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Abstract

In this work, we describe an end-to-end deep learning
architecture for Heart Murmur Detection from Phonocar-
diogram(PCG) recordings as part of The George B. Moody
PhysioNet Challenge 2022. Our team, “Team_IIITH” re-
ceived a weighted accuracy score of 0.708 (ranked 19" out
of 40 teams) and Challenge cost of 13264 (ranked 22" out
of 39 teams) on the official hidden test set.

In our approach, the PCG recordings are first down-
sampled to 1000 Hz before being passed through a But-
terworth’s low and high pass filter to remove baseline
wanders and high-frequency noise present in the record-
ings. The PCG recordings are then broken down into
10-second segments and normalized to bring all train-
able samples to the same size. To extract embeddings
more efficiently, we built a custom 1-dimensional Residual
Network (ResNet) where the 10-second inputs are passed
through variable-sized kernel ResNets in parallel, before
being concatenated and passed through the next ResNet
layer to account for different length dependencies across
the PCG signal. The output of this custom ResNet is then
fed to a 2-layer feed-forward network for final classifica-
tion. Cross-Entropy Loss with class weights was employed
to account for class imbalance. Our approach obtained
a 5-fold Cross-Validation weighted accuracy score of 0.71
and challenge cost score of 12067 on the training set.

1. Introduction

Unusual audible traces of the heartbeat are called heart
murmurs. Although heart murmurs can be harmless (com-
monly referred to as innocent heart murmurs), in other
circumstances, they might be a sign of an underlying car-
diac condition [[1H3]]. The development of machine learn-
ing (ML) models for heart murmur identification is cru-
cial because identifying heart murmurs can aid in the
early detection of underlying heart disorders. In the Phy-
sioNet/Computing in Cardiology Challenge 2022 [4-6],
we were provided with multi-positional phonocardiogram
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(PCG) recordings for heart murmur detection. PCGs are
the audio recordings of the heartbeats which are recorded
with the help of either a normal stethoscope or an elec-
tronic stethoscope. This paper will discuss our proposed
work employing Residual Networks (ResNets) [7H10] to
identify the heart murmurs using the PCG recordings.

2. Methods

In this section we will first put forward the data process-
ing techniques we used. We will then discuss the model
architecture employed for the challenge. Moving forward
we will discuss about the model training and model evalu-
ation techniques we employed to predict the heart murmur
and clinical outcome using the patient’s PCG signal. We
used a 5 fold cross validation technique to generate train
and test set. It was ensured that the 10-second segments
for all the folds came from non overlapping patients.

2.1. Data Preprocessing
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Figure 1. Data Preprocessing Pipeline

The dataset provided in the challenge had PCG Record-
ings recorded at 4000 Hz. Figure [l|demonstrates the data
preprocessing pipeline we utilized for the challenge. We
first downsampled the data from 4000 to 1000 Hz as data
collected with a high sampling rate might hamper the train-
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ing of the Convolutional Neural Networks (CNNs) [[11412].
We then used Butterworth [[13]/14] low pass filter set at a
frequency cutoff of 300Hz to ensure that high-frequency
noise with more than 300Hz is eliminated. This was then
followed by a high pass filter where the cutoff frequency
was set to 0.1Hz to ensure low-frequency noise and base-
line wander from the PCG recordings could be eliminated.
The PCG recording of each patient was then divided into
equal-length, 10-second segments, with the intention of
using each segment as a single data point. We utilised a
stride of 2.5 seconds to generate segments. Thus when a
PCG recording was divided into 10-second segments, the
subsequent segments had an overlap of 7.5 seconds while
the remaining 2.5 seconds were distinct. We were able
to preserve consistent length PCG across all data points
thanks to signal splitting, which also helped us grow the
dataset size. For each segment of PCG, the labels were
kept same as the original PCG from which the segment
was derived. After segmentation we were able to derive
17890 10-second segments from 942 patients. For heart
murmur prediction task we ended up with 3342 10-second
segments where the heart murmur was present while 13696
segments were generated where the heart murmur was not
present. There were 849 segments where it was not certain
whether the heart murmur was present or not. For the clin-
ical outcome prediction task we had 9205 segments where
the clinical outcome was usual while there were 8685 seg-
ments where the clinical outcome was unusual. Finally
we split the dataset according to a 5 fold cross-validation
setup, where it was made sure that no patients overlapped
between folds, to ensure unbiased testing results.

2.2. Model Architecture

Figure [2] gives the complete model architecture em-
ployed for the challenge. For both the tasks of detecting
cardiac murmurs and the prediction of clinical outcomes,
we used the same model architecture. We obtained an em-
bedding for the PCG signal using 1D Residual Networks
(ResNets). A fully connected neural network was then
given the PCG embedding to make the final prediction. We
employed different kernel length ResNets because the big
kernel length CNNs aid in extracting information from a
large portion of the signal at once, while the smaller kernel
CNN s can extract the signal attributes with a narrower con-
text. To obtain the final embedding, the outputs from each
ResNet with a different kernel size are concatenated, which
should be able to account for different length dependencies
across the PCG signal. We experimented with two dis-
tinct concatenation methods. For concatenation along the
length (concatenated length), we concatenated the outputs
from all the ResNet blocks along the length; as a result, the
concatenated signal had length greater than the individual
unconcatenated signals but the number of filters in the con-

catenated signal are same as that of the incoming uncon-
catenated signals. For the second approach (concatenated
filters) we concatenated signals along the filters; hence the
number of filters in the concatenated signal increased al-
though the length of concatenated signal remained same to
that of the incoming unconcatenated signals. Multiple lay-
ers of ResNet blocks followed by concatenation operation
were used to get the final embedding.

2.3. Model Training

After preprocessing we were able to generate multiple
PCG segments with respect to a single patient. Each of this
PCG segment was used as a separate datapoint for training.
For the two tasks of heart murmur detection and clinical
outcome prediction two separate models were trained, al-
though the model architecture used for both the task was
the same. For the task of heart murmur prediction ini-
tially there were 3 classes, present (3342 10-second seg-
ments), absent (13696 10-second segments) and uncertain
(849 10-second segments). As the number of 10-second
segments in uncertain class were very low, we decided to
ignore the PCG signals with label as uncertain, thus the
task changed from multi class classification to binary class
classification. As the number of 10-second segments for
present class were much less compared to the absent class,
we used weighted Cross Entropy loss to eliminate the class
imbalance. For the task of clinical outcome prediction both
classes had similar representation hence both the classes
were given equal weightage. Adam optimiser was used for
both the tasks, where the learning rate was set at 0.0001.
The model was trained for 30 epochs on the training set.

2.4. Model Evaluation

Model evaluation strategy needs to differ from model
training as in evaluation we need to provide a single label
for a patient. Given that the model can only operate on
10-second segments, we used the same data preprocessing
techniques described above. To obtain the final diagnosis
for a patient, the labels for each of its 10-second parts are
put together. When at least 25% of the segments yielded
positive results for the heart murmur, we concluded that
the patient’s PCG had a murmur. We settled on a low
threshold of 25% since it is significantly more detrimen-
tal to anticipate a false negative than a false positive. For
the heart murmur prediction task we ignored the uncertain
class therefore all the predictions for the test set would lie
in the two classes where either the heart murmur is present
or absent. For the task of clinical outcome prediction when
at least 60% of the segments yielded unusual for the clini-
cal outcome, we predicted that the patient’s PCG will have
an unusual clinical outcome.
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Figure 2. Model Architecture (KS: Kernel Size, ®: Concatenation Operation)

3. Results Training | Validation | Test | Ranking

The models were tested with a five fold cross valida-
tion setup on our local system for both kinds of architec-
tures (concatenated length/concatenated filters). Refer to
Table [1] and 2] for the 5 fold cross validation results on
the local environment. The concatenated length setup ob-
tained a better score for both the heart murmur detection
and outcome prediction tasks. Hence, for the final submit-
ted model, both the tasks are handled by the concatenated
length architecture. Our final models were tested in the
Official Phase and obtained a weighted accuracy of 0.708
and challenge cost of 13264, for the murmur and outcome
tasks, fetching the rank of 19 and 22 out of the selected 40
teams on the hidden test set.

4. Discussion and Conclusions

To determine the best approach for the problem at hand,
we tested a variety of models and machine learning meth-

0.71 +£0.04

0.678

0.708

19/40

Table 1. Weighted accuracy metric scores (offi-
cial Challenge score) for our final selected entry (team
”Team_IIITH”) for the murmur detection task, including
the ranking of our team on the hidden validation set. We
used 5-fold cross validation on the public training set, re-
peated scoring on the hidden validation set, and one-time
scoring on the hidden test set.

Training ‘ Validation ‘ Test ‘ Ranking
12067 £ 2653 ‘ 11266 ‘ 13264 ‘ 22/40

Table 2. Cost metric scores (official Challenge score) for
our final selected entry (team “Team_IIITH”) for the clin-
ical outcome identification task, including the ranking of
our team on the hidden validation set. We used 5-fold
cross validation on the public training set, repeated scor-
ing on the hidden validation set, and one-time scoring on
the official hidden test set.
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ods for the challenge.

We believed that a transformer-based model architecture
could be useful for the assigned task. To create embed-
ding with regard to the PCG signal, we attempted to train
a transformer model [15]. This embedding was then sent
to a feed-forward network for final prediction. For all of
the datapoints, the transformer-based model was unable to
accurately predict the presence of a heart murmur. Given
that transformers require large amount of data for accu-
rate training, we feel that the data provided for the chal-
lenge was insufficient. We utilised Mel-frequency cepstral
coefficients (MFCCs) [16]] after a transformer. We calcu-
lated the MFCC:s for each PCG segment and fed the results
into a feed-forward network. While the performance of the
MEFCC technique was better than that of the transformers,
it lagged well behind the suggested variable kernel length
method.

Among all the approaches we tested, the suggested vari-
able kernel length ResNets fared the best. With the pro-
posed method we were able to fetch 28" rank for the heart
murmur detection task while we got a rank of 43 for clin-
ical outcome prediction. We think there are a number of
ways to further enhance the suggested model. To start,
instead of using a straightforward weighted cross entropy
loss, a custom loss that can more closely approximate the
challenge score should be developed. This might aid in
better model training and should improve the final model
metrics. Secondly, the provided dataset was very small for
training a very complex model. We believe that leveraging
pretrained networks that have been trained on other very
big datasets can enhance the model’s performance. In or-
der to build a model on a much larger dataset and use it to
both detect heart murmurs and predict clinical outcomes,
unsupervised learning techniques can also be utilised.
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