid search.

Layer-Type Output- 5 3 e
Shape = ;E) E

InputLayer 28800 x 8

Convld 14400 x 8 8 2 128

BatchNormalization 14400 x 8

ReLU-Activation 14400 x 8

Convld 7200 x 16 16 2 64

BatchNormalization 7200 x 16

ReLU-Activation 7200 x 16

Convld 7200 x 32 32 1 64
% BatchNormalization 7200 x 32

ReLU-Activation 7200 x 32

Dense 7200 x 1

Sigmoid-Activation 7200 x 1

et al. [7] conducted a study of 56 healthy patients from a
study examining the effects of aircraft noise on sleep. They
used statistical methods to create an algorithm. In 2019,
Olsen et al. [8] created an algorithm using 258 patients
from the Wisconsin Sleep Cohort. They trained a feed-
forward network with hand-crafted features that also in-
cluded manually scored sleep stages. In 2020, Li et al. [9]
developed DeepCAD, a machine learning algorithm using
CNN and long short term memory (LSTM). They used the
raw ECG signal to train their algorithm on 1547 patients
from the Multi-Ethnic Study of Atherosclerosis. In addi-
tion, the network was also trained on the 2nd part of the
SHHS data.

Due to the recent George B. Moody PhysioNet Chal-
lenge 2018 [14]], there are well-comparable approaches
to arousal detection using the full PSG. The DeepSieep-
Net [[10] achieved highest results on the challenge data.
Since they also trained and tested their model on the SHHS
data, their approach is sufficient to put our approach into
perspective. They used 250 subjects to validate their algo-
rithm.

The results of the different approaches are shown in ta-
ble By only using HRV, we obtained similar results
on a comparable dataset from the leading approach Deep-
Cad [9]. The approaches using only the ECG or features
from the ECG have an AUPRC that is approximately 0.14
lower than the state-of-the-art arousal detection using all
signals from the PSG.

Table 4: Confusion matrix for the test set with a total of
25,524,000 one-second segments

Actual
Non Arousal | Arousal
Predicted Non Arousal 85.15% 4.58%
Arousal 4.96% 5.32%
4. Conclusions

We developed a machine learning algorithm that pre-
dicts arousals on a second-by-second basis. By using only
heart rate variability, we were able to minimize the infor-
mation. The SHHS dataset provides enough data to de-
velop a state-of-the-art algorithm. Stacking CNN layers
seems to be an effective method to find a suitable architec-
ture. The results of automatic arousal detection based on
HRV are close to the approaches using the full PSG.

Research is still needed to develop robust and accurate
arousal detectors. The sum of false positives and false neg-
atives still exceeds the number of true positives. This may
be due to the reliability of the arousal labels, which is only
“modest” even in the SHHS data[16]. Automatic algo-
rithms have the advantage of performing scoring quickly,
cost-effectively and consistently.
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Our approach requires only RRI, which can be derived
from the ECG or possibly from other signals, such as simi-
lar P-wave intervals from the photoplethysmogram (PPG).
Since RRI does not change rapidly, the signal does not
need to be high-resolution, which reduces the complexity
of machine learning and the resulting algorithm. Due to
these advantages, an application in the field of mobile and
wearable devices is conceivable. On the other hand, us-
ing RRI requires an additional step of preprocessing and a
good QRS detector compared to using the raw ECG. The
ECG also contains information other than RR intervals,
which are discarded in our method.

Although the SHHS dataset includes over 5800 partic-
ipants, they are all over 40 years old. Therefore, no con-
clusions can be drawn about how the algorithm performs
for younger people. The approach should also be tested on
other datasets, including the second part of the SHHS, to
allow better comparison.
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