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Abstract

Localized AF drivers with repetitive activity are can-
didate ablation targets for patients with persistent atrial
fibrillation (AF). High-density mapping electrodes cover
only a fraction of the atria but combining sequential
recordings could provide a more comprehensive picture of
common repetitive atrial conduction characteristics and
enable AF driver localization. We developed a novel
algorithm to merge overlapping local activation maps
into larger composite maps by linking repetitive pat-
terns detected in neighboring locations with similar con-
duction directions and cycle lengths. Regions exhibit-
ing high curl, divergence and heterogeneity in compos-
ite maps were marked as candidate reentry locations and
were compared to those estimated through phase singu-
larities and cycle length coverage maps from the indi-
vidual recordings. The proposed algorithm led to bet-
ter estimates of the underlying source density (sensitiv-
ity: 0.88/0.87/0.79, specificity: 0.85/0.85/0.68 for stable
reentry, meandering reentry, and collision, respectively),
compared to the maps from individual recordings (sen-
sitivities 0.85/0.70/0.65 and 0.84/0.86/0.51, specificities
0.86/0.70/0.64 and 0.85/0.87/0.50 for phase singularity
and CL coverage, respectively).

1. Introduction

Many localized mechanisms have been described as
possible perpetuators of AF episodes; such as, functional
reentries (rotors), transmural breakthroughs or focal ac-
tivity [1]. Regardless of the underlying mechanism, AF
drivers are expected to entrain their vicinities and exhibit
repetitive propagation that is observed through intracardiac
recordings [2]. This repetitive activity, however, cannot be
visualized over the entire atrium due to the limited cov-

erage of high-density catheters [3]. To address this prob-
lem, we developed a tool to link sequential repetitive atrial
activation patterns (RAAPs) into larger maps- composite
maps- that reflect the underlying conduction with high spa-
tial resolution as well as a high coverage. This work aims
to quantify in-silico local reentry detection performance of
composite maps in comparison with individual analysis of
sequential maps.

2. Methods

2.1. Dataset

AF was simulated in a highly detailed three-dimensional
model of the human atria, including atrial wall thickness,
intra and inter-atrial structures and realistic electrophysi-
ology corresponding to AF patients [4]. Three AF driver
scenarios were simulated: a stable reentry, a meandering
reentry, and two colliding reentries. Unipolar electrograms
were sequentially recorded from 30 overlapping locations
on the left posterior wall (4x4 grid, 3mm spacing, 230
to 800 ms). Phase singularities obtained from the trans-
membrane potentials were used to track the position of
reentry cores over time.

2.2. Detection of Repetitive Atrial Activa-
tion Patterns During AF

RAAP detection methodology is described in [2].
Briefly, local activation times were annotated using a prob-
abilistic template matching approach and transformed into
activation phase signals by activation phase interpolation.
Each time-point was represented by the activation phase
snapshot of all electrodes at that time instant. Time in-
tervals in which similar sequences of phase snapshots ap-
peared for more than two consecutive cycles were marked
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as RAAP intervals. RAAPs were represented by the
preferred conduction direction vectors of their electrodes
which were calculated by averaging conduction velocity
vectors during the time course of the analyzed RAAP.
Electrodes that not dot show high directional preferential-
ity (i.e. a circular variance less than 0.5) were excluded
from the analysis.

2.3. Repetitive Pattern Linking and Source
Detection Algorithms

Repetitive patterns detected on different regions, e.g.
RAAP1 and RAAP2, were stitched together using a set
of rules (Fig. 1, left):

RAAP #1 RAAP #2
CL:160 msec CL:152 msec

3 cycles 4 cycles B

D

C
radius 5 mm

A

Figure 1. RAAP linking approach

A) AF Cycle Length (AFCL) Coherence: AFCLs asso-
ciated with RAAP1 and RAAP2 should be at most
10% apart. This is based on the assumption that the
AFCLs should not change significantly among neigh-
bouring sites.

B) Number of Cycles: RAAP1 and RAAP2 should both
be present at least for three consecutive cycles which
ensures that the patterns are sufficiently repetitive and
provides algorithmic efficiency by omitting shorter,
transitory patterns.

C) Distance: Recording locations of RAAP1 and
RAAP2 should be sufficiently close- there should be
at least one electrode from each recording site which
is within 0.5mm radius of each other.

D) Preferential Directions: Preferential conduction di-
rection vectors associated with electrodes that are suf-
ficiently close (see C) point similar directions-cosine
of angles between vectors should be larger than 0.5.

We evaluated each identified RAAP pair according to
these rules and consequently, a network of linked RAAPs
was obtained. We represented this network as an undi-
rected graph and extracted the largest connected compo-
nent as the composite map associated with the data set.

Generated composite maps exhibited preferential con-
duction directions for an extended region of atria and could
be processed to localize AF driver activities - e.g. local
reentries. To that end, we utilized three vector field oper-
ators (Fig. 2): (i) Divergence: the volume density of the
outward flux of a vector field around a given point. (ii)
curl: the circulation density at each point of the vector
field, (iii) Heterogeneity: norm of the average of all vec-
tors within a radius R, reflecting how heterogeneous the
vector directions are. We defined a metric, composite map
source score (CMSS) based on these three operators:

CMSS(x, y, z) = max(Cxyz, Dxyz) ·Hxyz (1)

with Cxyz , Dxyz and Hxyz being curl, divergence and
heterogeneity values at the atrial surface position (x,y,z).
Choosing the maximum of the curl and divergence pro-
vides capturing reentries with different propagation char-
acteristics while multiplication with the heterogeneity had
a smoothing effect.

HeterogeneityDivergenceCurl

Figure 2. Curl, divergence and heterogeneity operators for
vector field analysis.

Source distribution maps obtained with the CMSS
method and two other sequential reentry detection meth-
ods were compared as follows: Maps were binarized with
a threshold and sensitivity/specificity scores were calcu-
lated and contrasted. Threshold values were individually
set for each technique such that the combination of the
resulting sensitivity and specificity scores (F-scores) were
maximized.

We have also quantified the dependency of the compos-
ite mapping algorithm to the mapping density- coverage of
the atria. For this, random subsets of the recordings, vary-
ing from 0 to 50% of the measured locations, were elimi-
nated from the analysis. This was repeated 100 times, and
sensitivity and specificity values were calculated for each
epoch to explore changes in reentry detection performance.
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Figure 3. Examples of generated composite maps (top) and CMSS maps (bottom) for (left) stable reentry, (middle)
meandering reentry, (right) two colliding reentries. Stars mark reentry cores.

3. Results

Composite maps and CMSS maps for three different
types of local reentries were generated: stable, meander-
ing and colliding (see Fig. 3). For the stable local reentry
(Fig. 3, left), generated composite map exhibited a rotating
pattern around a single point which was in agreement with
center of the simulated stable reentry. In this case, CMSS
map showed a sharp peak on that point. In the meander-
ing reentry case (Fig. 3, middle), associated composite
map had a lower arrow density around the center, and the
CMSS map marked a broader area spanning the trajectory
of the meandering reentry. In more complex case of a wave
collision (Fig. 3,right), resulting composite maps captured
the source activity with parts of the wave collision arti-
facts. Table 1 depicts the sensitivity and specificity values
for each technique. In each scenario, CMSS achieved bet-
ter sensitivity. This was more pronounced in the collision
case where phase singularity performed poorly while cycle
length coverage did hardly better than the random guess.
The dependency of the composite mapping algorithm to
the mapping density was summarized in Fig. 4. Both sen-
sitivity and specificity values dropped approximately 20%
when half of the sequential recordings were randomly re-
moved.

4. Discussion

Generated composite maps reflected wave propagation
of the underlying pattern in each simulated case. Detection

Figure 4. Sensitivity/specificity scores upon changing
mapped density values.

of reentries in these maps outperformed widely used se-
quential reentry detection techniques, indicating possible
benefits of high-coverage composite mapping of sources
for ablation target detection.

While RAAPs were stable and long-termed in our sim-
ulations, clinical recordings may present more chaotic ac-
tivation patterns and lower number of short-lived RAAPs
which might complicate both RAAP detection and link-
ing stages. Nevertheless, there is increased evidence of the
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Table 1. Sensitivity/specificity values of different methods.

Pattern Type CMSS Phase Singularity Cycle Length Coverage
Single Reentry 0.88/0.85 0.85/0.86 0.84/0.85

Meandering Reentry 0.87/0.85 0.70/0.70 0.86/0.87
Collision 0.79/0.68 0.65/0.64 0.51/0.50

presence of stable RAAPs during human AF [5][6], which
could be visualized and analyzed with a similar approach
as proposed here. Future studies should include clinical
recordings to evaluate the applicability of the technique for
guiding ablation.

A limitation of the composite mapping is increased map-
ping time due to the dense mapping required for a de-
tailed map. Our results indicated that the sensitivity and
specificity of the algorithm could withstand randomly-
introduced decreased mapping density. Although this was
a positive evidence for the applicability of composite map-
ping in clinical environment, electrophysiologists do not
randomly select mapping locations and focus on particular
anatomical sites instead. Therefore, our way to quantify-
ing reduced mapping density might be an oversimplifica-
tion and should be extended.

Proposed CMSS metric exploited vector fields of the
generated composite maps and achieved very high sensi-
tivity and specificity scores for the stable and meander-
ing reentries, but under-performed in wave collision case.
In collision scenario, the drop in specificity was due to
the false positive detections in the vicinity of the colli-
sion zones where both electrogram morphologies and the
preferential conduction vectors presented high complexity.
On the other hand, lower sensitivity was introduced by the
challenges in capturing the second reentry in the vicinity
of right inferior pulmonary vein which was only partially
mapped. The meandering reentry case highlighted the ad-
vantages of using composite maps: even though the rotor
tip of the meandering region showed low repetitive activ-
ity, a composite map could still capture the overall pattern
by linking the peripheral wave directions. On the other
hand, competing techniques were affected more severely
by propagation pattern characteristics: Meandering of a
reentry obstructed emergence of phase singularities. Sim-
ilarly, cycle length coverage metric prioritized collision
zones which showed higher fractionation.
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