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Abstract 

The PR interval represents the time required from the 

electrical impulse to advance from the atrium to AV node 

and His-Purkinje system until the ventricular myocardium 

begins to depolarize. PR interval prolongation has been 

associated with significant increases in atrial fibrillation, 

heart failure and mortality. 

Over the past years, multiple deep learning models have 

been proposed to interpret electrocardiogram (ECG) 

signals. Despite initial success, these models are often 

trained and validated using datasets that contain partially 

incorrect labels. These “noisy” labels exist because of the 

way the annotated data was collected and pose challenges 

for model training and validation. 

As a result, a residual neural network (ResNet), trained 

on noisy data, was proposed to estimate PR intervals. In 

addition, an electrophysiologist performed a blinded 

manual adjudication on a stratified sample to validate the 

accuracy of both the model and the noisy labels.  

The conclusion is that a ResNet trained on noisy data 

can correctly estimate PR intervals and outperforms the 

noisy labels it was trained on. 

 

1. Introduction 

One of the main challenges with training any machine 

learning model is the cost related to obtaining the 

annotated data. Fortunately, since ECG is part of the 

routine patient care, the ECG signal is widely collected. 

One of the most common ECG collection systems is GE 

MUSE (GE Healthcare, Chicago, Illinois) which uses the 

MarquetteTM 12SL analysis program to generate 

automated annotations before those annotations are 

overwritten by providers if necessary. However, despite 

being inaccurate, a small percentage of these automatic 

annotations fail to get corrected during the process, leading 

to partially incorrect (i.e “noisy”) labels. 

A model was trained using 12-lead ECGs and their 

noisy labels to estimate the PR interval values. An 

electrophysiologist then performed a blinded manual 

adjudication to quantify its accuracy. 

 

2. Methods 

2.1. MUSE Dataset 

The 12-lead ECGs were obtained from the Section of 

Electrophysiology at the University of Michigan. A total 

of 1,464,268 ECG signals were collected from 447,270 

patients across Michigan Medicine (the University of 

Michigan Health System) from 1990 to 2018. The signals 

were sampled at 250Hz or 500Hz, and then transmitted into 

the MUSE system, where a clinician reviewed the tracings, 

and modified the automatic annotations as needed before 

releasing the information into the electronic health record. 

Almost 45% of all PR values collected were modified by 

clinicians during this process. 

All 10-second long 12-lead ECGs were resampled at 

250Hz. By default, only 8 leads (I, II, V1, V2, V3, V4, V5, 

and V6) were collected by the MUSE system, and the last 

4 (III, aVR, aVL, and aVF) were generated using lead I and 

lead II. The MUSE software also applied a low-pass filter, 

a high-pass filter and a notch filter to the raw ECGs to 

remove baseline wanderer, muscle artifacts, power-line 

interference and other miscellaneous noises [1] though 

specific filter configurations were customized by 

technicians per batch of analyzed signals.  

All the ECGs with invalid PR values (Figure 1) or with 

specific arrhythmias and conditions that render the PR 

values meaningless from a clinical perspective were 

excluded. For instance, for patients with atrial fibrillation, 

the PR value cannot be calculated, and should be removed 

from model training and testing. The arrhythmia labels 

were generated using a combination of three approaches. 

The majority of semi-structured diagnosis statements, i.e 
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fragment of text that contains a single or multiple 

diagnoses [2], embedded in the dataset were assigned to a 

Unified Medical Language System Concept Unique 

Identifiers (CUI) [3] and the corresponding Systematized 

Nomenclature of Medicine Clinical Terms (SNOMED CT) 

[2].  All the segments of diagnosis statements that did not 

have a corresponding CUI were then split into two groups 

sorted by frequency. 91 of these statements appeared in the 

dataset more than 50 times and were then manually 

mapped while a word search filter was used to map any of 

the 71,713 remaining diagnoses. The word search filter 

helped eliminate any additional cases of atrial fibrillation, 

atrial flutter, ventricular fibrillation, high degree of atrio-

ventricular or sinoatrial block, supraventricular 

tachycardia, ventricular tachycardia, atrio-ventricular 

dissociation and any paced signals which both the CUI and 

manual mapping failed to detect. Finally, since ECG 

interpretation is drastically different between adult and 

pediatric patients, the analysis was limited to ECGs from 

adult patients only (≥ 18 years old). All patients with 

missing age due to an irretrievable system error in 2013 

were removed. In total, 384,349 ECGs were excluded from 

the original data, the breakdown of which is presented in 

Figure 2, resulting in a cohort of 1,079,919 ECGs and 

399,529 patients. 

 

 
Figure 1: Distribution of PR intervals with clinically 

sensible upper and lower bounds. The plot does not show 

167,434 ECGs with missing PR values, and 1,778 with PR 

values that exceed 600ms. 
 

 
Figure 2: Diagram illustrating the breakdown of the 

cohort clean-up. About 95% of exclusions are caused by 

different arrhythmias. The diagram depicts that the main 

cause for missing or out-of-range PR is due to different 

arrhythmias that affect the reading of the ECG signals: 

94.9% of all the missing PR values (yellow) have some 

arrhythmias (blue) that require exclusion. 

SNOMED CT  Arrhythmias Frequency 

49436004 Atrial fibrillation 109,673 
17338001 Ventricular premature beats  99,197 

406461004 Ectopic atrial beats  92,318 

63593006 Supraventricular premature beats  83,480 
5370000 Atrial flutter  23,189 

Table 1: Top 5 arrhythmias by counts that need to be 

excluded. Among the arrhythmias sorted by SNOMED CT 

Code, atrial fibrillation is the leading cause for excluding 

an ECG from the analysis. 

 

2.2  Model Architecture 

Building on the previous work of Ansari et al. [2], a 

ResNet model was used to estimate the PR interval. The 

raw 12-lead ECG signals were fed to a single 1D-

convolutional layer with 64 filters and a kernel size of 15, 

followed by 9 residual blocks. Each block consists of a 

max pooling layer at the beginning, then 3 1D-

convolutional layers with 64 filters and a kernel size of 15, 

and a residual connection node at the end of each block. 

Unless otherwise stated, a ReLU activation function is 

used. Finally, the last layer is flattened before going into a 

single-output layer with a linear activation (Figure 3) to 

estimate the PR interval values. 

 

 
Figure 3:  Model architecture. 

 

2.3 Training and Testing 

The model is trained on 70% and validated on 10% of 

all the patients in the cohort. The last 20% is reserved for 

testing purposes. This approach helps to preserve the 

independence of the training, validate and test sets by 

ensuring that a patient only belongs to at most one data 

subset. This results in 751,886 ECGs for training, 106,609 

for validation, and 221,424 for testing, corresponding to 

279,403, 39,903 and 80,223 of patients. 

As the output is continuous, the network is optimized on 

a Huber loss function that behaves linearly when the 

absolute error is greater than 20 samples (80 ms) and 

quadratically otherwise. In order to avoid overfitting, an 

Adam optimizer is used with a starting learning rate of 

0.01, which decreases by a factor of 10 whenever the 

validation loss stops dropping after 2 consecutive epochs. 

The training is terminated if the validation loss does not 

improve for 3 consecutive epochs. 
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3. Results 

3.1 Model Performance 

On the test set, the ResNet achieved a correlation of 

94.3%, a bias of 0.269ms, and a mean absolute error of 

4.732ms against the noisy test labels. In addition to these 

more traditional performance metrics, the percentage of 

observations with an absolute error between the estimated 

and the observed PR values less than 10ms is included as 

a metric of precision, as the human eyes are unable to 

detect differences smaller than 10ms [4]. As a result, if the 

estimated and observed PR are within 10ms apart, they are 

considered as identical. The percent of observations with 

an absolute error of at most 10ms is 91.3%. The high 

correlation is visualized using the plot of the estimated and 

observed PR values for the test set. The Bland-Altman 

indicates an agreement of 96.84% between the labels and 

the model outputs (Figure 4). 

Using SNOMED CT code, the performance stratified by 

different arrhythmias is calculated and present in Table 2.  

 
Figure 4: Plot of estimated vs observed PR intervals for 

the test dataset (left) Bland-Altman plot (right) 
 

SNOMED 

CT 

Cardiac Conditions Counts 

(test) 

Correlation 

(r) 

%|error| 

<10ms 

64730000 Normal sinus rhythm  143,652 0.94 93.43 

49710005 Sinus bradycardia 37,661 0.97 91.97 

164934002 T wave abnormal 33,537 0.93 90.28 

11092001 Sinus tachycardia 28517 0.84 84.30 
414795007 Myocardial ischemia 23,360 0.92 87.29 

55827005 Left ventricular 

hypertrophy 

22,924 0.94 91.48 

7326005 Inferior myocardial 

infarction on ECG 

21,250 0.93 88.55 

428750005 Nonspecific ST-T 
abnormality on ECG 

19,362 0.92 86.15 

39732003 Left axis deviation 17,979 0.92 88.05 

425623009 Lateral ischemia 16,754 0.92 87.15 

Table 2: List of 10 most frequent cardiac conditions 

 

3.2 Stratified Sampling 

Stratification is a common sampling technique that 

ensures the best representation by dividing the population 

into subgroups called strata, assuming that similar 

behaviors are observed within the same stratum.  

 Since the distribution of the absolute errors between the 

model output and the labels is heavily skewed, different 

strategies are deployed for the cases with an absolute error 

of at most 20ms and for those with that of greater than 

20ms.  

 For all the cases with an absolute error of more than 

20ms, a representative sample is obtained using stratified 

sampling with an optimal allocation strategy. More 

specifically, all these cases are divided into four strata, 

where the number of observations sampled is proportional 

to the standard deviation (St.D.) and the size of each 

stratum, allowing more samples from the stratum with 

most variation and the larger stratum (Table 3).  

On the other hand, a fixed sample size of 40, equally 

divided into 2 strata using 10ms as the cutoff, is drawn 

from cases with an absolute error of at most 20ms. Since 

any difference less than 10ms will fail to be detected during 

the manual adjudication process, the difference in behavior 

between the model output and the MUSE label will be 

characterized by all the cases between 10ms and 20ms.  

In addition, to maintain the independence of each 

stratum, all patients are sampled only once. The resulting 

6 strata are presented in Figure 5. 
 

Interval Size (Counts) % St.D. # samples required 

(0,10] 200,658 90.62 2.31 20 

(10,20] 14,094 6.37 2.68 20 

(20,30] 3,591 1.62 2.86 29 
(30,60] 2,194 0.99 7.91 49 

(60,120] 550 0.25 17.45 27 

(120,600] 337 0.15 57.11 55 

Table 3: Description of each stratum  

 

 
Figure 5: Distribution of the absolute errors 

 

3.3 Manual Adjudication Result 

A blinded manual adjudication is performed to confirm 

the accuracy of both the model output and the label on 

which it was trained.  

The R location and the QRS duration was provided by 

the MUSE software. The P location for both the model and 

the MUSE labels was calculated by subtracting the PR 

interval and half of QRS duration from the R location. 

Each P location was randomly assigned to two colors of 

choice. During the adjudication process, the adjudicator 

needed to decide (1) whether the R location was accurate, 

(2) whether the QRS duration was correct, and (3) which P 

location was correct (by color). 
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The estimated true accuracy of the model in each 

stratum is shown in Table 4. Similar performances between 

the model output and the labels are observed for the strata 

where the absolute difference is relatively small. As the 

absolute error increases in size, the model gradually 

overperforms the MUSE labels in terms of accuracy, with 

the most difference located in the latter stratum. 
 

Interval Est. Acc 

(ResNet) 

Est.  Acc 

(MUSE) 

 St.D. 

(ResNet) 

 St.D. 

(MUSE) 

(0,10] 1.00 1.00 0.00 0.00 
(10,20] 0.70 0.70 0.21 0.21 

(20,30] 0.61 0.39 0.24 0.24 

(30,60] 0.56 0.32 0.25 0.22 
(60,120] 0.74 0.07 0.19 0.07 

(120,600] 0.79 0.05 0.17 0.04 

Table 4: Table of the estimated accuracy (Est. Acc) 

across stratum and the corresponding standard deviation 

(St.D.) for ResNet outputs and MUSE labels. 

 
Figure 6: Bland-Altman of MUSE and manual 

adjudication (left) Bland-Altman of estimated (right) and 

manual adjudication.  

 

 Then, using a pooled variance approach, the 95% 

confidence interval for the overall accuracy for both the 

model output and the MUSE label was calculated. The 

accuracy of the MUSE label is estimated to be 96% [95% 

CI: 95.7-96.3], implying that approximately 4% of the 

MUSE labels are incorrect. On the other hand, the ResNet 

accurately estimates 96.9% [95% CI: 96.59-97.42] of the 

PR intervals, higher than the estimated accuracy of the 

noisy labels on which it was trained on. The Bland-Altman 

plot in Figure 6 also shows a narrower confidence band and 

higher agreement for the ResNet model than the MUSE 

labels, and therefore a closer match between the estimated 

and the manually adjudicated PR values, which were 

calculated only when at least one of P locations was 

correct. This results in 189 manually adjudicated PR values 

in total. 

 

4. Discussion and Conclusions 

Using a tailored cohort extracted from the MUSE 

dataset collected at the University of Michigan, a ResNet 

model was trained to estimate PR interval values using the 

noisy labels that result from a laborious process of review 

and manual adjudication. From a technical standpoint, the 

model can produce interval values that have a low bias and 

are highly correlated with the labels on which it was 

trained. 

Taking a step further, the accuracy of the MUSE labels 

and the model output was estimated by performing a 

blinded manual adjudication using stratified sampling. The 

accuracy approximated by this process demonstrated that 

the model is able to produce more consistent and accurate 

PR values than the MUSE labels, and this difference in 

performance is statistically significant.  

Although the ResNet model performs better than the 

noisy labels provided for training, the comparison heavily 

relies on manual adjudication with variable degrees of 

accuracy depending on interpreting clinician [5]. As 

physicians can have their own biases when it comes to 

interpreting ECGs [5], an adjudication process with 

multiple electrophysiologists needs to be conducted to 

ensure fairness. As another potential improvement, since 

the performance of the algorithm varies based on different 

arrhythmias (Table 2), adding the diagnosis to the model 

can improve the estimation. This work can also be 

incorporated into a more integrated healthcare platform to 

optimize patient’s diagnoses. Finally, since the study is 

limited to adult patients, the option to conduct the same 

analysis for pediatric patients can be explored though the 

model will need to be re-trained for optimal results. 
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