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Abstract

In the present work, a comparative study of different
breathing rate estimation methods from PPG signal is pro-
posed. The aim of this comparative study was to se-
lect the best algorithm, for respiratory rate estimation,
among those already proposed in literature. The following
methods were implemented and tested on the free access
CAPNOBASE database, by segmenting the PPG signal in
32s and in 64s windows: empirical mode decomposition
(EMD), EMD combined with principal component analy-
sis, wavelets analysis, respiratory-induced intensity vari-
ation analysis (RIIV), respiratory-induced amplitude vari-
ation analysis (RIAV) and respiratory-induced frequency
variation analysis (RIFV). Performances were then com-
pared to six different methods already tested on CAP-
NOBASE. The best performances were reached by using
respiratory induced signals over the IMFs and wavelets.
The RIAV signal exceeded other methods in both 64s and
32s signal segments. Only the algorithm proposed by
Khreis et al, using Kalman filtering and a data fusion ap-
proach outperformed the presented methods for breathing
rate estimation from PPG.

1. Introduction

Breathing rate (BR) is defined as the number of breaths
in a period of one minute and its estimation is impor-
tant in predicting signs of pneumonia. When a person is
at rest, it has an average rate between 12-20 breaths per
minute. Respiratory measurement is usually performed by
equipment as spirometers, pneumotachometers and capno-
graphs. This equipment is not available in all situations,
then arises the need to extract this information from other
vital signs such as electrocardiogram (ECG) and photo-
plethysmogram (PPG). In mobile monitoring if an ECG
signal is not available, at minimum, a PPG is available;
the purpose of this work is to compare various methods
proposed in literature, in order to select the best to inte-
grate in a wearable device. From the PPG signal it is pos-
sible to extract the pulse rate (PR) and also information
about the respiration rhythm. Recently, a study represent-

ing the state-of-the-art was reported by Khreis et al. [1]
and tested on the public database CAPNOBASE [2]. The
study implemented a Kalman smoother (KS) filter which
respiratory induced time series with three respiratory qual-
ity indices. However in [1], other algorithms present in
literature but not tested on the same database, were not
taken into consideration. In order to explore different
techniques, this article presents a performance compari-
son, on the CAPNOBASE database, of different breath-
ing rate estimation methods, already proposed in litera-
ture. Four different algorithms have been implemented.
These algorithms use respectively empirical mode decom-
position (EMD) [3], EMD combined with principal com-
ponent analysis (PCA) [4], wavelets decomposition [5]
and three PPG derived time-series: respiratory-induced
intensity variation (RIIV), respiratory-induced amplitude
variation (RIAV) and respiratory-induced frequency varia-
tion (RIFV). Then a quadratic time-frequency function has
been used for spectral analysis.

2. Materials and methods

2.1. Database

The algorithms were tested on the CAPNOBASE
TBME RR benchmark dataset [2]. The database contains
42 eight-minutes recordings, sampled at 300 Hz, of pa-
tients under anesthesia in a clinical context. In addition to
PPG signals, the dataset presents also ECG waveforms and
respiratory signals annotated by experts, such as inhaled
and exhaled carbon-dioxide (CO2).

2.2. Methods

The BR estimation analysis has been carried out on seg-
ments of 32 and 64s without windows overlapping to con-
form to literature results. Moreover, only those signal seg-
ments whose respiration rate annotations were in the range
0-0.5 Hz, were considered to simulate a real-life scenario
of adults at rest. The flowchart of the breathing rate estima-
tion algorithms, is represented in Fig. 1 and each of these
algorithms is fully explained in the following sections.
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Figure 1: Breathing rate estimation algorithms flowchart

The PPG signal was windowed and an artifact detector
based on Hjorth parameters [6] was implemented. Signal
windows containing artifact segments were rejected as in
[7]. Then, a time series carrying BR information was ex-
tracted from the PPG signal, using different approaches as
described in the following.

2.2.1. Empirical mode decomposition

EMD is defined by a process called sifting, that de-
composes the signal into a set of intrinsic mode func-
tions (IMF)[8]. The IMFs were computed in the frequency
bands 0-0.5 Hz and sifting stopped when the current sift
relative tolerance (a Cauchy-type stop criterion) was less
than 0.2. The EMD was applied to the PPG signal seg-
ments and for each of the segment the IMFs were ex-
tracted. Then, the respiration frequency was computed
for each of the extracted IMFs, by using the SPWV dis-
tribution as previously described. Afterwards, these fre-
quencies were sorted in descending order and the last two
were discarded because they did not contain any respira-
tion information. From the remaining, the last three BR
estimations were retained, and called respectively IMF1,
IMF2 and IMF3. Finally, a new respiratory rate estimation,
called IMF Fusion (IMF-F), was performed by averaging
the two closest values among the three BR estimated.

2.2.2. Empirical mode decomposition with
principal component analysis

Following the work in [4], the PCA was computed on
the 3 IMFs, previously selected from the EMD algorithm.
PCA converts the set of IMFs observations into a set of lin-
early uncorrelated variables, called principal components
(PCs), ordered so that the first PC retains most of the vari-
ation present in the IMF signals, and so on. Once the PCs
were obtained, the first and the second PCs were used to
estimate the BR, by applying the SPWV: the resulting res-
piration rate estimations were named EPCA1 and EPCA2.

Finally, a new BR estimation, called PC Fusion (EPCA-F),
was performed by averaging the two PC estimated BR.

2.2.3. Wavelet decomposition

To extract the respiration waveform, another solution
consists in using the discrete wavelets transform (DWT).
It is an iterative technique that decomposes the signal into
different scales, originating the wavelets decomposition
tree. In the present study, the discrete wavelets decom-
position was performed on the PPG signal segments, with
the Daubechies 1 wavelet as in [5]. All the details are ex-
tracted from the segments, up to level 12. The SPWV was
then applied, as previously described, on each of the ex-
tracted details and afterwards, the BR was estimated. The
three maximum respiration rates were called W1, W2 and
W3, and a new BR estimation, called wavelet fusion (W-
F), was performed by averaging the two closest values of
the three estimated BR.

2.2.4. Respiratory induced signals

PPG signal features, like peaks and troughs, may be
used to derive time-series signals, carrying breathing in-
formation: the extracted time series are listed below:
• RIIV: the respiratory-induced intensity variation, corre-
sponds to the time-series of amplitudes of the PPG peaks.
This effect is due to variations in intrathoracic pressure,
leading to a change in the baseline of perfusion, which is
shown as a change in the absolute amplitude of the PPG
peaks [9, 10].
• RIAV: the respiratory-induced amplitude variation is de-
fined to be the difference in amplitude, between the cor-
responding peak and trough. The RIAV effect is caused
by changes in cardiac output, which have a direct conse-
quence in the quantity of refill in the vessels at the periph-
ery [9, 10].
• RIFV: the respiratory-induced frequency variation is de-
termined by the time between successive PPG pulses, and
reflects the change in the value of the instantaneous PR
during the respiratory cycle. It is known as respiratory-
sinus arrhythmia (RSA), regulated by the vagal nerve [11].

These three time-series were computed from the PPG
signal, detrended by removing its mean value. Then, the
BR was estimated from each of the induced signals, by us-
ing the SPWV, as previously described. A new respiratory
rate estimation, called Fusion (Fusion), was performed by
averaging the two closest values of the three estimated BR.

2.2.5. Breathing rate estimation

To extract the BR information, a time-frequency analy-
sis was performed using the Cohen’s class quadratic time-
frequency distribution, implementing the Smooth-Pseudo
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Wigner Ville (SPVW). The parameters of the quadratic
time-frequency distribution were the same used in [12].
For smoothing in time and in frequency, a Hamming win-
dow of 30s was used. Before applying the SPWV, sig-
nals were resampled at 2 Hz, by cubic spline interpolation,
and detrended by subtracting the mean value. To get the
signals analytic function, the Hilbert transform was com-
puted. Then, for each frequency band of the signal, the to-
tal spectral power was estimated, and the frequency band
carrying most of the power, was selected as the one corre-
sponding to the BR.

3. Results

The methods validation was performed by computing
for each signal segment, the absolute error between the
estimated BR and the reference, as proposed in [1] for a
direct comparison, in breath per minute (bpm), using the
formula:

ei =
∣∣∣BRref

i −BRest
i

∣∣∣ [bpm] (1)

The absolute errors box-plots are visualized in Fig. 2,
whereas Table 1, for each box-plot, reports the statistical
values of median, mean, interquartile range (IQR), 25th
(Q1) and 75th (Q3) percentile. These values are obtained
evaluating breathing segments in the range 0-0.5 Hz. For a
literature comparison Table 2 records the results of other
methods, tested on the same database and proposed by
Khreis in [1], Pimentel in [11], Karlen [10], Flemming
[13], Shelly [14] and Nilson [15].

4. Discussion

From the results it is possible to assess that the best
performances were reached by using respiratory induced
signals over the IMFs and wavelets. RIAV respiratory in-
duced signal appears as a good compromise (in the 64s
window, it has a similar behavior to the RIIV approach)
and could be elected as the most performing, because it
visibly is a good compromise with respect to other meth-
ods, in both 64s and 32s signal segments. In this case,
the median of the absolute breathing rate error was of 0.57
(0.19-1.71 interquartile range 25th-75th) for the 32s win-
dow, and of 1.62 (0.09-1.71) for the 64s window in the
0-0.5Hz frequency range.

The presented methods outperformed the algorithms
tested on the same database where the use of the SPWV
distribution revealed to play a key role into algorithms per-
formances as the comparison showed. The only study out-
performing the present, is the work implemented in [1] us-
ing a KS filter on PPG respiratory induced time series. In
the latter, the median of the absolute error was of 0.5 (0.2-
1.1 interquartile range 25th-75th) for the 32s window, and

of 0.2 (0.1-0.9) for the 64s window. The main difference
between the proposed approach and the KS filter stands
on the fact that the Kalman filter exploits previous BR es-
timations to make a new one, while this memory in the
algorithm was not present in the proposed study.

5. Conclusion

After exploring the performances of ten approaches
for PPG breathing rate estimation on the CAPNOBASE
database, it can be concluded that the PPG respiratory-
induced amplitude variation carries most of the respiration
rate information. Additionally, the most suitable method
for PPG breathing rate estimation revealed to be the one
developed by Khreis et al. and the presented results en-
courage the implementation of the proposed methodolo-
gies in wearable devices.
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Figure 2: Absolute errors box-plots computed for the different algorithms used to estimate the breathing rate.

Table 1: Absolute errors statistics in [bpm], for boxplots in Fig. 2

32s
RIIV RIAV RIFV Fusion W1 W2 W3 W-F IMF1 IMF2 IMF3 IMF-F EPCA1 EPCA2 EPCA-F
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Mean 2,24 2,24 2,26 2,18 3,94 2,87 3,00 2,96 3,70 2,80 3,11 2,95 4,14 2,86 3,26

Table 2: Results comparison in [bpm], of methods tested on the same
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