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Abstract 

Differences in cardiac time intervals (CTIs) have 

previously been shown in different patient groups with 

varying levels of cardiac function. These studies relied on 

methods such as conventional echocardiography or tissue 

doppler imaging performed by a specialist to extract CTIs. 

The goal of this study was to evaluate the ability of using a 

combination of single lead ECG and 3-axis 

seismocardiography (SCG) from a sensor placed on a 

subject’s sternum to automatically extract CTIs. 
For each subject, pre-ejection period (PEP), left 

ventricular ejection time (LVET), total systolic time (TST), 

and total diastolic time (TDT), which were normalized by 

the mean heart rate representing the entire recording were 

extracted using a custom developed algorithm. 

LVET was on average 20.5 % shorter in the NKHCD 

group vs PRE-TAVI (p < 0.05) and 5.9% shorter in the 

HCD group vs PRE-TAVI (p > 0.05). Comparing CTIs 

between the subjects who had data recorded before and 

after receiving a TAVI procedure, a 12.6% postoperative 

reduction in LVET (p  < 0.05) was found on average as 

well as a 30.2% increase in PEP/LVET (p < 0.05). 
These results are in line with literature where LVET 

increases with age and severe aortic stenosis and 

decreases after TAVI procedures when echocardiography 

was the main methodology used to extract CTIs. 

 

 

1. Introduction 

Cardiac time intervals (CTIs) have been investigated for 

a number of years as a marker for poor cardiac function 

primarily with methods such as echocardiography or tissue 

Doppler imaging [1]. CTIs for example have been shown 

to identify poor cardiac functions in individuals with 

hyptertension as well as be a predictior of future 

cardiocasvular disease in individuals with hyptertension 

[2]. Changes in CTIs have been shown to have a 

relationship with all-cause mortality. Haiden et al [3] 

showed that a U-shaped relationship with changes to 

LVET meaning both a shortening and a lengthening in 
LVET was associated with all all-cause mortality. 

Different cardiovascular diseases can cause different 

changes in the duration of CTIs. Patients with aortic 

stenosis have been shown to have prolonged LVET. The 

cause for this is not fully understood as of yet [4]. While it 

has also been shown that shortening of LVET increases the 

risk of mortality in patients with heart failure with reduced 

ejection fraction [5]. 

All of the aforementioned methods used complex 

imaging techniques performed in clinics to produce CTIs. 

Methods have also been proposed using a combination of 
ECG and SCG to extract CTIs [6] but showed degraded 

performance in patient groups with a history of heart 

disease. One challenge with identifying CTIs in patients 

with different cardiovascular diseases is that the typical 

morphology of the signal can vary significantly. This 

makes it challenging to accurately identify events such as 

the aortic opening (AO) and aortic closing (AC) in an SCG 

waveform. This is especially true for diseases like aortic 

stenosis (AS), where the AC component of a SCG signal 

can be almost unidentifiable. The purpose of this study is 

to provide a simple reproducible method that calculates 

modified CTIs from ECG and SCG signals that have been 
tested on different groups with different levels of cardiac 

function and show that the results are in line with results 

shown in literature when the main measurement method 

was either echocardiography or tissue Doppler imaging.  

The following four CTIs were considered in this study, 

defined by time differences between the following events:  

 

1. PEP = AO – R-Peak 

2. LVET = AC – AO 

3. TST = AC – R-Peak 

4. TDT = R-PeakN+1 – AC 
 

Figure 1 below illustrates these points using an example 

cardiac cycle.  
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Figure 1: CTIs labeled using a single cardiac cycle. SCG Z-

axis band-pass filtered between 20 and 100 Hz. 

The R-peaks in Figure 1 are represented by green dots 

while the AO is represented by blue triangles and the 

AC is marked with a pink diamond.  

 

 

2. Methods and Materials 

Figure 2 gives an overview of the pipeline to extract 

CTIs from raw ECG and SCG recordings. After ECG and 

SCG signals were captured they were first visually 

inspected to ensure good data capture. Afterwards the ECG 

signal was filtered to eliminate noise that may hinder the 

accuracy of the R-Peak detection algorithm to correctly 

identify R-peak locations from the ECG signal. R-peaks 

were detected using the default peak detection algorithm 

provided by the NeuroKit2 python library.  

 

 

Figure 2: Overall pipeline of proposed method. 

After R-peak detection, the SCG signals were 

segmented into individual cardiac cycles based on the 

detected RR-intervals. Once the cardiac cycles were 
segmented, only the Z-axis of the SCG signal was used. 

This decision was made after initial testing showed that the 

Z-axis of the SCG signal produced the clearest ensemble 

average waveforms when extraction of CTIs was 

performed. 

After segmentation, artifacts in the segmented SCG Z-

axis signal such as motion artifact amplitude spikes were 

removed by using a median RMS thresholding technique 
similar to [7]. The remaining cardiac cycles were then 

grouped using a two stage dynamic time warping (DTW) 

similarity measure which is an improvement based on a 

technique used in our prior work [8]. The selected cardiac 

cycles were then ensemble averaged to produce a final 

representation of a cardiac cycle and then a simple peak 

detection algorithm was used to find peaks that were 

located closely to where the AO and AC were believed to 

be. Modified CTIs were extracted using the R-peak as a 

substitute for the Q-wave in the QRS complex. 

 

2.1. Dataset 

The dataset used in this study consists of 157 subjects 

collected using a custom data logger device which 

collected single lead ECG, 3-axis SCG, and 3-axis GCG 

signals. In this study only the ECG and Z-axis SCG signals 

are considered. More information about the data 

acquisition device can be found in [9]. The 157 subjects 
who were collected for this study were split into four 

different categories.  

The first group consists of younger subjects with no 

known history of cardiac disease (abbrv: NKHCD, N = 51, 

Mean Age = NA, # of Males = NA). The second group of 

subjects consists of older subjects with a history of cardiac 

disease excluding valve heart disease (abbrv: HCD, N = 

49, Mean Age = 66 ±10.3, # of Males = 39). The third 

group of consists of subjects who have been diagnosed 

with severe AS. This group is divided further into 

measurements taken before a transcatheter aortic valve 

implantation (TAVI) procedure (abbrv: PRE-TAVI, N = 
57, Mean Age = 79 ±6.1, # of Males = 26), and 

measurements taken after a TAVI procedure (abbrv: 

POST-TAVI, N = 23, Mean Age = 76 ±5.0, # of Males = 

12) The POST-TAVI group is 23 subjects taken from the 

PRE-TAVI group.  

The measurements for the NKHCD group were taken at 

the department of computing at the University of Turku 

and no age and sex information was gathered. These 

subjects were younger in age and were mostly students and 

faculty from the university.  The HCD, PRE-TAVI, and 

POST-TAVI measurements were taken at the Turku 
University Hospital. Health care providers who took the 

measurements were unable to take more POST-TAVI 

measurements due to time constraints or the patients were 

discharged before the measurement could be taken. 

Measurements were on average 9 minutes in length. 

 

2.2. Signal processing 
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ECG and SCG were acquired at 128 and 416 Hz. The 

signals were then synced and resampled to 400 Hz. The 

SCG Z-axis signal was then band pass filtered using a zero 

phase 8th order Butterworth filter with cutoff frequencies 

of 20 to 100 Hz. These cut off frequencies although 
unconventional, provided the best peak locations when 

ensemble averaging the signals together. The signal was 

subtracted by its mean value then normalized by dividing 

it by its standard deviation. Filtering performed on the SCG 

Z-axis signal was performed using the SciPy python 

library.  

The ECG signal was high pass filtered using a 5th order 

Butterworth filter with a cutoff frequency of 0.5 Hz. This 

was performed using the default parameters from the 

ecg_clean function from the NeuroKit2 python library.  

 

2.3. Motion Artifact Removal 

 When DTW is applied to SCG cardiac cycles the 

accuracy of the similarity measure employed in this study 

is reduced when noise such as amplitude spikes are present 

throughout the recording. In order to remove these spikes, 

we calculate a threshold value automatically for each 

subject and remove any cardiac cycles whose amplitude 
cross this threshold value at any point. This threshold is a 

multiple of the median RMS value calculated across all 

cardiac cycles. The value is conservative in order to avoid 

removing any noise free cardiac cycles. This is because the 

two stage DTW cardiac cycle selection process removes 

most other cardiac cycles that have been corrupted by noise 

or are not true cardiac cycles because of errors in R-peak 

detection. 

 

Figure 3: Illustration of motion artifact removal. ECG is shown 

on the bottom portion of plot while individual cardiac cycles are 

labeled blue if noise free or red if they contain noise. 

 

Figure 3 shows an example of 30 consecutive cardiac 

cycles with the SCG Z-axis signal present on the top and 

the ECG signal with R-peaks denoted on the bottom. The 

artifact free portions of the signal are colored blue while 
any cardiac cycles in the SCG signal that are deemed to 

contain noise are colored in red.  

 

2.4. Two Stage Dynamic Time Warping 

DTW has been previously applied to SCG signals for 

detection of fiducial points in smaller sample sizes [6][10]. 

The method used to group the cardiac cycles into similar 
and dissimilar beats is based off prior work in [8]. The 

algorithm described in [8] is applied two consecutive times 

by first creating an initial grouping of accepted and 

discarded beats as is done in [8] and then applied again to 

the first round of accepted beats to create a new set of 

accepted and discarded beats. Please refer to [8] for a more 

detailed description of the steps used in the algorithm to 

separate cardiac cycles into different groups. By 

performing the DTW grouping two separate times, a more 

accurate ensemble waveform can be created to reliably 

extract time intervals from. After the two-stage DTW 
algorithm was applied to all 157 subjects, a total of 54211 

cardiac cycles were left for analysis.  

 

 

2.4. Cardiac Time Interval Extraction 

Once the cardiac cycles were grouped, the discarded 

beats were no longer used for CTI extraction. The accepted 
beats were then averaged to create a single waveform, 

which was used to detect the AO and AC events. The 

following steps were applied to the grouped cardiac cycle 

to create a final waveform for CTI extraction. 

 

1. For each cardiac cycle in the accepted group 

the absolute value of the cardiac cycle is 

calculated creating CCAbs. 

2. A convolution function is then applied to CCAbs 

with a triangle filter with a window length of 

20 samples or 50 ms creating CCConv.  
3. Each consecutive CCConv is then summed 

together and averaged by the total count of 

CCConv creating CCAvg.  

4. Using the SciPy find_peaks function, the two 

most prominent peaks in CCAvg are selected to 

represent the average AO and AC locations for 

that measurement. 

  

Figure 4 below shows an example of the overlaid SCG 

cardiac cycles and the resulting CCAvg waveform created to 

detect AO and AC locations. The reasoning for the triangle 

filter convolution with CCAV was to boost the prominence 
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of the AO and AC peaks to make peak detection more 

accurate.  

 

 
Figure 4: Example of AO (Red Diamond) and AC (Blue 

Diamond) extraction from CCAvg waveform. Green signal 

represents the grouped cardiac cycles used to create CCAvg. 

3 Results 

When applying the proposed method the following 

results were derived. The mean heart rates were 62.81 bpm, 

66.72 bpm, 70.43 bpm, and 70.87 bpm for the KNHCD, 

HCD, PRE-TAVI, and POST-TAVI groups. The CTIs for 
each subject are normalized by the average heart rate 

produced by their ECG record.  LVET on average was 

20.5% shorter for NKHCD vs. PRE-TAVI (p < 0.05) and 

15.5% shorter for NKHCD vs. HCD (p < 0.05). LVET was 

5.9% shorter for HCD vs. PRE-TAVI but was not 

statistically significant (p > 0.05). No statistically 

significant differences were observed in the CTIs between 

the HCD vs. PRE-TAVI cohorts in this study using the 

proposed method.  

TDT was on average 15.1% longer for NKHCD vs. 

PRE-TAVI (p < 0.05) and 11.6% longer for NKHCD vs. 

HCD (p < 0.05).  
When comparing subjects who had measurements taken 

before and after TAVI procedures, a 12.6% postoperative 

reduction in LVET (p < 0.05) was found on average as well 

as a 30.2% increase in PEP/LVET (p < 0.05). TDT was 

shown to increase 6.1% (p < 0.05) on average 

postoperatively. The mean heart rate values in these 

subjects showed no statistically significant difference (p > 

0.05). These results are in line with literature where LVET 

increases with severe AS and age as well as decreases after 

TAVI procedures [11]. 

  

4 Conclusion 

These results show promise in using SCG and ECG 

signals with a simple extraction method to extract CTIs 

from subjects with cardiac disease when compared to 

results in previous literature.  

Some limitations of this study are the use of the R-peak 

instead of the Q wave in the QRS complex as the reference 

point for PEP. Subjects with wide QRS complexes may 

produce inaccurate PEP values. In addition, a non-standard 
location for the AC was chosen in this study, this location 

being the local maxima of the diastolic complex. This was 

done because of the lack of annotated CTI time interval 

data and for subjects that suffered from severe aortic 

stenosis, the AC component can be hard to identify because 

of changes in the morphology of the diastolic complex due 

to severe AS.  
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