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Abstract 

The detection of QRS complexes is a crucial step since 

all the subsequent processing of the ECG signal is very 

sensitive to the accuracy of this detection. 

This study presents an accurate and computationally 

efficient approach to heartbeat detection based on pre-

processing and enhancement of the QRS complexes by 

means of cascades of moving averages. 

Several derivative QRS-enhancing moving averages 

filters were defined which were characterized by different 

shapes of the impulsive response. In the initialization 

phase of the algorithm, the best filter for each record was 

selected by maximizing a specifically defined signal quality 

index. Detection of the QRS complex was based on a 

decision logic and a set of adaptive thresholds. 

The MIT-BIH, QTDB and EU ST-T databases were 

considered for performance evaluation and comparison 

with the output of some publicly available QRS Pan-

Tompkins detectors, obtaining results comparable to the 

best reported in the literature (F1=99.84% and 98.46% on 

MIT-BIH channel 1 and 2 respectively). 

 

 

1. Introduction 

Heartbeat detection is the prime concern in 

electrocardiography, as it serves as basis for more 

sophisticated estimation of the pathophysiological status of 

the heart, like heart rate variability (HRV) analysis. Heart 

rate estimation requires identification of the characteristic 

PQRST pattern taken by the electrical activity of the 

cardiac muscle, specifically its QRS components which 

correspond to ventricular depolarization. 

Electrocardiographic analysis constitutes the most 

common test to diagnose and monitor Cardiovascular 

Diseases and it is therefore mandatory for the heartbeat 

revelation process to be as accurate as possible. Skipping 

beats that have occurred could spring false alarms of 

cardiac pause, while overlooking potentially abnormal 

beats could lead to a wrong diagnosis. 

QRS detection has been a topic of research for many 

decades, and with current technology an increasing 

number of different algorithmic approaches have become 

feasible [1]. The most well-known and referenced 

detection method is Pan and Tompkins’ work [2], which 

achieved great results on both MIT-BIH [3] and AHA [4] 

databases and is still the landmark to which compare new 

solutions. Numerous different approaches have been 

proposed, with varying degree of complexity, such as 

wavelet transforms [5], support vector machines [6] and 

neural networks [7] to cite a few. While complex 

techniques offer greater signal characterization prospects, 

they are often computationally intensive, can be less 

resistant to noise and may not significantly improve 

accuracy in relation to more straightforward procedures. 

Besides, with the ever-increasing attention of the public 

towards wearable devices faster and numerically efficient 

processing is desirable. Elgendi [8] developed a fast QRS 

detector based on two moving averages of optimized 

length determined with a knowledge-based approach, 

designed for battery-driven devices. 

The procedure proposed in this work derives from 

Taddei, Marchesi and Landucci’s QRS detector [9]. 

Feature extraction is done through moving average filters, 

emphasizing execution speed while maintaining high 

accuracy on both normal and abnormal beats. Notably, 

ECG, as well as many biosignals, is defined by their 

evolution in time (PQRST waves), and cardiac events of 

pathophysiological interest are characterized by their 

waveform and by their occurrence. These time domain 

traits, which allow to discriminate different cardiac events, 

cannot be identified in frequency, with rare exceptions 

such as cardiac fibrillation. Therefore, we applied digital 

filtering for enhancing the QRS events detector by means 

of moving averages, avoiding frequency designed filters. 

In particular, a moving average cascade (MAC) was used 

to avoid the abrupt step of the moving average’s 

rectangular time response.  

For the sake of direct comparison between results, three 

different implementations of Pan – Tompkins algorithm 

have been implemented and run on the same databases. 

 

2. Methods 

2.1. Data 
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The standard databases considered for development and 

evaluation of the algorithm are the MIT-BIH Arrhythmia, 

European ST-T and QT databases. 

The MIT-BIH Arrhythmia database [3] is a collection 

of 48 two channel ambulatory ECG records, thirty minutes 

long each, selected from 4000 24-hour long ECG 

recordings sampled at 360 Hz. Twenty-three of these 

records were chosen at random, the remaining twenty-five 

were handpicked to include not common clinically relevant 

arrhythmias. 

The European ST-T database [10] consists of 90 two 

channel ambulatory ECG sampled at 250 Hz, two hours 

long each, measured from 70 men and 8 women all 

diagnosed with myocardial ischemia. Excerpts were 

selected to include a variety of ECG abnormalities 

resulting from abnormal or pathological conditions. 

The QT database [11] includes 105 two channel ECG 

recordings sampled at 250 Hz, fifteen minutes long, chosen 

from other databases, with annotations on all characteristic 

waves. 

 

2.2. Algorithm description 

The QRS Detection algorithm included three steps: 1) 

reducing noise, i.e. non QRS signal changes; 2) enhancing 

QRS events; 3) decision logic on QRS event occurrence. 

The first step was aimed to reduce the amplitude of slow 

waves like T and baseline movements and attenuating very 

short peaks due to noise. This task was fulfilled by the 

difference of two synchronous MACs of different 

impulsive response length. In particular a narrower MAC, 

whose impulsive response involved a 25 ms interval, and a 

wider MAC, whose impulsive response involved a 140 ms 

interval were used. The 25 ms length was chosen to 

balance the need to attenuate the noisy peaks and on the 

other hand the necessity of maintaining the amplitude of 

the QRS complexes’ peaks, while the 140 ms length was 

selected as a compromise between the need to reduce slow 

movements and the need of not lowering the waves of the 

QRS complex. 

Figure 1 shows the impulsive response of the resulting 

linear system (sampling frequency=360sps), which 

roughly corresponds to a band pass filter with cut-off 

frequencies at 7 and 17.6 Hz. 

.  

Figure 1. The impulsive responses of the difference of 

two synchronous MACs of different lengths. 

  

The second processing step of the algorithm enhanced 

the QRS complex with respect to the other waves. This task 

was achieved by emphasizing the main characteristic of the 

QRS complex, that is, its high derivative which can involve 

an interval of approximately 100ms length.  Considering 

the mean duration of the rising (and falling) edge of the 

QRS waves, we designed a set of derivative systems 

consisting in the difference between two MACs shifted by 

7÷11 ms, each of them involving about 6÷8 ms of the 

signal.  

The impulsive response of three derivative filters, as 

example, are shown in Figure 2. 

Figure 2. Examples of impulsive responses of three 

derivative systems, each one obtained as the difference 

between two delayed MACs. 

 

During the initialization stage of the algorithm, 

occurring in the first 15 seconds of good quality ECG 

recording, the derivative filter which most enhances the 

QRS complexes was automatically chosen by calculating a 

signal quality index given by the following equation: 

 

SQI =
𝑘𝑠+𝑚𝐷𝑠

𝑘𝑛 + 𝑚𝐷𝑛

 

 

where 𝑚𝐷𝑠 is the trimmed mean of the maxima computed 

in successive windows of 1.6 s, aimed at representing the 

QRS-specific high derivative values, and 𝑚𝐷𝑛 is the 

trimmed mean of the maxima computed in successive 

windows of 0.09 seconds that accounts for the basal 

volume of noise. The terms 𝑘𝑠 and 𝑘𝑛 are small constants. 

Both 𝑚𝐷𝑠 and 𝑚𝐷𝑛 were computed for each of the 

predefined derivative system, and the one that maximizes 

SQI was selected as the derivative MAC filter, MAC2[𝑛], 
and applied to all the ECG record under analysis. 

Finally, the third step of the QRS detection algorithm 

consisted in the comparison of the absolute value at the 

output of the derivative MAC filter with a threshold.  Said 

threshold was first initialized and then updated in a 
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bounded fashion with respect to its initial value, since spike 

artifacts and signal absence could divert its pertinence to 

the actual amplitude. The threshold T was defined as 

follows: 

 

𝑇 = {
min(�̅�, 2.5 ∙ 𝑇(0))

max(�̅�, 0.5 ∙ 𝑇(0))
 

 

where �̅� was the average of the absolute derivative 

maximum, updated at every step and limited to 2.5 times 

the initial value of maximum T. Moreover, the value of the 

threshold used in the QRS detection decision rule 

decreased as the distance from the previous QRS detection 

increased. To ensure a consistent placement of the fiducial 

point of each detected QRS, the time instant of heartbeat 

occurrence was identified as the position of the maximum 

(or minimum) of the signed derivative signal. The decision 

between positive or negative derivative for fiducial point 

placement was performed in the initialization phase and 

then maintained throughout the rest of the recording. 

 

2.3. Performance evaluation 

The performance of the algorithm was evaluated in 

terms of the F1 score which is the harmonic mean of 

sensitivity (Se) and positive predictive value (+P) 

 

Se =
TP

TP+FN
+P =

TP

TP+FP
 

 

F1 =
2 TP

2 TP+FN+FP
 

 

In addition we also calculated the sensitivity for atypical 

beats (Se-A) as follows: 

 

Se-A =
TPA

TPA + FNA
 

 

where TPA and FNA are the confusion matrix measures 

considering only atypical beats. 

Indeed, this metric is important to QRS detection, as 

atypical beats with distorted shapes are more difficult to 

catch and yet are often clinically relevant. The 

performance of the proposed algorithm was compared with 

the actual output of some publicly available detectors, 

based on the Pan-Tompkins architecture: Behar’s [12], 

Wedekind’s [13] and Sedghamiz’s [14]. 

 

3. Results 

Tables 1 and 2 show the results achieved by our 

algorithm and the best of the Pan-Tompkins 

implementations, which was Behar’s one. We report gross 

and average F1 results for all records of the three 

considered databases in table 1, while we report Sens-A in 

table 2.  

We also compared the computational load of the tested 

algorithms, showing that our moving average-based 

approach is three to four times faster than the fastest of the 

other tested programs: on average, the proposed algorithm 

was able to process an hour of ECG recording inn0.0898 

seconds, while Behar’s program took 0.3204 seconds. 

Execution time was measured on the same calculator (2013 

notebook with I7-dual core-cpu@2.00 GHz, 6Gb RAM), 

with the same background conditions.  

 

Table 1. F1 values of QRS detection on the considered 

databases for our work and the best Pan-Tompkins 

algorithm we tested. 

 

  

#of beats 

F1 % 

DB This work Pan-Tmpk 

(Behar) 

MIT ch1 109494 99.84 99.08 

MIT ch2 109494 98.46 96.98 

QTDB ch1 86995 99.94 99.95 

QTDB ch2 86995 99.93 98.64 

ST-T ch1 790565 99.70 99.48 

 ST-T ch2 790565 99.52 98.21 

    

Gross  99.59 98.79 

Aver.  99.56 98.72 

 

Table 2. Sensitivity for atypical beats detection on the 

considered databases for our work and the best Pan-

Tompkins algorithm we tested. 

 

 # of 

atypical 

beats 

Se-A % 

DB This work Pan-

Tompkins 

(Behar) 

MIT ch1 34442 96.66 94.64 

MIT ch2 34442 94.95 94.67 

QTDB ch1 6288 98.47 98.16 

QTDB ch2 6288 98.12 91.48 

ST-T ch1 5927 98.21 97.74 

ST-T ch2 5927 94.57 94.43 

    

Gross  96.21 94.86 

Aver.  96.83 95.19 

 

 

4. Discussion and conclusions 

In this paper, we presented a fast, accurate QRS detector 

where both the preprocessing and the derivative stages are 

based of combinations of moving average filters designed 

in the time domain, obtaining satisfying results comparable 

to the best ones reported in the literature [1]. 
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Notably, the combinations of moving averages 

mentioned in this paper are equivalent to linear FIR filters, 

but contrary to FIR filters, they are designed in the time 

domain considering the differences in shape of the events 

to discriminate. This method avoids the presence of 

oscillatory artifacts that could be introduced by the 

standard frequency approach, while the oscillatory, sinc-

like frequency response introduced by the moving average 

of the signal is of little concern. 

Performance evaluation was done on three popular, gold 

standard datasets: MIT-BIH, QTDB and EU ST-T, 

obtaining high results overall. Specifically, performance 

and execution time of the implemented algorithm were 

compared with three different implementations of the Pan-

Tompkins method. Our algorithm outperformed the others, 

reaching among all the considered Physionet databases a 

99.59% F1 and 96.21% Se-A. We observe that Se-A is 

lower, yet still satisfying (worst case scenario 94.75%), 

possibly due to the heterogenous shapes of the atypical 

beats. Since in certain applications (as in dynamic ECG) 

atypical beats are of fundamental importance, we feel that 

this index is another major characteristic of any QRS 

detector besides accuracy, thus future work will be directed 

to improve this measure. 

Importantly, our algorithm took on average 0.0898 

seconds to process an hour of ECG recording, resulting to 

be three÷four times faster than the quickest of the other 

tested programs. While the accuracy of the method is the 

fundamental performance metric, low execution time is 

nonetheless relevant for low-power devices such as 

wearables, which are increasingly popular in several 

applications.  Therefore, we propose an algorithm that can 

be run on lighter hardware, like wearable sensors, without 

sacrificing reliability. 
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