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Abstract

The prognosis of neurologic outcome for patients after
cardiopulmonary resuscitation is usually made based on
morphologic patterns in the electroencephalogram (EEG).
However, the specificity of these patterns is comparably
low and the dependency on the investigator is high. Hence,
features that are instead learned by neural networks are a
promising tool to overcome both problems. As part of the
George B. Moody PhysioNet Challenge, we propose the
convolutional embedding transformer (CET) that learns
input features with a feature encoder and applies a time
prior in the cost function to enhance the training process
and enable the model to learn more generalized internal
feature representations. The input of CET is the raw, down-
sampled data. For comparison we implement a support
vector machine (SVM) model that uses the features based
on morphologic patterns. In a 5 fold cross-validation on
the training data, CET achieves a mean challenge score
of 0.41 and AUPRC of 0.84. The model did not achieve a
score on the test set during the official phase (team ”IWill-
Survive”).

1. Introduction

Prognostication in patients with hypoxic encephalopa-
thy (HE) after cardiopulmonary resuscitation (CPR)
is a challenging aspect of modern neurocritical care.
Apart from clinical and laboratory diagnostics, electroen-
cephalography (EEG) is of particular diagnostic impor-
tance due to its continuous monitoring capability. Several
morphologic patterns have been shown for poor functional
outcome after CPR, e.g. burst suppression patterns with
identical bursts or isoelectric EEG [1, 2]. In addition to
the low specificity of these visually detected EEG patterns,
poor inter-rater reliability in the detection of these patterns
is often a problem [3]. Computationally learned features
based on repetitive or continuous EEG may have the po-

tential to significantly improve the prognosis of functional
outcome in HE patients. As part of the George B. Moody
PhysioNet Challenge 2023 [4], we present a model based
on the transformer architecture for predicting the outcome
from EEG at arbitrary time points after cardiac arrest. The
model incorporates a time prior, which can be described
as enforcing a monotonous increase in the model’s belief
about the true outcome. The prior is expected to improve
model generalization and is initially implemented as a re-
ward term in the cost function. For reference, we imple-
ment a Support Vector Machine (SVM) classifier that uses
aforementioned features based on morphologic patterns.
The classification task is challenging, because the origin
of the EEG signal and thus the placement of the electrodes
have to be considered in the model. For example, the EEG
of the frontal lobe usually contains frequency components
associated with eye movement, but if the same patterns
show up in the parietal lobe they can be malignant. Fur-
thermore analyzing multiple days of multi-channel EEG
recording is difficult for learning due to the high amount
of data and sparsity in feature space. Most segments and
especially early hours of the EEG recordings will not con-
tain useful information for diagnosis. In the early hours,
patients might be still under influence of sedative med-
ication that increases/decreases alpha waves. We expect
these effects to be properly tackled by the time prior, while
still being able to incorporate less informative data into the
training procedure of the model.

2. Methods

The basis of our analysis are versions 1.0 and 2.0 of
the training subset of the International Cardiac Arrest RE-
search consortium (I-CARE) dataset [4, 5], which consists
of up to 72 hours of EEG-recordings of 607 adult patients
after cardiac arrest who had return of heart function but
stayed comatose. I-CARE 2.0 contains the full 19-channel
unipolar recordings whereas 1.0 provides only the best 5
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minutes of EEG per hour as 18 channels in bipolar con-
figuration and a signal quality metric. The data is labeled
with Cerebral Performance Category (CPC)-scores which
indicate the neurological outcome for each patient with 1
(good) to 5 (dead).

The high dimensionality of the data stemming from the
number of channels and more importantly from the length
of the recordings is a problem for all existing machine
learning methods. In traditional machine learning this is
usually approached by using extensive preprocessing and
hand-crafted features that try to cover the most important
aspects of the signal. This approach is implemented as
a baseline with a SVM. In Deep Learning multiple ap-
proaches exist. Our novel solution is a combination of in-
corporating prior knowledge and down sampling.

2.1. SVM

We employ an SVM classifier with a radial basis func-
tion kernel and and the regularization parameter C=0.3 as
a baseline model. The input of the SVM are 8 features
extracted from 5 minute epochs of the EEG recording. in
addition to the five quantitative features proposed in [6] ,
namely power, shannon entropy, alpha-to-delta ratio, reg-
ularity and coherence in the delta band, we use the qual-
ity measure specified in I-Care 1.0 and the corresponding
hour of recording after return of spontaneous circulation
(ROSC), as well as a burst-suppression feature. A burst-
suppression background with or without discharges is re-
garded as highly malignant [7]. This is best described by
a suppression below 10 µV more than 50% of the time.
Hence we test if 1 s segments stay below this threshold
and then compute the ratio of suppressed segments to non-
suppressed segments over all channels as a measure. Be-
fore feature computation, the EEG signals are filtered with
a zero-phase bandpass filter (0.5 to 30 Hz). Then, regu-
larity, power, Shannon Entropy and alpha-delta ratio are
computed on segments of 10 seconds per channel and then
averaged over the segments and the channels. Delta co-
herence is computed over pairwise channels and then av-
eraged. The final outcome prediction is computed by aver-
aging the SVM predictions for all epochs of a patient.

2.2. Transformer with time prior

In order to incorporate the time prior, a model with
temporal encoding and/or recursive processing is neces-
sary. Therefore, the Convolutional Embedding Trans-
former (CET) in Figure 1 consists of a residual network
(ResNet) to create a feature embedding that is concate-
nated to a sinusoidal positional encoding. The output
serves as the input to a causal-masked transformer en-
coder layer with M=4 sequential layers. The input of the
model is batches (B) of the bandpass filtered (0.5 to 16 Hz)

Encoder
(M layers)

Postional Encoding

B x L x C x N

B x L x Dmodel

B x L x Dmodel

B x L x Dmodel

B x L x 1

B x C x (L*N)

Embedding
Vector

Embedding Vector

CNN Layers / ResNet
Embedding

Vector
Embedding Vector

CNN Layers / ResNet

B x L x 2 classes

Embedding
Vector

Embedding Vector

CNN Layers / ResNet

FC

FC

Figure 1. Convolutional Embedding Transformer (CET)
architecture which learns local ResNet Embeddings. The
final decision is generated in a fully connected block with
shared weights for all L encoder sequence embeddings

and resampled (fs =32 Hz) EEG signals, that are split
in L=2160 segments with duration N=320 samples (C=18
channels). Further parameters are Dmodel=256, Ddeep=64
and Dbinary=1. The 6-layer ResNet consists of two 1D-
convolutions of kernels sized 5 and padding 2 interleaved
with group-normalization and LeakyReLU activations.

We start with the Binary Cross Entropy loss that com-
putes the loss after the last segment of a sequence with
maximum length L (e.g. 72 hours, that is zero-padded to
achieve the same length for all samples in the dataset).

LBCE(yn,L, ŷn) = −ŷn log(yn,L)

+ (1− ŷn) log(1− yn,L), (1)

where yn,i is the predicted probability for a negative out-
come (CPC-Score ∈ {3, 4, 5}) for the i-th segment of pa-
tient n and ŷn the respective binary ground truth label. The
loss can be easily generalized to more classes. One prob-
lem is that we cannot be sure which time segments of the
signal contain good features to decide the outcome, but
the more consecutive time segments the model inspects,
the higher the certainty of the model about the outcome

Page 2



should get. By introducing a time prior that rewards an in-
crease in the models belief in the (correct) classifications
as it receives a continuous input of hourly data, we aim to
incorporate knowledge about the outcome while allowing
the model to be less certain for smaller examples. Phrased
differently, that means that penalization will be decreased
for earlier predictions if they employ less data. This should
work similar to data-augmentation as we split recordings
with one label into multiple segments with their own label
in a sense and improves gradient flow. Similar approaches
with slightly different reasoning have been applied to vi-
sion transformers before [8]. We suggest four slightly dif-
ferent approaches to a time prior where we always assume
yn,i and yn,i+1 to be actual consecutive samples:
1. Weighted reward

Ltotal,1 =
∑
i

LBCE(yn,i, ŷn) + Ltime (2)

Ltime = −
∑
i

αi · |yn,i − 0.5|, (3)

where αi = i/L with i being the absolute position of the
latest sample.
2. Monotonicity (based on [9])

Ltotal,2 =
∑
i

LBCE(yn,i, ŷn) + Ltime, (4)

Ltime = −(max(

L−1∑
i=1

max(0, yi+1 − yi),

L−1∑
i=1

max(0,−(yi+1 − yi))), (5)

3. Exponential weighting:

Ltotal,3 =

L∑
i

γL−iLBCE(yn,i, ŷn), (6)

4. Sigmoidal weighting

Ltotal, 4 =
1

L

L∑
i

ϕγ(i)LBCE(yn,i, ŷn), (7)

ϕγ(i) =
1

1 + e−γi
, (8)

where in both cases γ is a tune-able parameter. In the eval-
uation Ltotal, 4 is used and γ is chosen such that 95% cer-
tainty is assigned to the prediction 36 hours after ROSC.
The loss is averaged over a batch of samples.

The baseline CET model CETclass is aggregated using
a global average pooling followed by a two-layered fully
connected classification head and the loss in equation 1.
In the time prior approach CETtime, the encoder output is
processed column-wise by the same classification head and
evaluated using Ltotal, 4.

Figure 2. SHAP values (blue) and their distribution (grey)
for all features considered in the SVM based on I-Care 1.0.
Besides the signal-based features we also included meta-
information such as the hour of recording after ROSC.

3. Evaluation and Results

We inspect the SHAP feature importance values for the
morphologic features in Figure 2. Then, in two experi-
ments we evaluate the baseline SVM using 10 fold cross-
validation on I-Care 1.0 and 2.0 first with the full feature
set and second with a reduced feature set (exclusion of
shannon energy, A-D ratio and burst suppression based on
the SHAP values).

As can be seen in Figure 3,the evaluation on I-Care 1.0,
consistently outperforms the evaluation on I-Care 2.0. The
reduced feature set did not change the metrics significantly.

Figure 4 shows in a stratified group 5-fold cross-
validation on I-Care 1.0, that CETtime achieves similar
F1 and AUPRC metrics compared to CETclass, but scores
lower on the challenge score with high variability between
runs.

4. Discussion

Given the high quality data prepared in I-Care 1.0, the
feature-based SVM performed well enough for a baseline,
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Figure 3. Evaluation Scores for Cross-Validation on I-
Care 1.0 and I-Care 2.0 datasets. The model performs sig-
nificantly better on the (cleaner) I-Care 1.0

Figure 4. Comparison of evaluation scores between
CETclass and CETtime using a 5-fold cross-validation on I-
Care 1.0.

but far from the best ranked validation scores (0.82). Inter-
estingly as can be seen from Figure 3, the reduced feature
set reduces the variance of metrics in the cross-validation
while slightly improving AUPRC on I-Care 2.0. The fea-
ture importance values (Figure 2) provide a deeper under-
standing. For example, a high burst suppression value does
not influence the output, although most recordings show a
high value. Similarly, there is a negative correlation be-
tween signal power and positive outcome. Interestingly, a
low as well as a high signal regularity influence the out-
come positively while values in between are mostly asso-
ciated with a negative outcome. As expected ROSC and
signal quality show no influence on the outcome. Since
most features show insufficient performance based on the
challenge score especially on the longer data, a deep learn-
ing based approach seems more promising.

The CET model is far from optimized in multiple re-
gards, such as architecture and tunable hyper-parameters,
yet performs already comparable to the SVM. Based on
Figure 4, the effect of the time prior remains inconclu-

sive and average pooling appears more robust to changes
in the dataset compared to the architectural changes imple-
mented to facilitate use of the time prior. And thus leading
to lower fluctuations in prediction performance. However,
in future work we plan to compare the proposed time priors
more thoroughly and adapt the transformer architecture to
stabilize the training.
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