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Abstract

A key part of patient-specific cardiac simulations is seg-
mentation, yet the impact of this subjective and error-
prone process hasn’t been quantified in most simulation
pipelines. In this study we quantify the dependence of
a cardiac propagation model on from segmentation vari-
ability. We used statistical shape modeling and polyno-
mial Chaos (PC) to capture segmentation variability de-
pendence and applied its affects to a propagation model.
We evaluated the predicted local activation times (LATs)
an body surface potentials (BSPs) from two modeling
pipelines: an EIkonal propagation model and a surface-
based fastest route model. The predicted uncertainty due
to segmentation shape variability was distributed near the
base of the heart and near high amplitude torso potential
regions. Our results suggest that modeling pipelines may
have to accommodate segmentation errors if regions of in-
terest correspond to high segmentation error. Further, even
small errors could proliferate if modeling results are used
to to feed further computations, such as ECGI.

1. Introduction

Patient-specific cardiac simulation continues to increase
in relevance in research and the clinic for predicting ar-
rhythmias and guiding treatments. Many of the prevailing
simulation methods, such as heart propagation models [1],
ECG forward simulation, and Electrocardiographic Imag-
ing (ECGI)[2, 3], rely on segmenting medical imaging to
incorporate patient geometry into the biophysical models.
While the deployment of these pipelines in clinical settings
is eminent, uncertainty from differing strategies of trans-
lating clinical data, such as medical imaging, into values
needed for computational modeling remains largely un-
quantified.

Using clinical data is crucial to generating tractable

patient-specific cardiac models, yet it also requires the
compilation of many assumptions and estimations, leading
to multiple possible sources of uncertainty. Segmenting
imaging data into a geometric model is one, often over-
looked, source of uncertainty. We have previously shown
that, when using the same patient imaging, experts from
multiple research groups generate segmentations that vary
widely especially the cardiac surface [4]. This variability
likely affects the ECGI solutions [5], and we have used
statistical shape analysis to quantify the variability of seg-
mentation of a patient geometry [6] and incorporate the
statistical shape model an ECGI pipeline to quantify the
uncertainty due to segmentation variability [7].

In this study we quantify the uncertainty of cardiac
propagation models from segmentation variability using
a statistical shape model and polynomial Chaos emula-
tors (PCE) [8]. We used the collaborative framework
of the Consortium for ECG Imaging (CEI) to compile a
cohort of cardiac segmentations for the shape model [9]
and estimated the resulting uncertainty on Eikonal prop-
agation models [10] and fastest-route models [11]. We
found that predicted activation pattern uncertainty corre-
lated with segmentation variability, and that recorded sur-
face potentials were similarly affected.

2. Methods

In order to determine the effect of segmentation variabil-
ity on cardiac propagation models we employed statistical
shape modeling and polynomial Chaos emulators (PCE)
with two cardiac propagation models with ECG simulation
(Figure 1).

Segmentation variability used in the uncertainty quan-
tification (UQ) was characterized using using statistical
shape analysis. Researchers within the Consortium for
ECG Imaging (CEI, ecg-imaging.org), supplied eleven
ventricular segmentations from a single patient CT scan
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Figure 1. Pipeline to quantify the effect of shape variabil-
ity on cardiac forward models.

and ShapeWorks [12] (https://www.sci.utah.edu/software/shapeworks.html)
was used to quantify the geometric variation and formu-
late a parameterized shape model [9] that could be used as
an input into UQ modeling pipeline. The resulting shape
model captured 90% of the total variation using five modes
of variation, which can be used as a parameter space to
generate arbitrary cardiac geometries with the shape space.

We computed the uncertainty of propagation models re-
sulting from shape variation using PCE in UncertainSCI
(https://www.sci.utah.edu/cibc-software/uncertainsci.html).
The UQ analysis treated the five shape modes as random
input parameters. UncertainSCI parsimoniously sampled
the parameter space using weighted approximate Fekete
points [8] and the collated model outputs were used in the
PCE (polynomial order of five) to derive statistics of the
model output distribution [8, 13].

We quantified the uncertainty due to shape variation
within two propagation models: Eikonal propagation [10],
and fastest-route [11]. Each of the 262 geometries sam-
pled from the shape model were meshed as both a high
resolution tetrahedral mesh for Eikonal propagation or a
low resolution triangle surface mesh for fastest route. Car-
diac propagation was simulated with five activation pro-
files: sinus, left ventricle (LV) stimulation, right ventri-
cle (RV) stimulation, apical stimulation, and septal stim-
ulation. In both models, conductivity was assumed to be
isotropic with 1.15 m/s conduction velocity. BSPs were
computed from the transmembrane potentials generated
from the Eikonal propagation model with psuedoECGs
[10]. With the fastest route model, equivalent dipole layer
(EDL) and boundary element method (BEM) was used to
compute BSP [11]. Uncertainty in the predicted local ac-
tivation times (LATs) and body surface potentials (BSPs)
were both predicted with UncertainSCI.

The medical images used in this study were collected
by Sapp et al. [14] and are available for open use on the
EDGAR database (http://edgar.sci.utah.edu) [15] a shared
resource of the CEI.

Figure 2. Predicted mean and standard deviation of the
LATs. Max standard deviation is 84 ms (septal stimula-
tion) for the fastest route model and 114 ms (sinus) for the
Eikonal model.

Figure 3. Predicted median and quantile regions of the
precordial ECGs.

3. Results

The two propagation models demonstrated similar un-
certainty of predicted LATs resulting from shape variabil-
ity. As shown in Figure 2, the regions with the highest
variability were the base of the heart and the right ventric-
ular outflow tract (RVOT). Furthermore, model uncertainty
was noticeably higher in septal and RV stimulation than in
other simulated activation patterns.

The two propagation models also demonstrated sim-
ilar patterns of uncertainty of predicted BSPs result-
ing from shape variability, yet the fastest route model
showed marginally more uncertainty than the Eikonal (Fig-
ures 3, 4, & 5). Figures 3 & 4 show that model uncer-
tainty varies over time and correlates with signal ampli-
tude. Similarly, Figure 5 shows that model uncertainty
varies over the body surface, and correlates to high signal
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Figure 4. Predicted median and quantile regions of the
BSP RMS curves.

Figure 5. Predicted mean and standard deviation of the
LATs. Max standard deviation is 3.7 mV (septal stimula-
tion) for the fastest route model and 1.4 mV (sinus) for the
Eikonal model.

amplitude areas and areas of high spacial gradient. Dis-
tinctions between activation profiles, in terms of uncer-
tainty from shape variability, were not as clear as those
in the predicted LATs.

4. Discussion and Conclusions

The goal of this paper was to quantify the uncertainty
from segmentation variability in cardiac propagation mod-
els. Our results showed that both models are relatively ro-
bust to shape variability in many areas of the heart. How-
ever, some circumstances can lead to significant uncer-
tainty in predicted LATs and BSPs. Also, despite very sim-
ilar predictions in LATs uncertainty between the two prop-
agation models, the fastest route model showed noticeably
higher uncertainty in predicted BSP, indicating that greater
sensitivity to shape error with some modeling methods.

Both propagation models predicted greater uncertainty
from segmentation error in predicted LATs near the RVOT
and the base of the heart. These areas of high uncertainty
correlate to areas of high shape variability [9] and areas
of high uncertainty in predicted pericardial potentials from
ECGI [7]. However, not all activation profiles were af-
fected the same, with RV and septal stimulation showing
higher uncertainty in these same regions, while the uncer-

tainty in the rest of the heart relatively consistent across
activation profiles. The shape model captured segmenta-
tions of divergent strategies, leading to geometries with
differing numbers of segmented ostia and accessory path-
ways in base and RVOT [9]. Highly variable LATs may
be expected within this context, yet this level of variability
from a cohort of expert segmentations highlight the need
to formulate clear and accurate strategies for segmenting
the base and RVOT regions of the heart to minimize the
variability of accessory pathways.

The differing levels of predicted BSP uncertainty be-
tween the two modeling pipelines from the same segmen-
tation variability demonstrate possible avenues for down-
stream modeling errors from segmentation variability. The
uncertainty in predicted LATs is not notably more in fastest
route than Eikonal, yet the predicted BSPs shows a marked
difference in uncertainty. While some of the data and ge-
ometry processing necessarily diverge in the two pipelines,
it is also possible that the forward ECG methods used with
the fastest route method (EDL and BEM) may be more
sensitive to segmentation variability than those used by the
Eikonal propagation model (psuedoECGs). More in-depth
analysis of the contrasting forward modeling methods is
needed to clarify this discrepancy.

In this paper we demonstrated a modeling pipeline with
open source tools to evaluate the uncertainty from segmen-
tation variability in cardiac propagation models that could
be adapted to many other types of geometry based mod-
els. We showed that segmentation variability can cause
high levels of uncertainty in cardiac propagation models by
generating variable accessory pathways. We also observed
propagation of model uncertainty to the predict BSP that
varied based on methodology that might extend to other
pipelines that rely on these propagation models and for-
ward methods, such as ECGI. Implementing similar UQ
techniques on downstream modeling pipelines will help
identify and minimize propagated errors.
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