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Abstract 

The Purkinje network plays a determinant role in the 
electrical activation sequence of the human heart. 
However, Purkinje properties cannot be clinically 
measured directly.  

Recent studies have successfully demonstrated cardiac 
digital twins without Purkinje networks, using inference 
methods integrating cardiac magnetic resonance (CMR) 
imaging and electrocardiogram (ECG) data. A 
sophisticated strategy to recover a patient’s plausible 
Purkinje structure would enable these cardiac digital twins 
to augment clinical data and inform Purkinje-based risk 
stratification. 

This study presents and evaluates new computational 
techniques to infer physiological Purkinje terminal 
locations, timings, and cardiac conduction properties from 
clinical CMR and ECG using Eikonal simulations. Our 
extended sequential Monte Carlo approximate Bayesian 
computation-based inference method shows an improved 
match in simulated QRS complexes to Q-wave 
morphologies in clinical 12-lead ECGs with Pearson’s 
correlation coefficients of 0.89.  

1. Introduction 

A cardiac digital twin [1] is a virtual tool that 
mechanistically integrates and augments a patient’s 
clinical dataset using physiological knowledge to inform 
therapeutic and diagnostic decision-making through 
simulations. 

Previous studies demonstrated the power of patient-
specific modelling and simulation testing to augment the 
interpretation of clinical electrocardiogram (ECG) and 

cardiac magnetic resonance (CMR) data to improve risk 
stratification in poorly understood conditions [2,3].  

Recent developments have demonstrated the power of 
inference methods for generating digital twins of the 
human heart [4,5]. However, neither of these tools can 
recover realistic Purkinje network properties, such as the 
number and location of physiologically timed root nodes 
(Purkinje-myocardial junctions) and ventricular 
conduction properties from standard clinical data. 

Pro-arrhythmic abnormalities in the heart’s Purkinje 
network [6] cannot be diagnosed from non-invasive 
clinical data. This study investigates novel computational 
tools to generate cardiac digital twins to augment clinical 
data to gain information on ventricular activation 
properties and their Purkinje networks. 

We present a novel electrophysiological cardiac digital 
twin generation pipeline to recover realistic Purkinje root 
nodes and ventricular conduction properties from CMR 
and 12-lead ECG data, using an internal knowledge-based 
representation of the human Purkinje network. 

2. Methods 

First, we sample the candidates for root node locations 
in the endocardium (Figure 1). Next, we constrain the 
possible activation times of these locations using a new 
method based on a pseudo-Purkinje strategy. The pseudo-
Purkinje strategy uses Cobiveco’s universal ventricular 
coordinates [7]. The inference method starts by generating 
a population of parameter sets for conduction speeds, root 
nodes, and activation times. Next, the inference method [4] 
iteratively samples activation parameter sets and evaluates 
the Eikonal and pseudo-ECG equations to compute 
discrepancies to the clinical QRSs until the stopping 
criteria are fulfilled. 
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Figure 1. Pseudo-Purkinje generation and inference pipeline. We uniformly sample the root node locations. Then, we 
generate the Cobiveco coordinates for the endocardial surfaces in both ventricles. Our novel pseudo-Purkinje network 
algorithm uses them to connect all the candidate root nodes to the His bundle. Next, we constrain the root node activation 
times. Finally, we run the inference process [4] using the candidate root nodes, constrained activation times, and the clinical 
QRS complexes. 

2.1. Data pre-processing 

These clinical ECG recordings were pre-processed by 
averaging 20 beats and delineating the resulting signals 
containing the QRS complex [2]. First, we manually 
segmented the QRS complexes to have a significant 
gradient at the start of the signals and no gradient at the 
end. Next, we generated torso-based 12-lead electrode 
locations and biventricular meshes using the CMR data to 
enable simulating ECG signals. 

2.2. Pseudo-Purkinje strategy 

We present a strategy based on experimental findings in 
dogs [8] and humans [9,10] for determining a path between 
the candidate root nodes in the heart and the his-bundle to 
precompute the root nodes’ activation times. Our pseudo-
Purkinje strategy uses Dijkstra’s algorithm to navigate the 
endocardial cavities from the his-bundle to each root node, 
passing through different subsets of navigation points 
depending on where the current root node is located. These 
navigation points ensure that the his-bundle connects to the 
different regions in the heart, as observed in experimental 
data [8-10]. 

We used the apex-to-base (ab) and rotation-angle (rt) 
from the universal ventricular coordinates system 
Cobiveco [7]. These are symmetric between the right 
ventricle (RV) and left ventricle (LV) (values from 0 to 1). 
We define a densely connected region of the endocardium 
as the most apical region (ab < 0.4) in the LV and RV, plus 
the free-wall (0.2 < rotation-angle < 0.5). The remaining 
endocardium is referred to as sparse. We define the top and 
bottom of the his-bundles at the middle of the septal-base 
line [1, 0.85] [ab, rt] and the most apical-septal point [0, 
0.85]. The root nodes in the RV’s free-wall and apical (ab 
< 0.2) regions connect to the point in the non-basal his-
bundle (ab < 0.8) that has the most similar ab value. The 
apical (ab < 0.2/0.4, RV/LV) and septal (0.7 < rt) root 
nodes connect to their closest apical (ab < 0.2/0.4, RV/LV) 
his-bundle point. This is also true for the RV paraseptal (rt 
< 0.2 | 0.5 < rt < 0.7) root nodes. The LV paraseptal root 

nodes (ab > 0.4 & (rt < 0.2 | 0.5 < rt < 0.7)) connect to their 
mid-paraseptal-apical point ([0.4, 0.1] or [0.4, 0.6]) and 
from there to the closest point in the his-bundle (ab < 0.4). 
The root nodes in the LV’s free wall are connected to the 
his-bundle from the apex to the base. These root nodes 
connect to the mid-free-wall-apical point ([0.4, 0.35]) and 
then to the apical his-bundle (0.4 < ab).  

This strategy provides a physiological alternative to the 
simultaneous activation of the root nodes utilised in 
previous studies [4,5]. 

2.3. Inference process 

We extend our SMC-ABC-based method [4] to infer the 
human ventricular activation properties and non-
simultaneously activated root nodes. We consider the 
conduction speeds that significantly affect The fast 
endocardial layer is split into dense endocardial and sparse 
endocardial speeds to account for the changes in the 
density of myocardial-Purkinje junctions observed in 
experimental studies [8,10]. On the other hand, we set the 
fibre and sheet-normal myocardial conduction speeds to 
nominal values, namely, 65 and 48 cm/s [11], respectively. 
Similarly, we considered a Purkinje speed of 2 m/s [9]. 

From the resulting population from the inference 
process, we chose the parameter-set with the highest 
Pearson’s correlation coefficient (PCC) between its 
simulated 12-lead QRS and the clinical recording. 

3. Results 

Here we present the inference results with simultaneous 
activation of all the root nodes and compare them to the 
results with our new strategy that precomputes root node’ 
activation times, referred to as delayed activations. We 
repeated each inference run three times to ensure the 
reproducibility of our results. 

Table 1. Inferred speeds (cm/s) and Pearson’s correlation 
coefficients (PCC) between the recovered and clinical 
ECGs (mean    ±standard deviation). 
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Root node 
activations 

Sheet 
speed 

Sparse 
speed 

Dense 
speed 

Pearson’s 
CC 

Simultaneous 29 ±5 83 ±9 124 ±2 0.90 ±0.00 
Delayed 39 ±12 120 ±3 111 ±18 0.89 ±0.02 

The values inferred for the sheet and sparse-endocardial 

speeds were faster when considering Purkinje-driven 
delays at the root nodes, whereas the dense-endocardial 
speed was slower. The PCC between the simulated ECG 
using the inferred activation properties and the clinical 
QRS signals were equivalent with and without 
physiological delays at the root nodes.

Figure 2. Inferred root node locations (left) and match to the same (top and bottom) clinical ECG (right) using 
simultaneously activated root nodes (top) and delayed activation at the root nodes from a realistic Purkinje network 
(bottom). The inferred root nodes obtained from the three runs of the inference process are represented as the frequency of 
an inference result showing any number of root nodes in each segment of the surface 17-segment (AHA) [12] projections 
of both ventricles. Yellow indicates that all three runs of the inference had one root node in a region, whereas purple 
indicates that none of the inference runs returned a root node in that region. The normalised ECG plots show the clinical 
ECG recording in black and the result of the three runs of the inference in other colours. 

For the inference using simultaneously activated root 
nodes (Figure 2 – top-left), the root nodes were 
consistently inferred to be located in the RV’s basal 
anterolateral region and the LV’s basal anterior region. In 
the RV, the remaining root nodes were scattered across the 
mid non-lateral ring and the basal inferior and basal 
inferoseptal regions. In the LV, these were located in the 
mid anterior, mid inferior, mid inferoseptal, and apical 
inferior regions of the endocardial cavity. 

The results from the inference using our novel Purkinje-
informed activation times at the root nodes (Figure 2 – 
bottom-left) consistently returned root nodes in the apical 
septal region of the LV. In contrast, no region was chosen 
in all three inference runs in the RV. The remaining root 
nodes were scattered across the basal lateral, basal septal, 
mid anterior and mid inferoseptal regions of the RV and 
the basal lateral, basal anteroseptal, mid anterior, and mid 
septal regions of the LV. Overall, we observed a shift 
towards more lateral inferred locations in the LV when 

including the physiological activation times at the root 
nodes. 

Regarding the morphological match between the 
inferred and clinical QRS signals (Figure 2 - right), despite 
the equivalent PCC scores from both root node activation 
strategies, including the delays in the root nodes, enabled 
matching better the small negative deflections present in 
the Q-waves in leads I, II, V2, V5 and V6 compared to the 
results from the inference with simultaneously activated 
root nodes. 

4. Discussion 

We present a novel digital twin generation pipeline 
capable of recovering the human ventricular activation 
properties, including Purkinje structures within human and 
dog [8-11] experimental ranges, using clinical cine CMR 
and 12-lead ECG recordings. We demonstrate its 
application to augment clinical data from one control 
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subject, where we matched the clinical data with a PCC of 
0.89 between the simulated and clinical QRS complexes. 
In addition, we showcase the morphological improvement 
of our extended pipeline in recovering QRS complexes. 
More precisely, our proposed strategy matches the 
subject’s clinically observed Q-wave morphologies, which 
was impossible with the previous inference method [4]. 
These improvements will be vital for applying our pipeline 
to cohorts of subjects presenting pathological Q-waves. 

Our method recovers the necessary ingredients for 
growing complex Purkinje networks in our digital twins of 
the human ventricular electrophysiology to aid clinicians 
in Purkinje-related risk stratification by augmenting the 
information in clinical recordings. 
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