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Abstract

Automated segmentation of myocardial fibrosis in late
gadolinium enhancement (LGE) cardiac MRI (CMR) has
the potential to improve efficiency and precision of diagno-
sis and treatment of cardiomyopathies. However, state-of-
the-art Deep Learning approaches require manual pixel-
level annotations. Using weaker labels can greatly re-
duce manual annotation time and expedite dataset cura-
tion, which is why we propose fibrosis segmentation meth-
ods using either slice-level or stack-level fibrosis labels.

5759 short-axis LGE CMR image slices were retrospec-
tively obtained from 482 patients. U-Nets with slice-level
and stack-level supervision are trained with 446 weakly-
labeled patients by making use of a myocardium segmen-
tation U-Net and fibrosis classification Dilated Residual
Networks (DRN). For comparison, a U-Net is trained with
pixel-level supervision using a training set of 81 patients.

On the proprietary test set of 24 patients, pixel-level,
slice-level and stack-level supervision reach Dice scores
of 0.74, 0.70 and 0.70, while on the external Emidec
dataset of 100 patients Dice scores of 0.55, 0.61 and 0.52
were obtained. Results indicate that using larger weakly-
annotated datasets can approach the performance of meth-
ods using pixel-level annotated datasets and potentially
improve generalization to external datasets.

1. Introduction
Evaluation of myocardial fibrosis in the left ventricle

(LV) using cardiac magnetic imaging (CMR) with late
gadolinium enhancement (LGE) can help diagnose cardio-
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vascular diseases and risk of heart failure [1]. However,
the manual segmentation of fibrosis by clinicians is time-
consuming, hindering its application in practice. To ex-
pedite quantitative evaluation, different methods for auto-
matic and semi-automatic fibrosis segmentation have been
created. For fully-automatic segmentation, most recent re-
search has focused on fully-supervised deep learning seg-
mentation networks [2]. A major factor holding back the
usage of these models is the scarcity of annotated data.
In order to train these networks a handcrafted dataset of
pixel-level fibrosis annotations is needed, which is time-
consuming to create, requires a high level of expertise and
shows high interobserver variability. One approach to re-
duce the workload of creating training data and reduce
training label interobserver variability is to switch from
fully-supervised segmentation to weakly-supervised seg-
mentation, which has not been attempted yet for myocar-
dial fibrosis segmentation.

The LGE CMR images for one patient consist of a stack
of 2D image slices, so the weakest label is a stack-level
binary label. The advantage is that this allows for rapid
expansion of training data, albeit this approach gives lit-
tle information compared to pixel-level labels. A compro-
mise is to use slice-level fibrosis labels, which gives more
information than stack-level labels, but is still consider-
ably faster to manually label than pixel-level labels. To
aid our weakly-supervised fibrosis segmentation methods
we also make use of a myocardium segmentation model,
which is trained on a smaller subset of the weakly-labeled
training data. This work proposes approaches for fibrosis
segmentation using either slice-level or stack-level super-
vision and compares it to standard pixel-level supervision.
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2. Materials

2.1. Deep Risk dataset

The Deep Risk dataset is a private dataset acquired at
the Amsterdam University Medical Center, used for train-
ing and evaluating the deep learning models. It consists of
5759 short-axis (SAX) LGE CMR image slices, with an
average of 11.9 image slices per patient. The patients were
at risk for ventricular arrhythmia, for which they have since
received an implantable cardioverter defibrillator (ICD).
A subset of 117 patients was randomly selected for man-
ual pixel-level myocardium and fibrosis annotations. This
fully-labeled dataset was subsequently split into training,
validation and test sets of 81, 12 and 24 patients respec-
tively. A weakly-annotated training set, provided with
slice-level and stack-level binary fibrosis labels, extends
the number of training patients used for weakly-supervised
fibrosis segmentation to 446.

2.2. Emidec dataset

The Emidec dataset is an open-source dataset [3], which
in our case is only used for external evaluation of the deep
learning models. It also consists of SAX LGE CMR im-
ages, acquired at the University Hospital of Dijon for pa-
tients admitted in the cardiac emergency department with
symptoms of a heart attack. The Emidec training set is
used for evaluation, which has openly available manual
pixel-level annotations of myocardium and fibrosis for 100
patients.

3. Methodology

This work will compare a standard fully-supervised my-
ocardial fibrosis segmentation approach to our weakly-
supervised approach. Two types of weak fibrosis labels
are considered: a per-slice and a per-stack binary label.
The weakly-supervised approach is summarised as follows
(see figure 1):

1. Training a myocardium segmentation model, us-
ing ground truth pixel-level myocardium segmenta-
tions as labels.

2. Training a fibrosis classification model for either
the slice-level or stack-level classification task, us-
ing corresponding weak fibrosis labels and the trained
myocardium segmentation model.

3. Creating pixel-level fibrosis pseudo-labels, using
the trained fibrosis classification model and weak fi-
brosis labels.

4. Training a fibrosis segmentation model, using the
pixel-level fibrosis pseudo-labels.

The fully-supervised fibrosis segmentation approach is
analogous, skipping steps 2 and 3, and training (4) on
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Figure 1: Pipeline for weakly-supervised fibrosis segmen-
tation. Slice-level supervision uses a 2D DRN and slice-
level fibrosis labels, while stack-level supervision uses a
3D DRN and stack-level fibrosis labels.

ground truth pixel-level fibrosis labels.

3.1. Myocardium segmentation model

The stack of image slices makes a 3D image, but given
the coarse resolution on the z-axis a 2D model is chosen
instead. The model architecture is a 2D U-Net, a popu-
lar neural network designed for medical image segmenta-
tion with an encoder-decoder structure and skip connec-
tions [4]. The model is trained using the Dice loss and
ground truth pixel-level myocardium labels.

3.2. Fibrosis classification models

Fibrosis classification models provide Class Activation
Maps (CAMs), used to initialize weakly supervised seg-
mentation. A convolutional backbone is followed by a 1x1
convolution with one output channel, which outputs the
CAM. After this, spatial Global Average Pooling (GAP)
aggregates the CAM into an image-level prediction, thus
enabling training with image-level labels. Early experi-
ments showed that normal GAP leads to poor fibrosis lo-
calization, where high CAM values are mainly located in
the center of the image, i.e. the blood pool. To force CAMs
into relevant regions, a myocardium restricted pooling is
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applied. Predictions from the myocardium segmentation
model are used to mask out CAM pixels outside of the my-
ocardium prior to GAP. Both LGE CMR images and pre-
dictions of the myocardium segmentation model are given
at the input layer.

Models for both slice-level and stack-level fibrosis clas-
sification are trained. For slice-level classification, the
backbone is a 2D Dilated Residual Network (DRN) [5],
where the stride in layer 4 is reduced from 2 to 1, result-
ing in a CAM resolution of 56x56. Stack-level classifica-
tion requires a 3D model, which is created by replacing
the 3x3 convolutions in the slice-level classification model
with 3x3x1 convolutions. This means that inter-slice fea-
tures are not considered, but the coarse resolution along the
z-axis is an indicator that the benefit of inter-slice features
to classification and CAM quality might be limited. Fur-
thermore, adding inter-slice features could lead to model
overfitting. The slice-level fibrosis classification model is
trained using the standard binary cross-entropy loss. The
stack-level fibrosis classification is instead trained using a
weighted binary cross-entropy loss to compensate for the
class imbalance on this label.

3.3.  Fibrosis pseudo-label generation

A series of post-processing steps are performed to trans-
form the restricted CAMs of fibrosis classification models
into pseudo-labels, which are subsequently used to train fi-
brosis segmentation networks. Pseudo-label generation is
largely the same for slice-level and stack-level supervision,
except for two points. The first difference is that CAMs
from either a slice-level or a stack-level fibrosis classifica-
tion model are used as a starting point. Secondly, pseudo-
labels for images with a negative weak label are automati-
cally assumed to contain no fibrosis.

The following steps are therefore only performed for im-
ages with a positive weak label. Firstly, CAMs are resized
to the original image size using bilinear interpolation. Sec-
ondly, the unbound CAM values are converted to a prob-
ability map by applying a ReLLU and scaling the remain-
ing positive values between 0.5 and 1.0. Next, a 3 class
Multi-Otsu thresholding [6] is performed over image pix-
els corresponding to the remaining positive probabilities.
All pixels values below the lowest threshold are then set
to probability zero, using the prior knowledge that healthy
myocardium is low intensity to improve pseudo-label pre-
cision. As a last step, the probability maps are given as in-
put to a Dense Conditional Random Field (DenseCRF) [7],
with the purpose of removing small, unconnected pixels
with low probability from the pseudo-labels. This results
in binary pixel-level fibrosis pseudo-labels. DenseCRF hy-
perparameters are set to w?) = 0, w?) = 1,0, = 3 and
k=5.

(a) Examples on the internal Deep Risk dataset. Here no clear preference
can be found between pixel-level, slice-level and stack-level supervision.
Ground truth

Image slice Pixel supervision Slice supervision Stack supervision

(b) Examples on the external Emidec dataset. Pixel-level supervision un-
derpredicts, likely due to the smaller fully-labeled training set. The bot-
tom row image shows that stack-level supervision tends to predict false
positives in areas disconnected from the actual fibrosis.

Figure 2: Examples of fibrosis segmentation using pixel-
level, slice-level and stack-level supervision.

3.4. Fibrosis segmentation model

The fibrosis segmentation model is a 2D U-Net identical
to the myocardium segmentation model, which is trained
using the Dice loss. For weakly-supervised fibrosis seg-
mentation, only the LGE CMR image slices are given as
input. For fully-supervised fibrosis segmentation, predic-
tions from the myocardium segmentation model are given
as additional input, since this was found to improve results.

4. Results

For the myocardium segmentation average Dice scores
of 0.84 and 0.76 were reached on the internal Deep Risk
dataset and external Emidec dataset respectively (Table 2).
Slice-level fibrosis classification reached AUROC scores
of 0.92 and 0.86 for the Deep Risk and Emidec dataset,
while scores of 0.88 and 0.81 are reached for stack-level
fibrosis classification (Table 1). Table 2 shows the aver-
age fibrosis Dice score for patients with fibrosis. Here we
can see that fully-supervised, pixel-level supervision per-
forms best on the Deep Risk dataset (Dice 0.74), followed
by slice-level supervision (Dice 0.70) and stack-level su-
pervision (Dice 0.70). Qualitative examples in Figure 2a
show no clear preference between the different supervi-
sion levels. However, on the external Emidec dataset we
see that slice-level supervision performs best (Dice 0.61),
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Table 1: Results for the slice-level and stack-level fibrosis
classification tasks. Area under the ROC-curve (AUROC).

Classification task ~ AUROC Deep Risk AUROC Emidec

Slice-level 0.92 0.86
Stack-level 0.88 0.81

Table 2: Dice scores for myocardium segmentation and fi-
brosis segmentation with different supervision levels. Av-
erage and standard deviation.

Tissue Supervision Dice Deep Risk  Dice Emidec
Myocardium  Pixel-level 0.8440.05 0.76+0.10
Fibrosis Pixel-level 0.74£0.36 0.55+0.40
Fibrosis Slice-level 0.70+0.37 0.61+0.37
Fibrosis Stack-level 0.70+0.37 0.524+0.38

followed by pixel-level supervision (Dice 0.55) and lastly
stack-level supervision (Dice 0.52). Qualitative exam-
ples are seen in Figure 2b, where pixel-level supervision
heavily underpredicts compared to slice-level and stack-
level supervision. This poor generalization is likely due
to the smaller fully-labeled training set and the distribu-
tion shift with respect to imaging and patients. It can also
be seen that stack-level supervision makes small predic-
tions in healthy areas, something which heavily drops Dice
scores for healthy slices and is a consequence of the lim-
ited information in stack-level labels.

5. Discussion and Conclusion

This work has introduced two methods for weakly-
supervised myocardial fibrosis segmentation that drasti-
cally reduce manual labelling time, using slice-level and
stack-level supervision. Results indicate that the usage
of larger weakly-labeled datasets can approach the per-
formance reached using painstakingly created pixel-level
datasets and potentially improve generalization to new data
sources.

One limitation of the weakly-supervised methods is that
they still require pixel-level myocardium annotations. If
this reliance can be removed or reduced, manual annota-
tion time could be further shortened. Another point for
improvement is the incorporation of inter-slice features,
something that despite the distance between slices should
be able to improve results. More research is necessary to
answer how pixel-level, slice-level and stack-level supervi-
sion scale with increasing amounts of training data, which
in combination with the respective labelling time can help
determine which type of supervision is to be preferred in

practice. Another line of research could could investigate
how to best combine smaller fully-labelled datasets with

larger weakly-labeled datasets in order to optimally use all
available data.

Acknowledgments

We acknowledge the DEEP RISK ICD study investiga-
tors: C.P. Allaart, M.J.W Gotte, J.L. Selder, A.C.L. van der
Lingen.

This publication is part of the project DEEP RISK ICD
(with project number 452019308) of the Rubicon research
programme (personal grant FV.Y.T) which is (partly) fi-
nanced by the Dutch Research Council (NWO). This re-
search is partly funded by the Amsterdam Cardiovascular
Sciences (personal grant EV.Y.T).

References

[1] Kuruvilla S, Adenaw N, Katwal AB, Lipinski MJ, Kramer
CM, Salerno M. Late gadolinium enhancement on car-
diac magnetic resonance predicts adverse cardiovascular out-
comes in nonischemic cardiomyopathy. Circulation Cardio-
vascular Imaging 2014;7(2):250-258.

[2] Wu Y, Tang Z, Li B, Firmin D, Yang G. Recent advances in
fibrosis and scar segmentation from cardiac mri: A state-of-
the-art review and future perspectives. Frontiers in Physiol-
ogy 2021;12. ISSN 1664-042X.

[3] Lalande A, Chen Z, Pommier T, Decourselle T, Qayyum A,
Salomon M, Ginhac D, Skandarani Y, Boucher A, Brahim K,
de Bruijne M, Camarasa R, Correia TM, Feng X, Girum KB,
Hennemuth A, Huellebrand M, Hussain R, Ivantsits M, Ma
J, Meyer C, Sharma R, Shi J, Tsekos NV, Varela M, Wang X,
Yang S, Zhang H, Zhang Y, Zhou Y, Zhuang X, Couturier R,
Meriaudeau F. Deep learning methods for automatic evalu-
ation of delayed enhancement-mri. the results of the emidec
challenge. Medical Image Analysis 2022;79:102428. ISSN
1361-8415.

[4] Ronneberger O, Fischer P, Brox T. U-net: Convolutional
networks for biomedical image segmentation. In Navab N,
Hornegger J, Wells WM, Frangi AF (eds.), Medical Image
Computing and Computer-Assisted Intervention — MICCAI
2015. Cham: Springer International Publishing. ISBN 978-
3-319-24574-4, 2015; 234-241.

[5] Yu F, Koltun V, Funkhouser TA. Dilated residual networks.
CoRR 2017;abs/1705.09914.

[6] LiaoPS, Chen TS, Chung PC. A fast algorithm for multilevel
thresholding. J Inf Sci Eng 09 2001;17:713-727.

[7] Kréhenbiihl P, Koltun V. Efficient inference in fully con-
nected crfs with gaussian edge potentials. In NIPS. 2011;

Address for correspondence:

Fleur Tjong

Department of Cardiology, Amsterdam UMC
Meibergdreef 9, 1105 AZ Amsterdam
f.v.tjong @amsterdamumc.nl

Page 4



