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Abstract

Heart rate turbulence (HRT) is a physiological phe-
nomenon used for cardiac risk stratification. Its alteration
or absence indicates a significantly increased likelihood of
mortality. However, the influence of the autonomic nervous
system (ANS) on HRT needs to be further investigated. We
propose a cause-effect relationship model to quantify the
influence of the ANS. A set of 481 Holter-monitor record-
ings from different medical conditions were used, from
THEW: acute myocardial infarction, coronary artery dis-
ease and end-stage renal disease. We proposed to model
the relationship between HRT and ANS using Partial Least
Squares Path Modeling (PLS-PM), a method for structural
equation modeling that allows analyzing the relationships
between the observed data and the latent variables. HRT
parameters were estimated on individual ventricular pre-
mature complex (VPC) tachograms. ANS was assessed by
heart rate variability indices computed from 3-min before
VPC tachograms. The data set was split into low-risk and
high-risk subgroups. SDNN , PLF , TS and TO were the
most relevant variables. In low-risk, ANS activity was neg-
atively related to HRT, while correlation between coupling
interval and HRT on high-risk depends on the pathology.
PLS-PM suggests that the influence of physiological vari-
ables on HRT is broken on high-risk. Results of the model
are in agreement with the baroreflex hypothesis.

1. Introduction

Heart Rate Turbulence (HRT) is the physiological re-
sponse to a spontaneous ventricular premature complex
(VPC). In normal subjects, it consists of an initial accel-
eration and subsequent deceleration of the sinus heart rate.
Heart rate variability (HRV) reflects the regulation of the
heart rate by the autonomic nervous system (ANS). Both,
HRT and HRV, have been shown to be strong risk strati-
fication predictors in patients with cardiac disease [1–3].
However, the influence of the ANS on HRT in different
cardiac pathologies needs to be further investigated.

It has been documented in the literature the influence of
several physiological factors on the HRT [2]. The heart
rate affects the strength of the HRT response, in a way that
HRT is reduced at high heart rate. VPC prematurity also
influences the HRT response [4, 5]. As well, it has been
studied in the literature some interaction effect between
sex and age on HRT [6, 7]. Finally, there are evidences
of correlation between HRT and HRV on 24-hour Holters,
since both are under the influence of the ANS, but the stud-
ies only compare long-term averages [8].

In this work, we propose to model the cause-effect re-
lationship between ANS and HRT using latent-variables
estimated, in turn, using Partial Least Squares Path Mod-
eling (PLS-PM). We tested the model on several cardiac
diseases, namely acute myocardial infarction (AMI), coro-
nary artery disease (CAD) and end-stage renal disease
(ESRD), using RR-intervals from Holter monitoring.

The structure of the paper is as follows. In Section 2,
HRT and HRV assessment is detailed. In Section 3, BRT
model is explained. In Section 4, data sets are detailed.
In Section 5, results are reported. Finally, in Section 6,
conclusions are presented.

2. Heart Rate Turbulence and Heart Rate
Variability

HRT is usually quantified by two parameters, Turbu-
lence Onset (TO) and Turbulence Slope (TS). Both
parameters are usually computed on an averaged VPC
tachogram built using all available individual VPC
tachograms from 24-hour Holters [2]; even though there
exist some other approaches to assess HRT [9,10]. TO as-
sesses the amount of sinus acceleration following a VPC,
and it is defined as the percentage difference between the
heart rate immediately following the VPC and the heart
rate immediately preceding the VPC. TS represents the
rate of sinus deceleration that follows sinus acceleration,
and it is defined as the maximum positive regression slope
assessed over any 5 consecutive sinus rhythm RR-intervals
within the first 15 sinus rhythm RR-intervals after the
VPC [2]. In this work, we are going to analyze individuals

Computing in Cardiology 2022; Vol 49 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2022.147



Table 1. HRT and HRV indices use to characterize each
individual VPC tachogram.

HRT index Description
TO [%] Turbulence onset.
TS [ms/RR-int] Turbulence slope.
SCL [ms] Sinus cycle length.
CP [ms] Compensatory pause.
CI [ms] Coupling interval.
HRV index Description
AV NN [ms] Average NN-intervals.
SDNN [ms] Standard deviation NN-intervals.
pNN50 [%] Percentage of pairs of adjacent

NN-intervals differing more than 50 ms.
RMSSD [ms] Square root of the mean of the sum of the

squares difference between adjacent
NN-intervals.

SDSD [ms] Standard deviation of differences
between adjacent NN-intervals.

SD1 The standard deviation of points in
Poincaré plot across the identity line.

Plf [ms2] Power low freq. band [0.04, 0.15]Hz
Phf [ms2] Power high freq. band [0.15, 0.4]Hz
LF/HF Ratio Plf/Phf

VPC tachograms [5], so apart from T0 and TS, the HRT is
characterized also by the sinus cardiac length (SCL [ms])
computed as the average of the three RR-intervals previ-
ous the VPC, the compensatory pause (CP [ms]) which is
the RR-interval just right after the VPC, and the coupling
interval (CI [ms]) which isthe RR-interval corresponding
to the VPC (see Table 1).

HRV is usually assessed by time-domain and frequency-
domain indices, which are computed on NN-interval time
series from 24-hour Holter recordings. In this work, HRV
indices are computing on 3-min segments before each in-
dividual VPC tachogram, only segments with more than
90% of NN intervals (sinus beats) were allowed. The aim
is to assess the status of the ANS just before the VPC. HRV
is usually assessed on 5-min segments, however this would
lead to very few valid VPC tachograms. Table 1 shows the
HRT and HRV indices used in this work.

3. Partial Least Squares - Path Modeling

In this work, we propose to model the HRT (quantified
by TS and TO) as a result of the modulation of the ANS,
in turn, driven by the sympathetic and vagal activities, and
the local conditions of the VPC-tachogram (SCL, CP ,
CI). These (HRT, ANS, sympathetic, vagal and VPC-
tachogram conditions) are unobservable variables, i.e., la-
tent variables (LV). On the other hand, we have several
manifest variables (MV), i.e., directly measured variables
(HRT and HRV indices in Table 1), that are somehow re-
lated to each LV. In this way, LVs represent abstract con-
cepts that are combinations of the observable variables,
i.e., MVs. We propose to use PLS-PM, which is an al-

ternative method to covariance-based estimation for struc-
tural equation models (SEM) [11, 12], to build a relational
model that allows to create LV from MV in a linear way.

PLS-PM is an iterative algorithm that estimates the rela-
tionship between MVs and LVs by the weights of multiple
and simple regressions. PLS-PM allows to also obtain lin-
ear relationship between LVs ([11, 12]). A full path model
is comprised of two submodels: (1) measurement model,
which establishes the relationship between each LV and its
own MVs; (2) structure model, which considers the rela-
tionship between LVs ([12, 13]):
• LV–Sympathetic: We associated several indices which,
in the scientific literature, are related to the sympathetic
activity, namely, from HRV analysis: Plf , SDNN , even
though there is some controversy about its association to
sympathetic and vagal branches ([14–17]). However, PLS-
PM allows us to measure the adequacy of belonging to
each LV and therefore allowing the convenience of chang-
ing membership to another LV.
• LV–Vagal: The MVs associated with this LV are, from
HRV analysis, Phf , pNN50, RMSSD, SDSD, SD1.
The evidence from scientific literature supports the re-
lationship between these indices and the Vagal activity
([3, 14, 16]).
• LV–ANS: The MVs associated with this LV is, from HRV
analysis, the sympatho-vagal balance: LF/HF . ([14,18]).
• LV–VPC-measurements: This LV represents the local
conditions for each VPC as quantified by MVs SCL, CI ,
CP and AV NN .
• LV–HRT: This LV represents the response after a VPC
of the subjects, measured by MVs TS and TO.

Regarding the structural model, it was assumed that the
ANS directly depends on the Sympathetic and Vagal LVs,
while the HRT LV depends directly on ANS and VPC-
measurements. The complete scheme of the structural and
the measurement model can be seen in Figure 1.

The model was designed, such as MVs are considered
to be caused by the latent variables, i.e., reflective indi-
cators, except for VPC-measurements. This assumption
imposes a restriction since all the MVs are measuring the
same LVs. Therefore, all MVs have to be highly correlated
([13]). Consequently, some of the MVs had to change their
sign to follow along with the remaining MVs. The struc-
ture model is statistically represented by two linear regres-
sion models: (1) ANS as a function of Sympathetic and
Vagal activity, and (2) HRT as a function of the ANS and
VPC-measurements. The path coefficients (β) were ob-
tained as classical weights in linear regression, i.e., using
a least-square approach ([19]). The overall fit of the final
model was assessed by the goodness-of-fit ([20]).
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Figure 1. PLS-PM model fitted to AMI data set, low (top) and high risk (bottom). Red values correspond to negative
coefficients, while blue values correspond to positive coefficients of the latent model.

4. Data Sets and Preprocessing

We compared the proposed approach on three different
data sets which comprise 481 holter recordings from dif-
ferent cardiac pathologies, namely: acute myocardial in-
farction (AMI 93 patients; age: 59.10 ± 14.98; 23 fe-
males), coronary artery disease (CAD 271 patients; age:
59.06 ± 10.68; 48 females) and end-stage renal disease
(ESRD 51 patients; age: 59.89± 12.10; 21 females); from
The telemetric and Holter ECG Warehouse [21].

Each data set was split into two different subsets,
namely, a low risk subset including patients with TS ≥ 2.5
ms/RR and TO ≤ 0 %, and a high risk subset with TS
< 2.5 ms/RR and TO > 0 %. These TS and TO cutoff
values are commonly used in most clinical studies, where
TS > 2.5 ms/RR and TO < 0 % are normal [2].

Isolated VPC-tachograms were filtered according to
usual HRT procedures [2]. In this work, HRV indices were
computing on 3-min segments before each individual VPC
tachogram, with more than 90% of sinusal beats.

5. Results

Figure 1 shows the fitted PLS-PM model for AMI data
set, low (top) and high risk (bottom) subsets. The figure
shows the beta coefficients of the latent model, the R2 co-
efficient and the Goodness-of-Fit (GoF) index to evaluate
the global performance of the model.

The LVs Sympathetic and Vagal have the same be-
haviour and contributes in the same way to build the new
LV ANS in the three data sets (AMI, CAD, ESDR). Sym-
pathetic is positively correlated with ANS, whereas Va-
gal is negatively correlated. This behavior is the same
for each data set and each subgroup (low-risk and high-
risk). However, the contributions of the LVs ANS and
VPC-measurements to build the LV HRT is different for

each data set. In AMI, both are negatively correlated for
low-risk patients, whereas for high-risk patients, ANS is
negatively correlated and VPC-measurements is positively
correlated, and higher regression coefficient (more impor-
tant linear relationship). In CAD data set, both for low-
risk and high-risk patients, ANS and VPC-measurements
are negatively correlated, always the latter more important.
Finally, for ESDR data set, for low-risk patients, ANS is
positively correlated and VPC-measurement is negatively
correlated, whereas for high-risk patients the behavior is
the opposite.

For every data set, SDNN , LF , TS and TO where the
most significant variables to explain the whole model. The
global performance of the models range from GoF = 0.29
up to GoF = 0.44, which is a reasonable good value given
the complexity of the problem.

6. Conclusions

In this work, we propose to use PLS-PM to model
the relationship between HRT (TS, TO) and VPC-
measurements SCL, CI , CP , and several HRV time and
frequency domain indices. HRV was assessed on 3-min
NN interval segments just before every VPC. The model
was fitted using data from three different data sets with dif-
ferent heart conditions, AMI, CAD and ESDR. Data sets
were split into two different groups, namely, low risk and
high risk groups according to TS and TO cut-off values
reported in the literature.

Our results suggested that the influence of the ANS sta-
tus and the local conditions (VPC-measurement) on HRT
is different for each cardiac condition and also depends on
whether the patient is low or high risk. For every data set,
SDNN , LF , TS and TO where the most significant vari-
ables to explain the whole model. The global performance
of the models range from GoF = 0.29 up to GoF = 0.44,
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which is a reasonable good value given the complexity
of the mechanisms involve in the problem. Further work
should be aimed to incorporate information available, such
as gender and age of the patients. Also, having a control
group (a non-disease group) would allow to compare re-
sults properly, as well as to improve the model to account
for nonlinear relationships.
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