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Abstract

Automated ECG classification is a standard feature in
many commercial 12-Lead ECG machines. As part of
the Physionet/CinC Challenge 2020, our team, “Mad-
hardmax”, developed an XGBoost based classification
method for the analysis of 12-Lead ECGs acquired from
four different countries. Our aim is to develop an inter-
pretable classifier that outputs diagnoses which can be
traced to specific ECG features, while also testing the po-
tential of information theoretic features for ECG diagno-
sis. These measures capture high-level interdependencies
across ECG leads which are effective for discriminating
conditions with multiple complex morphologies. On un-
seen test data, our algorithm achieved a challenge score
of 0.155 relative to a winning score of 0.533, putting our
submission in 24th position from 41 successful entries.

1. Introduction

Among numerous diagnostic tools within cardiology,
the 12-Lead ECG is arguably the most important. Un-
like other cardiac imaging modalities, the 12-Lead ECG
is unique in that it is often interpreted by doctors with-
out a specialism in cardiology, who may not have exten-
sive experience in ECG interpretation, and therefore might
miss, or misdiagnose, specific ECG conditions, particu-
larly those which are rare or have complex morphologies.
For this reason, computer-aided ECG interpretation is an
important clinical aid, having been built into commercially
available ECG machines.

As part of the Physionet/Computing in Cardiology Chal-
lenge 2020, we were tasked with the automated classifica-
tion of 12-Lead ECG signals. A full description of the
challenge is at [/1].

Given that automated ECG labeling is already common-
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place in commercial ECG machines, our team, “Madhard-
max”, pursued two key motivations: (1) to develop an al-
gorithm with interpretable predictions, and (2), to test a
range of new and existing information theoretical (IT) fea-
tures which have become popular in the neuroscience com-
munity.

2. Methods

Our approach uses a feature based classifier for each
heart condition using the Python implementation of Ex-
treme Gradient Boosting (XGBoost) [2]].

2.1. Machine Learning Model

Gradient boosting is a supervised learning technique
used to produce ensembles of decision trees incrementally
by optimising a loss function. The current work uses XG-
Boost, a special case of gradient boosting. Decision trees
bring the benefit of interpretability by means of decision
analysis on the structure of the trees. Ensemble methods
are scalable due to the diversity among constituent models,
and can learn higher order interactions between features.

For each ECG condition, we trained an XGBoost en-
semble using features extracted from the EGC signal to
output the probability that the sample manifests that con-
dition. The models were individually trained and evalu-
ated on the combined datasets using cross-validation. A
threshold was chosen for each class so that any probabil-
ity exceeding the threshold will result in the sample being
labeled with that condition.

2.1.1. Class Imbalance

The provided training data features classes with positive
samples ranging from hundreds to tens of thousands. Ma-
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chine learning models built on such imbalanced datasets
will generally yield predictions that are biased towards the
most frequent classes.

To make best use of available learning data for rare con-
ditions, we randomly undersample the majority class to
match the population of the minority class for each binary
classifier. This barters some accuracy for conditions with
very few samples for more robust classification, and de-
creases the chances of overfitting.

2.2. Features

The raw ECG signal for each channel is filtered using a
second order Butterworth band pass filter between 1.5 to
25 Hz. The filtered signal is then further de-noised using a
“db4” discrete wavelet transform to remove high frequency
noise components in the signal.

After preprocessing, features are extracted from each
lead of the 12-lead ECG recording. Features come under
four main categories: (1) standard ECG wave, interval and
segment measurements, (2) power spectrum features, (3)
IT measures, and (4) known patient metadata.

2.2.1. ECG waves, intervals and segments,
and power spectra

For each lead, features are extracted corresponding to
standard ECG waves, segments and intervals, e.g. QRS
complex properties (height, width, skewness), QT and PR
segment lengths, RR interval. For segment lengths and
intervals, normalised values are computed by dividing by
the average RR interval. Wave heights and prominances
are normalised by diving by the absolute R peak height.

Normalised and raw power-spectra are also used as
features, having shown promise in previous electrogram
based classification tasks [3]].

2.2.2. Lempel-Ziv Complexity

Lempel-Ziv Complexity (LZc) was first introduced as a
measure of estimating the complexity of a finite sequence
of numbers [4]. However, in recent years LZc has been
successfully used in neuroscience to capture signal diver-
sity of EEG/MEG neural time sequences [5-H7]]. LZc in
these studies tends to correlate with subject awareness and
varies significantly between states of conscious awareness.

For a given discrete signal X of length T" with d dis-
crete symbols, LZc is estimated by sequentially scanning
the signal and populating a dictionary of observed distinct
patterns. The number of patterns in this dictionary denotes
the complexity of the signal C'(X). The normalized LZc
is given as,
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Figure 1. Comparison between bivariate and multivari-
ate mutual information (MI). MI shared between all three
variables corresponds to redundant information. The in-
formation that exists in a system of variables and is not
unique to any one of them corresponds to the synergy of
the system.

Inspired by the symbolic entropy analysis of ECG sig-
nals [8]], we binarise the ECG signal based on the sign
of the first order derivative of the signal. The binarised
signal is then divided into non-overlapping windows of a
specified length, and the average normalized LZc of each
channel is estimated across these windows.

2.2.3. Synergy and Redundancy

Mutual Information (MI) is a well known IT measure of
the amount of information shared between two signals [9].
Total Correlation (TC) and Dual Total Correlation (DTC)
are the two multivariate extensions of MI that capture the
higher order correlations that exist in a system of multiple
correlated signals.

Recently [10], it was shown that these multivariate ex-
tensions can be used to quantify synergy and redundancy.
An interaction between three or more variables is consid-
ered synergistic if there exists some unique information
among the group of all variables which does not exist in
the parts of the system, otherwise the interaction is deemed
redundant, see Fig.[I] The synergy-redundancy of a given
multivariate system is estimated using O-Information; the
difference between TC and DTC [10]]. Similarly, the sum
of TC and DTC provides a measure of the strength of
higher order correlations known as S-Information [[10].
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2.3. Optimisation and Evaluation

2.3.1. Cross Validation

In order to ensure the robustness of our classification
algorithm, we employ K-fold cross validation. As the XG-
Boost algorithm uses a large number of parameters, we ex-
plored the best configuration by rotating through the K dif-
ferent possible splits and aiming for an increased F2 metric
on the testing set.

2.3.2. Parameter Tuning

The performance of an ensemble increases training time
as more models are added to the ensemble. The number of
models in the ensemble (num_estimators), the maximum
depth of the decision trees (max_depth), how many fea-
tures are used for each tree, the learning rate (eta), the
pruning (gamma) and regularisation (lambda) parame-
ters can all affect the performance of the classifier. We
used Grid Search to identify sets of promising parameters
and used cross-validation to verify model robustness.

During training, we observed that some conditions re-
quire fewer features to classify, and that the tree and forest
sizes vary greatly. Thus, we chose to use the more adapt-
able early stopping feature of XGBoost. The loss function
minimised during the training phase is the Precision-Recall
Area Under the Curve (AUPRC) [11]], while the F2 met-
ric was chosen for early stopping. Following optimisation,
some parameters were fixed at:

{ max_depth: 10, eta: 0.1, gamma: 0, lambda: 1 }
Fixing any other parameters resulted in lower test scores.

2.3.3. Classification threshold optimization

In order to generate binary predictions from the XG-
Boost model output probabilities, two approaches were
tested: (1) a subject is labelled with a condition if the pre-
diction probability exceeds a fixed threshold of 0.9. This
threshold is approximately optimal for achieving the max-
imum challenge score across the full training set. (2) A
threshold is tuned for each condition.

To tune the binary prediction threshold, prediction prob-
abilities for all 24 scored conditions are collated. First, the
optimum threshold for the full set of conditions is found
by performing a parameter sweep from O to 1. Next, a
parameter sweep is performed for each individual condi-
tion, searching for an optimal threshold with respect to the
scoring function, while retaining the global optimum for
all other conditions.
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Figure 2. Taking the difference of feature entropy in two
conditions H(fo) — H(fo+ fi) gives the amount of uncer-
tainty reduced by adding the IT features (f;) to the existing
ECG features(fp). Conditions where we expect significant
information redundancy between leads appear to show the
greatest uncertainty reduction.

3. Results

3.1. Feature Importances

Cardiac conditions are usually diagnosed with very
specific characteristics and ideally the binary classifiers
should weigh those features appropriately and exclusively.
Thus, a sparse feature importance distribution can be con-
sidered as a signature of precise feature selection by a
model. Shannon Entropy (H) of any given distribution is
a good measure of sparsity. In the normalized form it is
given as,

i=N

—> i1 pilogp;

log N ’
where NV is the total number of states of the system. Shan-
non Entropy, a measure of uncertainty, is high when the
probability mass is distributed across a wide range of
states. It is maximum for the case when the probability
of each state is equally likely. Conversely, it is minimum
if one of the available states has probability 1. A feature
importance distribution is obtained by normalizing the vec-
tor of feature gains, i.e. the average training loss reduction
gained when using a feature for splitting. Shannon Entropy
is then used to estimate the sparsity of the distribution.

H= )

3.2. Scores

The XGBoost ensemble was trained twice, once with
IT measures, and once without. Table [I] shows standard
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With IT | Without IT
AUPRC 0.55 0.512
Accuracy | 0.398 0.379
Precision 0.776 0.804
Recall 0.936 0.934
F2 Score 0.626 0.601

Table 1. Test metrics for the XGBoost models trained with
and without IT measures on the training validation data.
Binary predictions are derived using a threshold of > 0.9.

machine learning metrics calculated on the testing set in
cross-validation. To improve the challenge metric, we have
attempted to optimise the classification threshold.

On training data, threshold optimisation improved the
challenge score with IT measures from 0.626 to 0.739 and
from 0.601 to 0.731 without IT measures. For final scor-
ing, the implementation with IT measures and threshold
tuning was submitted resulting in a validation score of
0.533 and a final score of 0.155 on the full unseen test
data. The significant score reduction from validation to fi-
nal scoring suggests that significant over fitting hampered
the final algorithm.

We cannot directly assess the impact of the IT measures
on the final challenge metric. However, we note that in the
F-scores provided by the challenge organisers, our algo-
rithm ranks significantly higher for conditions with a large
uncertainty reduction in the entropy, see Fig.[2] relative to
our overall rank of 24th out of 41 teams (e.g. rank 2 for
sinus rhythm).

4. Discussion and Conclusions

Our 12-Lead ECG classification algorithm aimed to
achieve two goals: (1) to be interpretable - this is naturally
the case using XGBoost decision trees and feature engi-
neering. (2) To test the potential of information theoretic
measures popularised in neuroscience as an effective diag-
nostic feature in ECG classification. Our results show that
although IT measures are largely irrelevant for some con-
ditions, there is notable uncertainty reduction for a number
of conditions in which we expect global ECG commonali-
ties across many different condition morphologies, indicat-
ing significant signal redundancy. Such conditions include
conditions like sinus rhythm which are defined by a lack
of irregular features across all twelve ECG leads.

Overall, our approach suggests that I'T measures may be
of interest for future ECG classification studies. However,
our score in the current competition indicates that signifi-
cant improvements are required to avoid overfitting and to
achieve consistent results across diverse datasets.

Our code is available on Github[']

Thttps://github.com/mearlboro/PhysioNet_12ECG
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