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Abstract

Detection of heart murmurs from stethoscope sounds is
a key clinical technique used to identify cardiac abnormal-
ities. We describe the creation of an ensemble classifier
using both deep and hand-crafted features to screen for
heart murmurs and clinical abnormality from phonocar-
diogram recordings over multiple auscultation locations.
The model was created by the team Murmur Mia! for the
George B. Moody PhysioNet Challenge 2022.

Methods: Recordings were first filtered through a gradi-
ent boosting algorithm to detect Unknown. We assume that
these are related to poor quality recordings, and hence we
use input features commonly used to assess audio quality.
Two further models, a gradient boosting model and ensem-
ble of convolutional neural networks, were trained using
time-frequency features and the mel-frequency cepstral co-
efficients (MFCC) as inputs, respectively. The models were
combined using logistic regression, with bespoke rules to
convert individual recording outputs to patient predictions.

Results: On the hidden challenge test set, our classi-
fier scored 0.755 for the weighted accuracy and 14228 for
clinical outcome challenge metric. This placed 9/40 and
28/39 on the challenge leaderboard, for each scoring met-
ric, respectively.

1 Introduction

Global morbidity burden in childhood caused by heart
disease is disproportionately distributed in low- and
middle-income countries (LMICs) [[1]. While mortality
from congenital heart disease (CHD) has declined glob-
ally, the decline has been slower in poorer countries [2]].
Similarly, over 300,000 people each year die from acquired
heart diseases such as rheumatic heart disease (RHD) and
over 80 percent of these deaths are in LMICs [3]. CHD
is a structural abnormality of the heart or great vessels, af-
fecting 1% of live births [4]. RHD is a common sequalae
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of rheumatic fever infection, resulting in heart valve dam-
age [5]. Both CHD and RHD are easily diagnosed by car-
diac ultrasound (echocardiography). Echocardiography re-
quires specialist operators and clinical interpretation, both
of which are scarce in severely resource-limited healthcare
systems [5]. However, early diagnosis is essential to im-
prove outcomes in children with heart disease.

Before the widespread introduction of echocardiogra-
phy, structural heart disease was diagnosed through car-
diac auscultation [4]. The opening and closing of heart
valves during the normal cardiac cycle are clearly audi-
ble with a stethoscope. Abnormal, turbulent blood flow
across the heart valves can also be heard as a “whoosh-
ing” sound, known as a murmur. While not all murmurs
are pathological, they can be indicative of structural de-
fects. A phonocardiogram (PCG) is an audio recording
obtained from an electronic stethoscope. Signal processing
and machine-learning of PCG data could provide an objec-
tive way to identify potential cardiac pathology. In contrast
to echocardiography, electronic stethoscopes require little
specialist training, providing a cost-effective tool to screen
populations for CHD and RHD.

The 2022 George B. Moody PhysioNet Challenge was
to develop a heart murmur classifier from PCG record-
ings. Scoring metrics were designed to discourage under-
prediction of murmurs where pathology was subsequently
confirmed by echocardiography.

2 Methods

The dataset for this challenge was the CirCor DigiScope
dataset [6]]. The task and dataset are described in detail in
161, [7).

Each recording in the training set was annotated with
salient points (commencement of S1, systole, S2, diastole)
by clinical experts. These annotations were used to train a
hidden Markov model to fulfil the same role in our classi-
fier, the outputs of which were used for feature extraction.
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We used an ensemble of three classifiers to predict
the presence of murmur, and two to predict clinical out-
come. The classifiers were trained separately on individual
recordings, and combined to output predictions on a per-
patient basis using a set of hand-crafted rules, as depicted
in Figure [I] Gradient boosting classifiers and regression
coefficients were trained using SKlearn, and neural net-
works were trained using Pytorch. All code is available
at|github.com/sara-es/murmur-mia-physionet2022.git. We
describe each component of our ensemble below.

2.1 Data Preprocessing

Demographic variables were missing for 69 partici-
pants. We imputed missing data using iterative imputation.
We restricted the imputed data to plausible values.

In order to improve classifier discrimination of audi-
ble murmurs, training labels were reassigned on a per-
recording basis. That is, if the patient had recordings from
the mitral valve (MV) and tricuspid valve (TV), but the
murmur was only marked as audible in MV, only the MV
recording was assigned ‘Present’ and the recording from
TV was given the label ‘Absent’ for training purposes.

Our approach makes use of [S1, S2] segmentation.
As these annotations are not available in validation and
test datasets, we created our own annotations using
Springer’s hidden Markov model approach [[8]. We modi-
fied Springer’s algorithm to make use of demographic data
from each patient in predicting the heart rate, as well as
tweaking the filters to have a narrower passband, using the
frequencies suggested by [9]. We also ported the method to
Python (available at: |https://github.com/EchoStatements/
Springer-Segmentation-Python).

2.2 Unknown Detector

We assumed, a priori, that at least some proportion of
participants labeled ‘Unknown’ would be due to poor sig-
nal quality for the duration of the audio recording. We
trained a gradient boosting model to recognize these poor
quality recordings using a set of hand-crafted recording-
level features, previously described by Zabihi et al. [[10].

The probabilities of {Present, Unknown, Absent} from
this model were saved on a per-recording basis, yet only
the probability of ‘Unknown’ contributed to the final pa-
tient label, as described in[2.5]

2.3 Hand-crafted Feature Classifier

We created a second stochastic gradient boosting model
to detect murmurs from a single PCG recording. Inputs
to this model were a set of hand-crafted time-frequency
features. The annotation described in was used to iso-
late sections of the recording that corresponded to the same

stage in the cardiac cycle, then each section was further
subsegmented into five equal partitions in time. We applied
a Hamming window to each subsegment to reduce edge ef-
fects, then took the Fourier transform, in order to calculate
the relative amplitude of frequency bands from 5 through
400 Hz. The bins used were determined experimentally
through Shapley value analysis in order to maximize the
resolution of bands containing the most useful informa-
tion for the classifier, typically in the 5-25 Hz and 80-180
Hz ranges. The average of the extracted time-frequency
features for each subsegment was taken across the entire
recording, as well as the mean and standard deviation of
the cardiac cycle stage. This gave 80 time-frequency fea-
tures, which were included with the patient demographic
data and heart rate to give a total of 86 inputs to the gradi-
ent boosting model.

Two of these gradient boosting models were trained:
one against murmur labels, and the other for clinical out-
come. The probabilities of {Present, Unknown, Absent}
were returned by one model, and { Abnormal, Normal} by
the other, on a per-recording basis.

2.4 Convolutional Neural Network Classifier

Our final classifier was an ensemble of convolutional
neural networks (CNNs) using mel-frequency cepstral co-
efficient (MFCC) inputs. Data processing followed the
prior work of Rubin et al. [11]. We adapted their CNN
model architecture to include demographic information
(see Figure [2). Inclusion of such tabular information has
been associated with modest increase in performance for
similar problems [[12]. The CNN was trained to perform
binary classification, with {Present, Unknown} both as-
signed to the same label.

We created an ensemble of five of these CNNs by freez-
ing the model weights before the last layer. We concate-
nated the models and combined their outputs through two
fully connected layers, reducing the network bandwidth
from (5 x 512) — 512 — 1.

2.5 Combining the Base Models

Our combination rules introduced a set of hyperparam-
eters which were used to balance the contributions of each
model in order to maximize performance on the challenge
scoring metrics. The unknown detectors described in
were applied first; a patient was classified as an outlier
only if the respective model reached a threshold confidence
(>90% for ‘Unknown’ murmur, >70% for ‘Abnormal’ out-
come). For murmur score, we used linear regression to
determine the optimal contribution of the gradient boost-
ing and CNN ensembles to the recording label. The nor-
malized geometric mean of the confidence levels for each
recording was used to set the final patient-level classifica-
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Figure 1. Overall system diagram, showing how patient data were processed, the base classifiers used, and how they were

combined to provide a patient-level prediction.
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Figure 2. CNN architecture for PCG recording classifier.

tion for both murmur score and outcome, with a series of
threshold parameters to allow a single recording to “over-
rule” the mean. This ensured that recordings with murmurs
which may only be detected in certain locations were given
priority when assigning a patient-level classification.

We optimized these parameters, as well as the method
of combining recording-level predictions to produce a
patient-level prediction, via a constrained grid search us-
ing the bespoke challenge metrics, described in[2.6

Table 1.  Performance metrics for Murmur ensemble
and constituent models on the training data from 5-fold
cross validation. The combined model was trained to
weigh murmurs more heavily, so while the unweighted
per-recording accuracy is lower than the individual mod-
els, it performed better on the weighted scoring metric.

Model Per-rec. Acc. Weighted Acc.
Outlier G. Boost.  81.7% + 1.3 0.50 0.03
Murmur G. Boost.  86.5% + 1.5 0.63 +0.04
Murmur CNN 88.2% 4+ 0.7 0.65 +=0.03
Combined Model  84.9% + 0.6 0.754+0.03

2.6 Model Evaluation

Five-fold cross-validation was used to assess the perfor-
mance of the ensemble models. We used the challenge
metrics to evaluate performance. For murmur classifica-
tion, this was a weighted accuracy in which the Murmur
and Unknown classes were weighted by 5 and 3 respec-
tively. For clinical outcome, this was a bespoke metric (de-
fined in full in [[7])) that aimed to balance costs of clinical
time against clinical errors.

3 Results

The training cross-validation performance of the con-
stituent models is shown in Table [[land 2] for Murmur and
Outcome labels, respectively. Training and validation set
performance of the combined models is shown in Table 3]

We note that accuracy at a per-epoch and per-recording
level did not necessarily translate to the same per-patient
accuracy. While this may be a limitation of our rules for
combining models, we also note that murmur sounds are
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Table 2. Performance metrics for Outcome model and
constituent models on the training data from 5-fold cross
validation. The two models were combined on a per-
patient basis.

Model

Outlier G. Boost.
Outcome G. Boost.

Per-rec. Acc. Score

59.0% £ 2.1 14232 4+ 1475
59.3% +2.1 13767 + 1242

Table 3. Murmur (weighted accuracy) and clinical out-
come (cost) challenge scores for the final selected entry
for team Murmur Mia!. Training set scores are from 5-
fold cross validation on the public training set; scores on
the hidden validation and test data sets were provided by
the competition team.

Metric Training Valid.  Test  Rank

Weighted accuracy 0.753 +0.030 0.737  0.755  9/40
Clinical outcome 11965 £ 655 11828 14228 28/39

not always audible in all auscultation locations. Clear mur-
mur sounds can depend on the type of murmur, the phys-
iology and position of the patient, and whether they are
inhaling and exhaling.

4 Discussion

We have developed an ensemble of models that used
both expert and learned features. In both cross-validation,
and on validation data, this blended approach performed
better than relying solely on a deep learning model.

Our approach was tailored to detect murmurs, regardless
of other contextual information. However, we know clini-
cally that the presence of a murmur may not be the only or
even main factor used by a medical professional to decide
if a patient needs further treatment. For instance, in many
cases, murmurs are ‘innocent’ and of no clinical concern
[13]. It is likely that our focus on murmur, regardless of
‘innocence’ is one of the reasons why our approach was
relatively poor at determining clinical outcome.

In future work, we intend to improve the murmur model
by exploring how to effectively extract time-domain fea-
tures, for instance, using a ResNet. We also wish to con-
sider how effective relabelling might improve prediction of
clinical outcomes.
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