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Abstract 

In current study, we derived a technique based on 

regularization dimension, named as RD filter. It analyzed 

ECG fractal characteristics and thoracic impedance 

signal to achieve noise reduction. We compared RD filter 

against compression-rate-related adaptive filter (CR filter). 

SNR of RD filter increased more than 40% on average 

comparing SNR of CR filter. RD filter output had DTW 

distance smaller than CR filter result. These findings 

suggest RD filter is a potential technique for CPR that can 

suppress compression noise and ensure discriminative 

features of ECG rhythms. 

 

 

1. Introduction 

When a patient suffers cardiac arrest (CA), blood 

circulation stops and irreversible brain damage occurs 

within minutes [1,2]. Cardiopulmonary resuscitation (CPR) 

is designed against these disorders. It involves a series of 

actions, including chest compressions, defibrillations and 

other life supports. First aid provider repeats these life-

saving actions sequentially, most of the time on chest 

compressions. Study found compression quality have vital 

effects on resuscitation. Guidelines consistently 

emphasizes the importance of high-quality CPR, requiring 

rescuer to minimize number and duration of interruptions 

during compressions [3]. But chest compression quality is 

greatly affected by defibrillation. First aid providers 

observe the ECG rhythm type and decide to defibrillate or 

not. Since ECG signal is disrupted by chest compressions, 

aid providers must pause chest compressions [4]. In this 

way, chest compressions can be interrupted for a long time. 

Studies found that filtering technique can reduce chest 

compression noise [5,6]. If appropriate filtering can help 

discriminate ECG rhythms and decide to discharge or not 

during chest compression, the number and duration of 

chest compression interruptions will decrease. Filtering 

techniques for chest compressions noise has therefore 

received extensive attentions [7–10]. Various techniques 

were adopted, including Kalman filtering, adaptive 

filtering, etc. However, a major problem of these 

techniques is that they substantially change ECG 

morphology [4,10]. The morphology of ECG is essential 

for distinguishing rhythms, e.g., ventricular fibrillation 

displays rapid fluctuations but pulseless electrical activity 

has slow change. Literature suggests the ideal filtering 

solution need to both suppress chest compression noise and 

keep rhythmic morphology of ECG [5,6]. 

Fractal analysis in mathematics focuses on structural 

complexity and can analyse morphological features of 

signals and graphs [11]. Regularization dimension is a 

specific measurement in fractal analysis, defined to be able 

to measure signal irregularity [12]. Regularization can be 

regarded as detail removal, i.e., erase subtle changes in 

time series data within certain scale. Signals become more 

regular and has a finite length after removing subtle 

changes, assuming irregular signal has infinite length 

[11,12]. When time scale for removing subtle changes 

tends to zero, the left signal approximates the original 

signal with infinite length. This process of removing subtle 

changes is used to analyse irregularity of signals, defined 

as regularization dimension. 

Assuming significant difference between ECG and 

chest compression noise irregularity, this study designed a 

filter to reduce compression noise, with expectation of 

retaining ECG rhythm morphology at the same time. This 

study measured ECG and chest impedance signals of CA 

patients during CPR. The experiment observed denoising 

performance and further provided comparison between the 

proposed filter and conventional adaptive filter in terms of 

noise reduction and morphology retention. 

 

2. Method 

2.1. Data Collection 

Multicentre data collection was performed at three 

hospitals. Family of subjects signed an informed consent 

form and voluntarily participated in data collection. The 

experiment followed clinical ethical standards, approved 

by the medical ethics committee of each hospital. Patient 

inclusion criteria were age not less than 8 years and 
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receiving CPR in the emergency department. Exclusion 

criteria included refusal of CPR, inability to attach 

electrode pads due to skin damage, or inability to perform 

chest compressions due to trauma or pregnancy. The 

resuscitation was performed by professional physicians in 

each hospital. Equipment used in CPR was BeneHeart D3 

(Shenzhen Mindray Bio-Medical Electronics Co., Ltd). 

According to the inclusion and exclusion criteria, data 

were collected from 32 CA patients during CPR (25 males 

and 7 females). Patients’ age was from 23 to 89 (average 

value: 58.5 ± 17.4 years), body height was from 1.6 to 1.78 

m (1.69 ± 0.05 m) and body weight was from 45 to 80 kg 

(65.5 ± 10.5 kg). These patients involved acute pulmonary 

embolism, acute myocardial infarction, and haemorrhagic 

shock, etc. 

Four ECG rhythms were labelled by physicians 

retrospectively, including: organized rhythm (ORG), 

asystole (ASY), pulseless electrical activity (PEA) and 

ventricular fibrillation (FIB) [4]. After selection, a total of 

40 ECG segments without interference of chest 

compressions or ventilation, were obtained, including 6 

ORG segments, 9 ASY segments, 13 PEA segments and 

12 FIB segments, with lengths from 15 to 20 seconds. In 

addition, 13 ECG ASY segments from patients under chest 

compressions were selected by physician and used as 

compression noise. The chest impedance signals related to 

these 13 ASY segments were also recorded. 

 

2.2. Signal Processing and Construction 

BeneHeart D3 can record ECG and chest impedance 

using electrode pads. Chest impedance is the resistance 

between the electrode that defibrillators overcome to 

deliver discharge. The status of impedance is related with 

chest compressions. Thus, impedance signal is considered 

as a reference signal for the compression-related noise in 

ECG. Signals of ECG (in millivolts) and chest impedance 

(in ohms) were put through the built-in Mindray 

processing algorithm before usage [13,14]. Sampling 

frequency of signal was 250 Hz. 

Simulation data 𝑠𝑛𝐸𝐶𝐺  was generated by superimposing 

ECG with chest compression noise, i.e., 𝑠𝑛𝐸𝐶𝐺 = 𝑠𝐸𝐶𝐺 +
𝐶 ∙ 𝑠𝑛𝑜𝑖𝑠𝑒 , where 𝑠𝐸𝐶𝐺  is ECG signals free of chest 

compression noise, 𝑠𝑛𝑜𝑖𝑠𝑒  is compression noise forged by 

normalized asystole rhythms during chest compressions, 

and 𝐶  is the coefficient to adjust noise amplitude. This 

process was referred to the study of Adun Langhelle et al 

[5]. This signal construction process ensures that filter 

performance can be assessed with actual rhythms, i.e., 

𝑠𝐸𝐶𝐺 . Signal-to-noise ratio of construction was defined as 

𝑆𝑁𝑅𝑐 = 10𝑙𝑜𝑔10(𝜎𝐸𝐶𝐺
2 𝜎𝑛𝑜𝑖𝑠𝑒

2⁄ ) , where 𝜎𝐸𝐶𝐺
2  and 𝜎𝑛𝑜𝑖𝑠𝑒

2  

are the variance of 𝑠𝐸𝐶𝐺  and 𝑠𝑛𝑜𝑖𝑠𝑒 , respectively. In this 

study, the simulated data with 𝑆𝑁𝑅𝑐 of -5, 0 and 5 dB was 

constructed by adjusting 𝐶. A total of 520 segments were 

generated for filtering tests. 

2.3. Filter Design 

Calculation of regularization dimension utilizes 

Gaussian kernel convolution for signal smoothing. When 

Gaussian kernel width tends to zero, the length of 

smoothed signal converges to original signal with certain 

speed [11,12]. The speed of convergence measures 

regularization dimension, defined as follows: 

 

 𝐷𝑅𝑔 = 1 − lim
𝛿→0

(𝑙𝑛𝑙𝜎 𝑙𝑛𝜎⁄ ) (1) 

 

𝐷𝑅𝑔 is regularization dimension, 𝜎 defines kernel width 

and 𝑙𝜎  is smoothed signal length [15]. 

Filter design based on regularization dimension (RD 

filter) consists of four steps: noise irregularity estimation, 

original signal regularization, noise content identification 

and final denoise computation. 

Noise irregularity estimation was to calculate chest 

impedance signal regularization dimension 𝐷𝑖𝑚𝑝 . Chest 

impedance changes and ECG compression noise are 

related with each other and thus assumed to have similar 

irregularity. Noise irregularity was indirectly obtained 

from chest impedance signal. 

Original signal regularization made a collection of 

signals with varied irregularity from input, by smoothing 

the input with varied-scale Gaussian kernels, i.e., 𝑠𝜎 = 𝑠 ∗
𝑔𝜎, where 𝑠 is the input to be filtered, 𝑔𝜎 is the Gaussian 

kernel with width of 𝜎 , and 𝑠𝜎  is the output after 

smoothing. 

Noise content identification started by comparing the 

irregularity of chest compression noise (𝐷𝑖𝑚𝑝) and input 

(𝐷𝑠). If  𝐷𝑖𝑚𝑝 is lower than 𝐷𝑠, compression noise mainly 

exists as low irregularity content, otherwise compression 

noise was high irregularity content. With the collection of 

signals obtained by original signal regularization, chest 

compression noise estimation 𝑠̂𝑛𝑜𝑖𝑠𝑒  could be obtained by 

following: 

 

 If 𝐷𝑖𝑚𝑝  <  𝐷𝑠 , 𝑠̂𝑛𝑜𝑖𝑠𝑒 =

        𝑎𝑟𝑔𝑚𝑖𝑛
𝑠𝜎

(𝐷𝑖𝑚𝑝 − 𝐷𝑠𝜎
)

2

If 𝐷𝑖𝑚𝑝  >  𝐷𝑠 , 𝑠̂𝑛𝑜𝑖𝑠𝑒 =

        𝑠 − 𝑎𝑟𝑔𝑚𝑖𝑛
𝑠𝜎

(𝐷𝑖𝑚𝑝 + 𝐷𝑠𝜎
− 2 ∙ 𝐷𝑠)2

 (2) 

 

𝐷𝑠𝜎
 is regularization dimension of smoothed data with 

Gaussian kernel width 𝜎. 

The final denoise computation removed compression 

noise estimation ( 𝑠̂𝑛𝑜𝑖𝑠𝑒 ) from the input ( 𝑠 ), i.e., 

filtered output =  𝑠 − 𝑠̂𝑛𝑜𝑖𝑠𝑒 . Regularization dimension 

calculation was referred to open source software FracLab 

(version 2.2). This study also implemented an adaptive 

filtering, i.e., analyzing chest impedance for compression 

rate then achieving noise reduction (CR filter) [3]. 
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2.4. Statistical Analysis 

Signal-to-noise (SNR) ratio was used to quantify noise 

reduction: 𝑆𝑁𝑅 = 10𝑙𝑜𝑔10(𝜎𝐸𝐶𝐺
2 𝜎𝛥

2⁄ ) , where 𝜎𝐸𝐶𝐺
2  and 

𝜎𝛥
2 represent variance of 𝑠𝐸𝐶𝐺  (expected filter output) and 

remaining noise (difference between 𝑠𝐸𝐶𝐺  and filtering 

output), respectively. For evaluation of morphology 

retention, distance based on Dynamic Time Wrapping 

(DTW) was introduced to measure time series similarity 

between filter output and 𝑠𝐸𝐶𝐺  [16]. Data were not 

normally distributed. Wilcoxon signed rank test was 

applied, and median with upper and lower quartiles was 

presented, performed by SPSS 13.0 with P < 0.05 as 

significant different. 

 

3. Result and Discussion 

As shown in Table 1, SNR of filters is given. RD filter 

generally had greater SNR than CR filter. Figure 1 shows 

DTW comparison. For ASY and PEA, DTW distance of 

two methods was close. But for FIB and ORG, RD filter 

presented lower DTW distance than CR filter. Figure 3 

gives examples of RD and CR filter, where varied columns 

and rows present results of varied 𝑆𝑁𝑅𝑐 and ECG rhythm. 

Both methods reduced noises but RD filter output is closer 

to original ECG for FIB than CR filter output. 

 

Table 1. SNR comparison between RD and CR filter. Data 

presents by median with upper and lower quartiles. 

 

Rhythm 𝑆𝑁𝑅𝑐 CR RD P - value 

ASY -5 dB -0.33 
(-3.01, 0.36) 

-0.12 
(-1.67, 0.87) 

< 0.05 

 0 dB 1.25 
(0.34, 1.76) 

1.59 
(0.66, 3.01) 

< 0.01 

 5 dB 5.07 
(2.88, 6.50) 

3.44 
(1.62, 5.34) 

< 0.01 

PEA -5 dB 0.32 
(-0.08, 0.69) 

-0.06 
(-1.17, 0.56) 

< 0.01 

 0 dB 1.11 
(0.66, 1.60) 

1.63 
(0.98, 2.45) 

< 0.01 

 5 dB 1.36 
(0.89, 2.01) 

2.41 
(1.49, 4.00) 

< 0.01 

FIB -5 dB 0.35 
(0.01, 0.62) 

0.38 
(0.20, 1.02) 

< 0.05 

 0 dB 1.08 
(0.77, 1.51) 

2.11 
(1.32, 3.04) 

< 0.01 

 5 dB 1.38 
(1.06, 1.81) 

3.14 
(1.92, 5.56) 

< 0.01 

ORG -5 dB 0.79 
(0.52, 1.02) 

1.30 
(0.02, 2.00) 

0.40 

 0 dB 1.66 
(1.29, 1.87) 

2.75 
(1.13, 3.71) 

< 0.01 

 5 dB 1.94 
(1.70, 2.24) 

3.37 
(1.55, 5.29) 

< 0.01 

 

Heart electrophysiological activity is very complex and 

many physiological activities occur during heart 

electrophysiological process [4]. In contrast, chest 

compression noise is generated from simple mechanical 

movements [3]. This leads to irregularity difference 

between ECG and chest compression noise, which makes 

it possible to reduce compression noise with fractal 

analysis. Results show that RD filter reduced chest 

compression noise and outperforms CR filter in terms of 

SNR. According to findings of DTW distance, RD filter 

maintained morphological characteristics of ECG rhythm 

better than CR filter. 

  
Figure 1. DTW distance of RD and CR filter for data with 

𝑆𝑁𝑅𝑐 of -5, 0 and 5dB (bars are medians, error lines are 

95% confidence intervals, *: P < 0.05, **: P < 0.01). 

 

Data further reveals that the improvement of RD filter 

compared with CR filter was more noticeable for FIB and 

ORG than for ASY and PEA. This relates to the 

irregularity difference of ECG rhythms. Cardiac 

electrophysiological activity during ASY and PEA is weak 

and simple [6], but during ORG is almost complete [7], 

while patients with FIB have rapid fibrillation [9]. 

Irregularity of ASY and PEA rhythm is close to that of 

compression noise, but that of ORG and FIB rhythm is 

much higher. Irregularity estimation also supports this 

opinion. Regularization dimension of FIB and ORG, 

presenting by median with upper and lower quartiles were 

1.43 (1.34, 1.50) and 1.56 (1.50, 1.62), but ASY and PEA 

were 1.34 (1.26, 1.38) and 1.32 (1.27, 1.40). The latter two 

are significantly smaller than the former two (p < 0.01). 

Artificial noise for signal construction and related chest 

impedance signal had regularization dimension of 1.27 

(1.26, 1.32) and 1.31 (1.30, 1.35), much similar with ASY 

and PEA rather than FIB and ORG. This suggests 

irregularity difference between rhythm and chest 

compression noise can affect RD filter performance. 

The proposed technique is of clinical value since it can 
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maintain ventricular fibrillation rhythm. Defibrillation 

requires identification of ventricular fibrillation for timing 

of discharge, where maintaining ventricular fibrillation 

morphology is of great help [4]. In addition, the proposed 

method only requires ECG and chest compression data. In 

contrast to algorithms requiring compression plates for 

acceleration measurement [7], RD filter is more applicable 

to the widely used devices. However, the method proposed 

is still a preliminary implementation and need further 

improvement. Besides, the accuracy of rhythm 

identification of RD filter output has not been directly 

analyzed, which needs to be explored in future. 

 
 

Figure 2. RD and CR filter result for data with 𝑆𝑁𝑅𝑐 of -5, 

0 and 5dB. Red, blue and black line are CR outcome, RD 

outcome and ECG rhythm without compression noise. 

 

4. Conclusion 

RD filter based on fractal analysis was implemented for 

reducing chest compression noise during CPR. The 

comparison with existing adaptive filter demonstrates that 

the proposed method can better reduce noise and maintain 

morphological characteristics of ECG rhythms. Our study 

provides a possible filter technique to reduce interruptions 

in chest compressions during CPR. 
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