
Influence of Gestational Diabetes on Fetal Heart Rate in Antepartum 

Cardiotocographic Recordings  

Giulio Steyde1, Beniamino Daniele1, Edoardo Spairani2, Giovanni Magenes2, Maria Gabriella 

Signorini1  

 
1Department of Electronics, Information and Bioengineering (DEIB), 

Politecnico di Milano, Milan, Italy  
2Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy  

 

Abstract 

In pregnancy, diabetes is known to increase the risk of 

adverse maternal and neonatal outcomes. It would be 

beneficial to find techniques that allow early investigation 

of the physio-pathological mechanisms involved to provide 

clinicians with tools for prevention and therapies. For that, 

cardiotocography (CTG) is a promising tool. However, the 

evidence is still scarce and the impact on clinical practice 

little. In this study, we aim at characterizing the changes 

induced by gestational diabetes (GDM) on the fetal heart 

rate series. To do so, we performed a retrospective cohort 

study on a CTG dataset containing more than 20000 

recordings of which 852 belong to 301 GDM-diagnosed 

patients. We divided the recordings by gestational age 

(G.A.) into 4 groups (weeks: 31-35, 36, 37, 38 to delivery) 

and for each we identified a control population of equal 

size matched by comorbidities. We analyzed a 

comprehensive set of parameters from the time domain, 

frequency domain and non-linear analysis and assessed 

variations in median values on each feature. For all G.A. 

below the 38th week, we found a significant increase in the 

power in the movement frequency band (p<0.01) and an 

increase in the absolute value of Deceleration Reserve 

(p<0.01) in GDM vs control. Other significant values were 

also identified and are discussed in more detail in the 

paper. 

 

 

1. Introduction 

Gestational diabetes mellitus (GDM) is one of the most 

common medical conditions in pregnancy, and its 

prevalence is increasing. It has been proven to increase the 

risks for both the mother and the fetus, although they can 

be reduced by proper glycemic control [1]. Since it is 

considered a risk factor, women diagnosed with GDM are 

usually prescribed an antepartum cardiotocography (CTG) 

examination. CTG exam consists in the synchronous 

registration of the fetal heartbeat taken from a Doppler 

Ultrasound Probe in the mother abdomen and the Toco 

Signal, which measures uterine contractions [2].   

The scientific literature concerning the impact of GDM 

on cardiotocographic traces is still scarce. In particular, 

there is a lack of studies including a large number of 

subjects and a comprehensive analysis of the signal. 

Indeed, the International Federation of Gynecology and 

Obstetrics marks the quality of evidence for the use of CTG 

in pregnancies complicated by GDM as very low, even 

though it gives a strong recommendation for its use [1]. In 

this study, we aim to address the aforementioned problem 

by comparing a comprehensive set of parameters between 

a large population of GDM-diagnosed patients and a 

matched control group at different gestational ages (G.A.) 

to investigate which parameters better quantify the effects 

of the maternal dysmetabolic condition on the fetal hear 

rate (fHR). We hypothesize that these parameters may be 

used for risk stratification and predictors of pregnancy 

outcome and aim at testing it in future studies. 

Furthermore, the physiological interpretability of the 

computed parameters should allow making hypotheses on 

the physio-pathological mechanisms involved. 

 

2. Methods 

2.1. Database description 
 

The dataset used in this study is described in detail in 

[3]. It contains 21565 recordings obtained between 2013 

and 2021 at Federico II University Hospital in Naples, 

Italy. The signal of interest in this study is the fetal heart 

rate (fHR) which is read by the tocograph with a sampling 

frequency of 2Hz. A quality index (good, acceptable, poor) 

is provided for every fHR sample. Each recording was 

annotated by specialized clinicians that were instructed to 

report every known maternal or fetal pathology. The 

diagnosis of GDM is made based on the results of the 1-

step glucose tolerance test that is routinely performed in 

Italy even in the absence of risk factors (unless there is a 

pre-existing diagnosis of pre-gestational diabetes) [4]. 
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From the complete dataset, we excluded the recordings 

annotated as twin pregnancies and/or fetal pathologies and 

selected only the recordings made after the 30th gestational 

week. All recordings are at least 20 minutes long. A total 

of 12369 recordings belonging to 5185 subjects survived 

the exclusion criteria. Among those, 852 recordings 

belonging to 301 subjects were annotated as GDM. 

  

2.2. Data Balancing 
 

The diabetic population has some differences compared 

with controls that may act as confounding factors in further 

analyses: GDM is associated with other conditions such as 

hypertension and obesity [1] and GDM-diagnosed women 

usually undergo cardiotocographic monitoring before non-

diabetic women. To minimize this effect, we divided the 

dataset into 4 groups according to gestational age (weeks: 

31 - 35, 36, 37, 38 to delivery). We then divided each group 

into “Diabetic” and “Non-diabetic” and downsampled the 

latter to obtain a control population of the same size 

balanced for conditions correlated and non-correlated with 

diabetes. The classification of maternal conditions as 

correlated or not with diabetes was done with the help of a 

Gynecologist. The most common comorbidities identified 

were obesity and hypertension. When the balancing was 

impossible to obtain only by downsampling the non-

diabetic population the diabetic population was also down 

sampled. Repeated measurements on the same subject in 

the same group were excluded to ensure the independence 

of samples.  

 

2.3. Parameters computation 
 

We computed the set of parameters listed in Table 1, 

which also include relevant references for their definition 

and computation. Regarding PRSA-related parameters, the 

PRSA signal was calculated from the fHR series expressed 

in bpm in agreement with [5,6]. When comparing results, 

it should be noted that [7] and other authors used the RR 

series expressed in ms instead. The hyperparameters used 

are: L = 200, T = 40 and s = 1 for APRS and DPRS; L = 

40, T = 1 and s = 2 for DR; L = 25, T = 2 and s = 1 for 

AAC e ADC. The samples with poor quality index were 

prevented from being anchor points.  

The Multi Scale Entropy curve was computed as the 

Sample Entropy (m=2, r=0.15*std) at different scales. The 

slope was evaluated between scales 5 and 1. In the 

computation of the Approximate Entropy, r was set to 0.1 

* std and m to 1. The Lempel Ziv complexity was 

computed with the coding procedure presented in [8]. We 

set p to 0.02 for the binary coding and to 0.01 for the 

ternary.  

The sympathovagal balance was computed as the ratio 

of LF over HF, thus excluding MF.  

Features from the frequency domain and LTI were 

computed on non-overlapping windows of 3 minutes; 

DELTA, STV and II on windows of 1 minute, while non-

linear features were computed on windows of 20 minutes. 

Segments with more than 5% of interpolated points (i.e., 

poor quality index) were excluded from the computation of 

parameters.  

For every recording, the mean of the values obtained in 

each window for each feature has been computed in order 

to extract a single value for each of them. 

  

Table 1. List of the computed parameters and relevant 

references. t.d. stands for “time domain”, f.d. for 

“frequency domain and n.l. for “non-linear”. 

 

Parameter   Ref. 

DELTA [ms] t.d. [9] 

Interval Index [ms] (II) t.d. [9] 

Short Term Variability [ms] (STV) t.d. [9] 

Long Term Irregularity [ms] (LTI) t.d. [9] 

Mean Frequency [bpm] (meanF) t.d.  

#big accelerations per hour (#AAC) t.d. [10] 

#small accelerations per hour (#aac) t.d. [10] 

Total Power [ms2] (PTot) t.d. [2] 

Low Frequency Power [ms2] (LF) f.d. [2] 

Movement Frequency Power [ms2] 

(MF) 

f.d. [2] 

High Frequency Power [ms2] (HF) f.d. [2] 

 Sympathovagal balance (LF/HF) f.d.  

Acceleration Phase Rectified Slope 

[bpm] (APRS) 

n.l. [5] 

Deceleration Phase Rectified Slope 

[bpm] (DPRS) 

n.l. [5] 

Average Acceleration Capacity [bpm] 

(AAC) 

n.l. [6] 

Average Deceleration Capacity [bpm] 

(ADC) 

n.l. [6] 

Deceleration Reserve [bpm] (DR) n.l. [7] 

Binary Lempel Ziv Complexity (LZ2) n.l. [8] 

Ternary Lempel Ziv Complexity (LZ3) n.l. [8] 

Sample Entropy (SampEn) n.l. [8] 

Approximate Entropy (ApEn) n.l. [8] 

Multiscale Entropy Slope (MSE) n.l. [8] 
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3. Results 
 

The numerosity and the incidence of comorbidities in 

the groups tested are reported in Table 2. All the discussed 

parameters were tested for differences between the two 

populations. Since most of the analysed features do not 

follow a normal distribution, differences in median values 

between diabetics and controls were evaluated using the 

Mann-Whitney U test. Results are considered significant if 

p<0.05. The median values and the p-values of the 

statistical tests are summarized in Table 3. 

Table 2 - Tested Population. N is the sum of Diabetic and 

Non-Diabetics, which are represented in equal numbers. C 

and NC are the percentages of conditions correlated and 

non-correlated with diabetes, which are equal in the two 

populations. 

 

G.A. N C  NC  

31-35 228  29% 9% 

36 254 21.3% 9.5% 

37 274 23% 13% 

38+ 242 15% 10% 

 

Table 3  -Results of the Mann –Whitney U test:  ° p <0.1, *p<0.05, **p<0.01, ***p<0.001 

 31-35 36 37 38+ 

 Median p. Median p. Median p. Median p. 

Diab. Cont. Diab. Cont. Diab. Cont. Diab. Cont. 

DELTA 38.8 38.8 n.s. 39.7 38.5 n.s. 39.4 39.8 n.s. 40.3 39.3 n.s. 

II 0.840 0.851 n.s. 0.838 0.837 n.s. 0.832 0.841 n.s. 0.829 0.834 n.s. 

STV 5.95 5.77 n.s. 6.25 5.85 n.s. 6.24 6.36 n.s. 6.27 6.27 n.s. 

LTI 63.5 83.4 n.s. 97.0 80.0 n.s. 94.6 96.0 n.s. 96.8 84.0 n.s. 

meanF 139.6 139.4 n.s. 138.9 139.4 n.s. 138.8 137.3 n.s. 137.7 135.7 n.s. 

#ACC 9.24 8.79 n.s. 10.92 9.78 n.s. 10.27 11.75 n.s. 11.2 10.89 n.s. 

#acc 4.04 4.36 n.s. 4.09 4.06 n.s. 3.77 3.89 n.s. 4.21 5.03 n.s. 

PTot 186.9 187.5 n.s. 200.6 179.33 n.s. 200.9 178.3 ° 211.5 189.9 ° 

LF 82.6 78.5 n.s. 89.8 78.0 ** 89.0 82.6 n.s 89.2 80.58 * 

MF 2.31 2.14 ** 2.36 2.19 ** 2.42 2.30 *** 2.43 2.32 ° 

HF 1.01 1.16 ** 1.08 1.16 ° 1.09 1.16 ° 1.17 1.18 n.s 

LF/HF 31.4 30.53 ° 34.0 28.54 *** 32.6 29.43 ** 31.2 28.76 * 

DPRS -0.208 -0.198 n.s. -0.223 -0.204 * -0.213 -0.22 n.s. -0.218 -0.21 n.s. 

APRS 0.196 0.195 n.s. 0.205 0.1844 ° 0.197 0.201 n.s. 0.196 0.197 n.s. 

ADC -2.11 -2.16 n.s -2.19 -2.12 n.s -2.15 -2.15 n.s -2.10 -2.15 n.s 

AAC 1.68 1.77 n.s. 1.76 1.73 n.s. 1.77 1.78 n.s. 1.73 1.76 n.s 

DR - .094 - .069 *** - .110 - .068 *** - .107 - .082 ** - .100 - .095 n.s. 

LZ2 0.982 0.985 n.s. 0.983 0.988 n.s 0.980 0.993 * 0.980 0.992 * 

LZ3 0.920 0.903 ** 0.916 0.903 n.s. 0.914 0.900 * 0.911 0.903 * 

SampEn 0.67 0.67 n.s. 0.64 0.64 n.s. 0.62 0.67 * 0.65 0.71 * 

ApEn 1.24 1.26 n.s 1.19 1.22 n.s 1.15 1.22 * 1.21 1.30 * 

MSE 0.154 0.141 n.s 0.157 0.144 * 0.159 0.149 n.s 0.155 0.150 n.s 

 

 

 3. Discussion 
 

None of the classical time-domain parameters (i.e., STV, 

DELTA, LTI, II, mean frequency) showed significant 

differences, confirming the unsuitability of the indices 

most used in clinic for the management of diabetes in 

pregnancy. Similar results were also obtained in [5] and 

[10]. Several significant differences were instead identified 

in the spectral and non-linear analyses. We observed an 

increase in the LF and MF bands, that have been associated 

with the activity of the sympathetic nervous system and 

fetal movements respectively [2]. In addition, we noticed a 

decrease in HF, which is an indicator of parasympathetic 

activity. These results suggest that gestational diabetes 

causes a state of fetal hyperactivation. Interestingly, 

despite our findings are inconsistent with the ones by 

Lobmaier et al. [5] who observed a significant increase in 

AAC and ADC, frequency domain parameters allow us to 

reach similar conclusions regarding the hyperactivation of 

the sympathetic nervous system in GDMs, which may 
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explain the increased risk of developing hypertension later 

in life. 

Among the PRSA-related features, the one that better 

differentiated between the two populations is the 

Deceleration Reserve. As shown in Figure 1, nearly all the 

recordings show a negative value, indicating a 

predominance in decreasing trends in the fHR series. 

Indeed, the theoretical value of DR for a stochastic 

stationary Gaussian process is 0 [7] and departures from 

this value are originated by asymmetries in the signal. This 

effect is more pronounced in GDMs, that show a 

significantly lower median value. The relation between DR 

and the activity of the ANS must be further investigated. 

The measures of entropy (i.e., SampEn and ApEn) showed 

a better ability to differentiate the populations at an 

advanced gestational age, with slightly lower values for the 

diabetic one. The observed reduction in complexity is a 

result similar to that obtained in the analysis of other 

pathologies (e.g., [7]). The Lempel Ziv Complexity is a 

measure of the regularity of the variations in the series and 

is strongly dependent on the coding procedure [8]. Its 

interpretation is not trivial, but results suggest it may be 

useful in differentiating GDMs from controls, especially 

when the ternary coding is used. As shown for example in 

Figure 1, even significantly different parameters do not 

allow to completely separate GDMs and controls. 

However, classification of GDM condition only is not the 

main goal of our study. In fact, suitable techniques for 

clinical diagnosis of GDM already exist (i.e, glucose 

tolerance test). Our approach aims at using CTGs 

biomarkers to quantify the risk in pregnancies complicated 

by diabetes. We hypothesize that the parameters that vary 

between the two populations may be predictors of 

pregnancy outcomes and provide clinicians with additional 

information to determine the best course of action. A 

different protocol was written to test this hypothesis and 

the study is currently in progress.  
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Figure 1 Values of DR in the GDM population (red) vs 

control (blue). 
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