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Abstract

Hypertrophic cardiomyopathy (HCM), an inherited car-
diac disease, is one of the leading causes of sudden car-
diac death in the young. There is no pharmacological
therapy in use that specifically targets HCM pathophysi-
ology. HCM caused by mutations in the gene coding for
the sarcomeric protein troponin T is particularly arrhyth-
mogenic; the mechanisms remain unknown. Guided by
human experimental data, we investigate sarcomeric re-
modelling caused by the R92Q troponin T mutation and
HCM ionic remodelling using a human-based computa-
tional model of an adult ventricular cardiomyocyte. Ar-
rhythmogenic triggers in the form of early afterdepolari-
sations (EADs) were absent when considering R92Q sar-
comeric remodelling alone, but sarcomeric remodelling in-
creased the frequency of EADs associated with HCM ionic
remodelling. An arrhythmogenic ionic mechanism was
identified: the sarcomeric mutation increased calcium my-
ofilament sensitivity which led to prolonged calcium tran-
sient decay, resulting in prolonged inward INCX which gen-
erated EADs. This pathway was targeted in the simula-
tions with a sarco/endoplasmic reticulum Ca2+-ATPase ac-
tivator, which reduced EAD frequency. This highlights the
potential of computational precision medicine to investi-
gate mutation-specific pathomechanisms and identify ther-
apeutic targets in inherited cardiomyopathies.

1. Introduction

Hypertrophic cardiomyopathy (HCM) is an inherited
cardiac disease, with a frequency of one in 500, charac-
terised by thickening of the interventricular septum and left
ventricle. It is caused by mutations in genes encoding pro-
teins in the sarcomere. Carriers of the TNNT2 missense
mutation R92Q, affecting the troponin T (TnT) regulatory
protein located on the thin-filament of the sarcomere, have
a higher incidence of sudden cardiac death compared to
other TNNT2 mutations, other sarcomeric mutations and
patients with no identifiable mutation [1]. It is currently
not known why the R92Q TnT sarcomeric mutation is par-

ticularly arrhythmogenic.
The cellular electrophysiological properties of car-

diomyocytes influences arrhythmogenicity. Cellular ionic
remodelling, that is, up- and down-regulation of various
ion currents in the cell, is known to occur in HCM and has
been characterised in isolated human cardiomyocytes from
HCM myectomy patients [2].

Sarcomeric mutation-induced remodelling is thought to
lead to this downstream HCM ionic remodelling. With
the R92Q TnT mutation, this is thought to be due to an
increase in Ca2+ myofilament sensitivity, as shown in hu-
man induced pluripotent stem cell-derived cardiomyocytes
(hiPSC-CMs) and transgenic mice [3, 4].

Previously, a cellular computational electromechani-
cal model of R92Q sarcomeric remodelling was stud-
ied [5]. Separately, there exists a cellular computational
electrophysiological-only model of HCM ionic remod-
elling [6]. Here, we investigate the relative contributions
of the sarcomeric and ionic aspects of remodelling to the
HCM cellular pro-arrhythmic phenotype using a combined
computational electromechanical model of both R92Q sar-
comeric and HCM ionic remodelling. The model is ex-
ploited to investigate mutation-specific pathomechanisms
in HCM, and uncover tailored therapies for their correc-
tion in the high-risk group of patients with thin-filament
mutations.

2. Methods

ToR-ORd-Land was used as the baseline electrome-
chanical model of a human ventricular cardiomyocyte [7].
Upon simulated pacing, this model outputs action poten-
tials (APs), intracellular calcium transients (CaTs) and ac-
tive tension (Ta) curves (Figure 1). A population of mod-
els (PoM) approach was used to account for cell-to-cell
and patient-to-patient variability; 1000 initial models were
generated by varying the conductances using latin hyper-
cube sampling between 50–150% of the original value for
major ionic currents as in [6].

Calibration of AP, CaT and Ta curves to human non-
diseased myocyte experimental data as described in [5–8],
reduced the population down to 440 models to form the
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Figure 1. ToR-ORd-Land electromechanical model of a
human ventricular cardiomyocyte [7]. Green and red cir-
cles: ionic current up- and down-regulation, respectively,
as per HCM ionic remodelling. Red square: HCM sarcom-
eric remodelling.

non-diseased control population. From this, three diseased
populations were generated by varying parameters in the
models. The R92Q sarcomeric remodelling population
was generated by increasing Ca2+ myofilament sensitivity
(Ca50; -30%) and preferring the non-blocking tropomyosin
state (KTmBlock; -20%) for all models as in [5], and as per
experimental data [3, 4]. A HCM ionic remodelling pop-
ulation was generated by varying 17 parameters, mainly
ion channel conductances, as in [6] (except +10% for ICaL
due to new data), as informed by experimental data [2].
Finally, a combined R92Q sarcomeric and HCM ionic re-
modelling population was generated using both sets of pa-
rameters simultaneously. The simulated diseased popula-
tions recapitulated the HCM phenotype as per experimen-
tal data [2, 3, 5], including hypercontractility and prolon-
gation of action potential duration (APD), relaxation and
CaT decay (data not shown).

Simulations were performed in MATLAB (The Math-
Works Inc., Natick, MA, USA). Each model was paced at 1
Hz until steady-state, only the last beat was taken into con-
sideration. A stimulus current of −53 µA/µF of 1 ms du-
ration was used. Early afterdepolarisations were detected
with the threshold: dV/ dt > 0.005 mV/ms at any point
150 ms after Vpeak, where V is the membrane potential.

3. Results

For an arrhythmia to occur, a trigger is required which is
timed within a vulnerable window and which occurs within
a suitable sustaining substrate of the heart. One type of
trigger of arrhythmias is early afterdepolarisations (EADs)
— these are abnormal depolarisations in phase 2 or 3 of
the AP. The fraction of models which displayed EADs in
each of the populations is shown in Figure 2a. No EADs
were observed in the control and R92Q sarcomeric remod-

elling populations. Combined R92Q and ionic remodelling
(R92Q + Ionic) was more arrhythmogenic than HCM ionic
remodelling (HCM Ionic) alone (7.27% vs 5.45%).

Phenotypically, the main observed difference between
both populations was a prolonged CaT decay in the R92Q
+ Ionic population (Figure 2b; median 556 ms vs 483 ms).
Analysis of individual baseline models (without PoM con-
ductance variations) revealed no significant differences be-
tween R92Q + Ionic and HCM Ionic in ion channel cur-
rents over time, except for the Na+/Ca2+ exchanger current
(INCX). The inward mode of INCX under R92Q + Ionic re-
modelling was found to be protracted relative to the HCM
Ionic model (Figure 2c). This prolonged inward depolaris-
ing INCX at late times coincides with phase 2 and 3 of the
AP, and thus was hypothesised to be a source of EADs.

Late Na+, L-type Ca2+ and NCX current blocks were ap-
plied to each population of models from 0 to 60% block.
The EAD frequency was measured at each percentage
block. NCX current block was more effective than other
currents blocks at decreasing EAD frequency in the R92Q
+ Ionic population as compared to the HCM Ionic popu-
lation (Figure 2d; ∆EAD Freq. = 0% for 20% NCX block
but 1.4% for 20% NaL block). Excluding the increase in
calcium sensitivity in the R92Q + Ionic model restored the
calcium transient decay time and frequency of EADs to
the HCM Ionic model level (data not shown) — demon-
strating that the calcium myofilament sensitivity aspect of
the R92Q model was responsible for the calcium transient
decay time prolongation, rather than the tropomyosin po-
sitioning.

It was hypothesised that by decreasing the calcium tran-
sient decay time, one may be able to decrease EAD fre-
quency. The sarco/endoplasmic reticulum Ca2+-ATPase
(SERCA) mediates the reuptake of calcium, Jup, into
the network sarcoplasmic reticulum (NSR). We modelled
stimulation of SERCA by increasing Jup by +60% in all
models in the R92Q + Ionic population. This resulted in
a decrease in calcium transient decay time (Figure 2b).
Correspondingly, the EAD frequency decreased more than
two-fold upon SERCA stimulation (Figure 2a) (7.27% to
2.95%). The reduction in calcium transient decay time
(Figure 2e) shifts the INCX curve back to the left (Figure
2f), that is, reducing the level of depolarising current at
phase 2 and 3 of the AP, putatively explaining the reduc-
tion in EAD frequency.

SERCA stimulation was varied (Jup multiplier in the
range [0.8, 2.0], on top of the initial 0.75 ionic remod-
elling multiplier; data not shown) at fast and slow pacing
rates for the R92Q + Ionic model. As Jup was increased, Ta
and CaT amplitude decreased under 4000 ms basic cycle
length (BCL) stimulation but the amplitudes increased un-
der 1000 ms BCL stimulation, suggesting that heart rate
could alter the effects of SERCA stimulation in HCM.
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Figure 2. a) EAD frequency per population; b) calcium transient time from peak to 90% decay per population; c) NCX
current for ionic only and combined remodelling; d) EAD frequency for ionic and combined remodelling as a function of
current blocks; e) intracellular calcium transient under SERCA stimulation; f) NCX current under SERCA stimulation.

While excessive SERCA stimulation caused SR Ca2+ over-
load, moderate stimulation raised the low [Ca2+]NSR in
HCM ionic remodelling back up to control levels.

4. Discussion

This computational study has explored the relative con-
tributions of the sarcomeric and ionic aspects of remod-
elling to HCM arrhythmogenesis. Sarcomeric remodelling

in isolation did not cause EADs, only downstream ionic
remodelling resulted in EADs. The combination of sar-
comeric and ionic remodelling generated more EADs than
ionic remodelling in isolation, due to the sarcomeric in-
crease in Ca2+ sensitivity.

The canonical mechanism for EAD generation is reacti-
vation of L-type Ca2+ channels due to a prolonged ven-
tricular AP. These simulations suggest the following ar-
rhythmogenic mechanism in R92Q TnT HCM simulated
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human cardiomyocytes: the sarcomeric mutation raises the
calcium myofilament sensitivity, this prolongs the calcium
transient decay time, which in turn leads to prolonged de-
polarising late INCX resulting in EADs.

This study showed that stimulating SERCA decreased
EAD frequency in the presence of combined sarcom-
eric and ionic remodelling. Experimentally stimulat-
ing SERCA, by phospholamban ablation, in R92Q HCM
transgenic mice prevented development of the HCM phe-
notype [9]. In addition, early adenoviral SERCA2a over-
expression in transgenic HCM mice improved cardiac
function [10]. Our simulations provide the first inves-
tigation in a human-based system, overcoming the lim-
itation of significant electrophysiological differences be-
tween mice and humans, and support a study in human
cells.

No drug currently exists that specifically activates
SERCA. Thapsigargin acts on SERCA but inhibits it,
rather than increases its activity; the investigational drug
istaroxime non-specifically activates SERCA but causes
[Ca2+]i overload through inhibition of Na+/K+-ATPase.
Current HCM therapeutic research approaches involve sar-
comere myosin de-activators such as mavacamten, how-
ever this may not be effective in patients with non-thick
filament mutations. A Ca2+ flux altering SERCA activator
may be particularly useful for patients with thin-filament
mutations — providing a precision medicine approach
arising from pharmacogenomics. The human-based sim-
ulations presented here provide mechanistic support to the
concept that a specific SERCA activator could provide a
novel anti-arrhythmic therapeutic for HCM patients.
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