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Abstract 

 This study is part of a research project aiming to build 

a model for quantifying an individual wellness status 

through unobtrusive measurements of psychophysical 

parameters and self-reported data. In particular, we 

focus on the evaluation of the individual response to mild 

stress stimuli. The experimental setup included: EG05000 

Medlab Five Channel Module, Gigabit Ethernet camera, 

BioHarness 3 Zephyr chest belt, and Muse 2 Headband. 

Experimental results show increased heart rate and 

respiration rate, and changes of the brain activity in the 

stress condition. This is consistent with a “fight or flight” 

response in accordance with literature. Therefore, the 

methodology applied in this study can be used to monitor 

the individual wellness status in conditions of mild stress 

stimuli. 

 

 

1. Introduction 

Stress is usually a state of tension that is created when 

a person responds to demands and pressures arising from 

external sources (e.g. work, family, and social 

environment) as well as those internally generated (e.g. 

self-imposed demands and obligations, self-criticism) [1]. 

Stress is a common state of emotional strain that plays a 

crucial role in everyday quality of life. This state consists 

of several complementary and interacting components 

(i.e. cognitive, affective, and psycho-physiological). 

Furthermore, chronic stress carries a wild range of health-

related diseases, including cardiovascular diseases, 

cerebrovascular diseases, diabetes, and immune 

deficiencies [2]. 

Due to the adverse effects of stress in our daily life, 

stress management has been receiving an increasing 

attention in health-care and well-being research [3]. 

Moreover, there is a growing individual awareness of the 

importance of a proper lifestyle and a generalized trend to 

become an active part in monitoring, preserving, and 

improving personal wellness. In this respect, stress related 

factors, together with the development of personalized 

coping strategies, are of paramount importance. 

In recent years, a growing number of studies addressed 

the development of systems for quantifying the individual 

health and wellness status [4]. In particular, being stress a 

complex multifactorial process, one needs to identify a 

contained set of parameters suitable for its detection and 

description. 

As described in [3], the autonomic nervous systems 

(ANS) controls the organs of our body such as the heart, 

the stomach, and the intestines. ANS includes 

sympathetic and parasympathetic nervous systems. The 

parasympathetic nervous system is responsible for 

nourishing, calming the nerves to return to the regular 

function, healing, and regeneration. On the contrary, the 

sympathetic system is accountable for activating the 

glands and the organs for defending the body from the 

threat. The activation of the sympathetic nervous system 

might be accompanied by many physical reactions, such 

as an increase in the heart rate (HR), rapid blood flow to 

the muscle, activation of sweat glands, and increase in the 

respiratory rate. In addition, the electroencephalograms 

(EEG), which reflect brain activity, are also important for 

detecting and assessing mental stress [5]. Some 

neurophysiological studies have reported the relationship 

between human emotion and hemispheric specialization, 

where the left hemisphere is more involved in processing 

positive emotions, and the right hemisphere is more 

involved in processing negative emotions. Furthermore, 

the prefrontal cortex accounts for a large proportion of 

emotional processing. Stress usually causes negative 

moods, such as depression, anger, and anxiety, resulting 

in increased right-prefrontal activity. Thus, the 

asymmetric analysis of the frequency-band powers in the 

EEG measured at the prefrontal cortex has been generally 

applied in previous stress studies. 

The majority of clinical studies use the EEG channels 

from hair-bearing scalp areas of the 10–20 systems. 

However, this method requires the use of a conductive gel 

and an appropriate preparation procedure, which are 

particularly inconvenient for users. Indeed, the EEG 

recordings from hairless regions such as the forehead, or 

behind or inside the ear, would be more suitable for long-

term monitoring in daily life. 

In terms of achieving continuous stress management in 

daily life, device usability is the key so we defined an 

experimental setup based on the analysis of physiological 

parameters during mild stress stimuli. 

 In accordance with these considerations, we have 

defined an experimental setup based on the integration of 

simple unobtrusive devices monitoring the heart rate, the 
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respiratory rate and the EEG signal. The devices were 

used to monitor the individual response in a resting state 

and during mild stress stimuli.  

 

2. Methods 

 

2.1. Study’s participants 

Seven healthy participants (5 females and 2 males with 

mean age of 41.72 years, range from 25 to 62) were 

recruited for voluntary participation in this study. The 

experimental protocol received the Ethical Clearance 

certification (0050349/2019, July 09th, 2019) by the 

National Research Council Committee for Research 

Ethics and Bioethics. Written informed consent was 

obtained from all subjects included in this study. 

 

2.2. Experimental setup 

    The following set of commercial devices were used: 

 EG05000 Medlab ECG Five Channel Module 

(Medlab GmbH, DE) operating at 300 Hz was 

employed to acquire the ECG lead sampled at 

300 Hz. 

 Gigabit Ethernet camera with a CMOS 

monochrome sensor (UI-55240SE-NIR-GL, IDS 

GmbH, DE). The camera was operated at 133 fps 

with an image matrix of 352 x 224 pixel, 

8 bits/pixel. The video images were saved in real 

time in raw format by a Mac mini system (Intel 

Core i7 dual-core processor with 3 GHz, 16 GB 

RAM, and 500 GB SSD, Apple Inc USA). In 

order to enhance the plethysmographic signal, 

the camera mounted an optical band-pass filter 

centered at 550 nm with a bandwidth of 40 nm. 

 BioHarness 3 Zephyr chest belt (Medtronic Inc, 

USA) for measuring the respiratory rate. 

 Muse 2 Headband (InteraXon Inc, USA) for the 

EEG signal acquisition. 

 

The subjects were sitting still in front of the computer 

monitor at a distance of about one meter. The chair had a 

headrest to contain head motion and make the recording 

comfortable for the volunteer. The subjects were 

illuminated by a white LED light source. At first the 

volunteer was asked to provide base data including: age, 

sex, weight, height, current perceived stress level through 

the Perceived Stress Scale (PSS) [6], and physical activity 

through Rapid Assessment of Physical Activity 

questionnaire (RAPA) [7]. Subsequently, all the devices 

were positioned and calibrated. At the beginning (T0), the 

subject’s signals were recorded for 5 minutes in resting 

state, subsequently (T1), signals were acquired during a 

mild stress stimulation. At T0, the subject was asked to 

close his/her eyes and relax. At T1 stress was induced by 

the Stroop Color Word Test (SCWT) [8]. A portable 

version of the Stroop test was implemented by an ad hoc 

Java app. The subject played a congruent version of the 

SCWT, where the font color always matched the 

displayed color name. The time limit to answer each 

question was set to two seconds and the overall test lasted 

two minutes. At the end of the test, a short questionnaire 

was filled out by the volunteer to assess the stress level 

experienced by the subject. Stress self-assessment was 

conducted using two different questions as reported by 

Giokoumis et al. [9]. The first one was a Likert-scaled (1–

5) question directly asking subjects whether they were 

feeling stressed during the test [10]. The second was a 

subset of the stress appraisal measure questionnaire [11] 

including questions 2, 16, 24, and 26.  

 

2.3. ECG signal analysis 

The ECG signal was analyzed as described in [12]. 

The tachogram was firstly extracted from the ECG 

signals. To this end, Inter Beat Intervals (IBIs) were 

defined following QRS complex detection. To remove 

possible artifacts, the IBIs were processed by the NC-VT 

algorithm with a tolerance of 30 %, all the IBIs with a 

duration less than 200 ms being removed. The signals 

were analyzed both in time domain and in frequency 

domain. Concerning time domain, we calculated the 

average time between adjacent normal heartbeats (NN) 

and its standard deviation (SDNN). Concerning frequency 

domain, analysis of the heart rate variability (HRV) was 

performed by power spectrum density (PSD) estimated by 

the Lomb-Scargle periodogram. This method is able to 

cope with non-uniformly sampled data even in presence 

of large gaps, which makes the tachogram interpolation 

unnecessary. According to the standard definition of the 

HRV frequency bands, low frequency (LF) and high 

frequency (HF) were calculated as the area under the PSD 

curve corresponding from 0.04 Hz to 0.15 Hz and from 

0.15 Hz to 0.4 Hz, respectively. The LF component 

reflects both sympathetic and parasympathetic actions, 

the HF component reflects parasympathetic action, and 

the LF/HF ratio is a measure of the sympatho/vagal 

balance. 

 

2.4. Video signal analysis 

The video signal was analyzed as described in [12]. 

According to [12], for each video sequence, the 

Cascading Classifiers algorithm (OpenCV v. 3.0.0) was 

used to detect the face of the subject and locating the 

center of each eye in the first frame of the recorded video. 

To extract the heart rate and the heart rate variability 

parameters, image grey levels were averaged in the three 

automatically selected regions of interest (ROIs), which 

provided three time signals x1(t), x2(t), and x3(t). They 
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were de-trended by subtracting a 2 s long time average 

and were jointly processed through independent 

component analysis (ICA) as implemented in FastICA 

algorithm; three new sequences y1(t), y2(t), and y3(t) were 

so obtained, each representing a different signal 

contribution. The spectra of y1(t), y2(t), and y3(t) were 

analyzed. The component ys(t) having the highest peak in 

the range from 0.75 Hz to 2.0 Hz was selected as blood 

volume pulse (BVP) component. The ys(t) was then 

filtered using a FIR band-pass filter implemented via 

Hamming window, with lower cut-off at 0.75 Hz 

(45 bpm) and upper cut-off at 2 Hz (120 bpm). After 

filtering, BVP peaks were detected. Finally, the 

tachogram for each BVP peak sequence was computed. 

The NN and SDNN values were extracted from the 

tachogram. Analysis of the HRV was performed in the 

same way of ECG signal analysis. 

 

2.5. Respiratory rate signal analysis 

The respiratory rate was measured through BioHarness 

3 Zephyr. The device provides the respiratory rate at 1 Hz 

sampling frequency. The values of the median and the 

interquartile range were calculated. 

 

 
Figure 1. The EEG signals after ICA processing. 

 

2.6. EEG signal analysis 

The Muse 2 Headband is a simple 

electroencephalography device. It has three reference 

sensors on the forehead, two channels on the left (AF7 

and TP9) and two on the right (AF8 and TP10). AF7 and 

AF8 are forehead sensors and TP9 and TP10 are 

SmartSense conductive rubber ear sensors. The features 

extracted from the EEG [5] through a custom software 

written in C include the normalized band power (delta 

from 0.5 Hz to 4 Hz, theta from 4 Hz to 8 Hz, alpha from 

8 Hz to 13 Hz, beta from 13 Hz to 30 Hz) for each 

channel, that is calculated as: 

 
                                   

           
       

 

and each band’s (delta, theta, alpha, beta) power 

asymmetry (DPA, TPA, APA, BPA), that is calculated as: 

 
                               
                               

 

 

The four signals were jointly processed through 

Independent Component Analysis as implemented in 

FastICA algorithm; four new sequences were so obtained, 

each representing a different signal contribution. One of 

these signals was identified as the one with eyes blinking 

and was removed. The remaining signals were analyzed 

through the inverse FastICA in order to obtain four 

signals again. The analysis was performed by power 

spectrum density estimated by the Lomb-Scargle 

periodogram.  

 

 

3. Results 

In Table I we report the median and the interquartile 

range of each parameter as observed in the study sample. 

Concerning the ECG results, the median value of the NN 

is 926.98 ms in T0 and 820.66 ms in T1. Concerning the 

video results, the median value of the NN is 851.74 ms in 

T0 and 822.67 ms in T1. The HRV parameters of the 

ECG have smaller variability in T1 than in T0. The 

Pearson correlation coefficient between the NN value of 

the ECG and the video signal is equal to 0.93 and 0.95, 

respectively for T0 and T1 (p-value < 0.003). The median 

value of the RR is 64 bpm in T0 and 66 bpm in T1. The 

most relevant feature extracted from the EEG is the 

power asymmetry from the left and right normalized 

alpha band power of  AF7 and AF8 sensors. The APA 

was significantly smaller in T1 (median value = -0.35) 

than in T0 (median value = 0.27) with p-value = 0.01. 
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4. Discussion and Conclusion 

In this study we used three unobtrusive devices that are 

the Gigabit Ethernet camera, the BioHarness 3 Zephyr 

chest belt, and the Muse 2 Headband. Furthermore, the 

subjects involved in the study were submitted to mild 

stress stimuli. During the stress condition, the heart rate 

and the respiratory rate increased, and changes of the 

brain activity was observed. In particular the last factor 

indicates that the right alpha power was reduced to a 

greater extent than the left alpha power in a stress 

situation, which is consistent with the physiological 

assumptions (i.e., enhanced activation occurred in the 

right hemisphere, which shows negative emotions). The 

results obtained demonstrate that the devices and the 

method involved in this study allow detecting differences 

in a mild stress stimuli condition through unobtrusive 

measurements of psychophysical parameters and self-

reported data. We are currently planning the acquisition 

of data from an extended sample of volunteers. Analysis 

of intra-subject differences will be also carried out on 

such expanded dataset. Furthermore, all the information 

that will be extracted will use to build a model for 

quantifying an individual wellness status. 
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Table 1. For each condition, the median and the interquartile 

range, in brackets, of the all parameters extracted are reported. 

Parameter T0 T1 

NNECG (ms) 926.98 (128.78) 820.66 (191.41) 

SDNNECG (ms) 47.94 (42.80) 42.40 (29.77) 

LFECG 

(normalized unit) 
79.09 (24.80) 54.86 (19.16) 

HFECG 

(normalized unit) 
20.91 (24.80) 45.14 (19.16) 

LFECG/HFECG 3.78 (2.93) 1.22 (1.18) 

NNVIDEO (ms) 851.74 (144.62) 822.67 (272.95) 

RR (bpm)  64 (9) 66 (11) 

APA 0.27 (0.65) -0.35 (0.28) 
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