
Two-Stage Multitask-Learner for PCG Murmur Location Detection

Maurice Rohr, Benedikt Müller, Sebastian Dill, Gökhan Güney, Christoph Hoog Antink
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Abstract

Heart murmurs are a potential symptom for cardiac
diseases , which can be captured easily by smartphones
or similar devices. Hence, the automated analysis of
murmurs in heart sound recordings may provide a cost-
efficient pre-screening method for heart conditions. In this
study, we present an approach for detecting heart murmurs
that utilizes a Pooling-based Artificial Neural Network
(PANN) structure to extract features from audio waveforms
of arbitrary lengths. It can classify single recordings based
on recording location and the extracted features in an end-
to-end manner. The approach is inspired by the multiple
instance learning framework.

We performed a 10-fold stratified cross-validation on
our training set and show that the results are consistent
with the evaluation on the hidden test set of the PhysioNet
challenge 2022. Our team Heart2Beat was ranked 12th

in the murmur detection task and 11th in the clinical out-
come task and achieved a weighted accuracy metric score
of 0.751 and a clinical outcome cost of 12244 respectively.

1. Introduction

Cardiovascular diseases are the cause of approximately
one third of all deaths globally [1] and a major focus of risk
factor analysis and screening. Heart murmurs are indica-
tors of heart diseases and have a high prevalence, yet rec-
ognizing them requires strong cardiac auscultation skills,
which among many physicians are sub-optimal [2]. There-
fore, technical and automated solutions for heart murmur
detection are required.

Heart murmurs are essentially audible vibrations caused
by perturbations of the blood flow such as strong pressure
gradients or velocity changes. Mostly, they arise when
heart valves are not opening or closing correctly. Our aim
which is also the goal of the George B. Moody Challenge
2022[3], thus was to predict the presence of heart murmurs
from Phonocardiograms (PCG).

PCGs are recordings of all sounds of the heart during a
cardiac cycle. This includes sounds such as the first (S1)
and second (S2) heart sound, but also murmurs. Com-
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Figure 1. Murmur prediction (grey bar) generated by
MILU-Net on recording 9979 AV [4] where diastolic mur-
mur is present.

monly, a segmentation based on S1/S2 is performed be-
fore computing features using e.g. the (mel-)spectorgram
for PCG analysis.

By formulating the detection of heart murmurs as a
two stage multiple instance learning (MIL) problem with
“weakly labeled” data, as known from sound event detec-
tion [5], we can show that a machine learning model can
find the relevant segments for PCG analysis on its own,
without the need for prior segmentation. Weakly labeled
in this context means that for each sound recording, only a
single tag is provided without knowing the exact onset and
offset times of the relevant sound bites. More specifically,
in MIL [5], a weakly labeled dataset D = {Bn,yn}N con-
sists of a set of bags Bn = {xn,1, . . . ,xn,Tn

}, where each
bag is a collection of instances. Tn is the number of in-
stances in the n-th bag and each instance has a length (du-
ration) d. Given a particular sound class k, a bag (PCG
recording) is considered positive (e.g. ”murmur present”,
yk,n = 1) if it contains at least one positive instance and
negative (yk,n = 0) if it contains no positive instance at
all. The problem formulation heavily implies that, given a
prediction for each instance of a bag, the condensed label
is given by the maximum of these predictions. For both hi-
erarchically ordered sub-problems, predicting murmur at
time instance and location level, “weak labels” are avail-
able from the CirCor dataset [4].

Our two-stage approach aims to guide physicians to the
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the most audible murmur location, while being able to en-
hance murmur sounds.

2. Methods

We split the methods part in two problems: Primarily,
we want to construct a model (MILU-Net) which, based on
weak labels, produces a fine resolution murmur detection
which manages to explain the final decision about the pres-
ence of murmur for a single recording. Secondly, based on
that structure, we design a model (PANN) that achieves
good murmur prediction accuracy for a set of multiple
recordings of a particular patient at the cost of losing in-
terpretability with respect to a single recording. Both ap-
proaches rely on the same pre-processing.

Pre-processing. The recordings are pre-processed inde-
pendently of location by removing segments with low sig-
nal quality based on signal-to-noise ratio and saturation [6]
and applying bandpass filtering (10th order Butterworth fil-
ter, 10 to 800 Hz). Only during training, all signals are cut
or zero padded to a fixed length of 8.2 s to increase effi-
ciency.

MILU-Net. The MILU-Net model consists of a simple
U-Net [7] structure for feature generation and a part which
facilitates MIL. The U-Net guarantees that its output is the
same dimension as the input and thus provides a “strong”
label for each sample of the input. It consists of 5 down-
and up-sampling convolutional layers with batch norm and
ReLU activations and a final output convolutional layer
that summarizes the features into a 1D signal. Most im-
portantly, the output of the U-Net is used in a softmax-
pooling layer [5] with sigmoid activation to obtain a scalar
output murmur probability. By using the softmax-pooling
layer, we loosen the MIL assumption, which implies max-
pooling. In return, we achieve a more robust training that
depends less on the initialization, because the output de-
pends on all instances instead of single particular instances
that are chosen randomly due to parameter initialization.
The model is overfitted to the available data in order to
verify if it can learn the unique attributes of murmur. The
excitation of the U-Net is then directly related to the rele-
vance and “murmurness” of the respective signal part. An
example prediction is shown in Fig. 1.

PANN. The PANN model in Fig. 2 follows the MIL
idea loosely by widening the single output signal to an ar-
ray of feature signals. It employs a convolutional encoder
consisting of 6 blocks of 1d-convolutions (kernel size=5,
padding=same), batch norm, 1d-convolution, dropout and
max pooling (stride=2) to encode the signals in a feature-
rich presentation. These features, which can be thought of
as time signals, are then processed by an adaptive pool-
ing layer which produces a fixed-size output of 30 fea-
tures in total (max-pooling=15, average-pooling=10, min-
pooling=5). The intuition of the convolution block is that

it gets activated by murmurs in the respective parts in each
segment. The approach then takes advantage of the pe-
riodicity of murmurs by employing the pooling layer that
collects and summarizes the information about murmur ap-
pearance from all segments of the signal, rendering the
output feature dimensions independent of the input length.
The output features of the pooling layer are then combined
in a fully connected layer (30x64+5 input, 100 hidden and
20 output neurons) with the one-hot encoded recording lo-
cations. These outputs are then evaluated in a linear deci-
sion layer with softmax activation function. By processing
each recording location separately, we enable the user to
verify the suspected murmur origin.

As depicted in Fig. 3, in a second stage a multi-label
model is fed with the features and the encoded output of
the PANN model which includes (1) features summarizing
the relative median energy in five frequency bands, (2) the
one-hot encoded recording location, and (3) demographic
features (age,sex,weight). The multi-label model is a sim-
ple feed forward neural network with 4 hidden layers with
(123, 492, 246, 20) neurons, batch norm after each hidden
layer and leaky ReLU activations and one dropout layer at
the end. The output layers consist of 3 neurons for mur-
mur prediction and 2 for outcome prediction with softmax
activation each.

Augmentation. Due to the small training dataset we
employ data augmentation. During training and after pre-
processing, one or multiple augmentations are performed
at random: scaling, gaussian noise, drop, cutout, shift, re-
sampling, random resampling, sine wave, bandpass filter-
ing. Scaling randomly rescales the signal. Gaussian noise
adds gaussian noise to the signal. Drop randomly sets sig-
nal values to zero. Cutout randomly sets signal intervals to
zero. Shift randomly shifts the signal in time (creating ze-
ros at either end). Random resampling creates smooth time
offsets simulating a changing heart rate. Resampling lin-
early resamples the signal to another sampling frequency,
simulating another heart rate. Sine wave adds a random
sine wave to the signal. Bandpass filtering randomly ap-
plies a bandpass filter between 0.2 and 45 Hz.

Training. During both training stages we employ
weighted cross entropy loss. The weights are chosen as the
inverse of the relative frequency of each class to counter-
act class imbalance. For multi-label model training these
weights are multiplied by the respective class weights of
the weighted accuracy score employed by the challenge.
First the PANN model is trained using a learning rate of
0.001 which is then decreased by a factor of 0.3 after each
30 epochs. The best model is picked based on the mean of
training and validation accuracy.
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Figure 2. General Structure of PANN Model for murmur
detection
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Figure 3. Training of multi-label model

3. Results

We test the PANN model by computing the accuracy
for each auscultation location separately. The labels are
created by considering all recordings of a subject with
absent/unknown murmur as “Absent”/“UNK”. If murmur
is present, the locations marked as hearable are labeled
“Present”, the rest “UNK”. The accuracy of the interme-
diate decisions of PANN model (Tab. 1) for a confidence
threshold of 0.8 show that murmur is detected with an ac-
curacy of > 90% for all recording locations separately.
Given the true label for the subject is “Present”, the accu-

Table 1. PANN prediction for presence of murmur per aus-
cultation location [4] given the experts label says “Present”
and the total of high signal quality recordings (n=2803).

accuracy AV PV TV MV total
present 0.733 0.754 0.800 0.756 0.761

total 0.909 0.911 0.911 0.921 0.913

Table 2. 5-fold cross-validation for different augmenta-
tions ordered descendingly by improvement on murmur
prediction performance on training.

augmentation AUROC AUPRC F-measure
g. noise 0.839

(0.047)
0.664
(0.043)

0.546
(0.110)

scaling 0.840
(0.020)

0.659
(0.050)

0.537
(0.068)

shift 0.835
(0.029)

0.647
(0.035)

0.536
(0.047)

resample 0.832
(0.046)

0.652
(0.036)

0.532
(0.057)

bandpass 0.803
(0.062)

0.632
(0.068)

0.545
(0.043)

cutout 0.791
(0.095)

0.620
(0.082)

0.557
(0.090)

none 0.797
(0.077)

0.616
(0.064)

0.532
(0.080)

sine wave 0.808
(0.062)

0.617
(0.062)

0.514
(0.047)

drop 0.814
(0.031)

0.609
(0.037)

0.500
(0.041)

r. resample 0.782
(0.112)

0.598
(0.127)

0.505
(0.121)

racy in predicting the correct murmur locations is reduced.
We performed a 5-fold stratified cross-validation for

each of the signal augmentations we used during training,
by applying each singular augmentation with a probabil-
ity of 0.25. The effect on the final murmur predictions of
each augmentation as well as the validation measures for
no augmentation (“none”) is shown in Table 2.

We performed a 10-fold stratified cross-validation of
the final model (Fig. 3) resulting in the following scores
listed as mean (standard deviation): Murmur AUROC
0.831 (0.038), AUPRC 0.657 (0.059), F-measure 0.572
(0.076), Accuracy 0.722 (0.088), Weighted Accuracy
0.715 (0.077); Outcome AUROC 0.628 (0.047), AUPRC
0.634 (0.047), F-measure 0.580 (0.056), Accuracy 0.590
(0.057), Cost 13640 (2401).

The official results on the validation set and hidden test
set are listed in Tables 3 and 4.
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Table 3. Weighted accuracy metric scores (official chal-
lenge score) for our final selected entry (team Heart2Beat)
for the murmur detection task, including the ranking of our
team on the hidden test set.

Training Validation Test Ranking
0.803 0.72 0.751 12/40

Table 4. Cost metric scores (official challenge score) for
our final selected entry (team Heart2Beat) for the clinical
outcome identification task, including the ranking of our
team on the hidden test set.

Training Validation Test Ranking
10810 9135 12244 11/39

4. Discussion

The goal was to learn high resolution murmur detection
on weakly labeled recordings. As can be seen in Fig. 1
this works in principle. The main problem is that general-
izability is difficult to achieve and oftentimes recurrences
of murmur in the same recording do not lead to the same
model activation, which is in part due to the fact, that one
case of murmur is enough for the network to be correct
about a complete recording. This renders the application
for murmur enhancement impractical. While the accuracy
for murmur prediction on the recording level of PANN is
quite good (> 90%), for the subject level, a rule-based
system that followed the MIL idea (regarding murmur as
“Present” if there was murmur in at least one location, “Ab-
sent” if murmur is absent in all locations and “UNK” oth-
erwise) turned out to score badly (weighted accuracy of
0.56).

Random resampling augmentation appears to reduce the
performance of the model significantly in one of the folds
while providing no improvement in the others. Rescaling
the signals or adding Gaussian noise during training are
consistently improving generalization of the model dur-
ing training. All other augmentation techniques did not
result in a significant difference, although more variance
in the data certainly helps training more generalized mod-
els. Thus, we decided to use them either way but to a lesser
extent. Surprisingly, while rescaling reverts normalization
of the signals which is standard procedure during training
of most machine learning models, it improves generaliza-
tion. Adapting the probability of an augmentation being
applied based on ranking table 2 leads to an improvement
in all relevant metrics.

The results of the 10-fold stratified cross-validation are
consistent with the evaluation on the test set. However, the
training of the model has shown to be highly sensitive to
initialization and the selection of training data. Both are an
immanent problem of pooling based neural networks [5].

Training based on cost functions for both classification
tasks simultaneously reduced the classification accuracy
for murmur only by 3.6 %.

5. Conclusion

We present a model based on the MIL network to create
fine-granular murmur detection in PCG recordings. While
we can show that a basic model generates good results in
finding specific murmur locations only from training on
weak labels, this learning does not yet translate to good
prediction accuracy on unseen data. An adapted model
based on the same pooling ideas but with decreased level
of interpretability achieves competitive results in both mur-
mur detection and clinical outcome prediction.
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