
Automated Extraction of Time References From Clinical Notes in a Heart Failure
Telehealth Network

Fabian Wiesmüller1,2, Alphons Eggerth1, Karl Kreiner1, Dieter Hayn1, Sten Hanke2, Bernhard
Pfeifer1, Gerhard Pölzl3, Tim Egelseer-Bründl4, Günter Schreier1

1AIT Austrian Institute of Technology GmbH, Graz, Austria
2FH JOANNEUM GmbH, Graz, Austria

3Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck,
Innsbruck, Austria

4Landesinstitut für Integrierte Versorgung – LIV Tirol, Innsbruck, Austria

Abstract

Heart failure (HF) is one of the biggest concerns for
health care systems in developed countries. To support the
long-term treatment of HF patients, the Austrian Institute
of Technology implemented a HF telehealth network called
"HerzMobil". While most data within this network are
stored in a structured format, health care professionals
can also communicate via clinical notes in free text format.
These notes are hardly ever analyzed automatically, even
though a large number contains valuable information for
the patient's treatment process. With currently more than
20,000 notes stored in the system, an automatic approach
is beneficial to spare manual screening time. One
important step in this process concerns the extraction of
time references from the notes. This information could, for
example, be used to match the time references with events
from the same note. Therefore, two Python scripts were
developed to: extract time references from the notes (Script
A) and subsequently calculate the corresponding dates
(Script B). Script A was compared to an already existing
Python library and achieved superior results for all
calculated key figures. The time calculation algorithm of
Script B achieved an accuracy of 75.34%. These scripts
could be implemented in the HerzMobil network to provide
additional information for the treatment process and
further improve the telehealth system.

1. Introduction

1.1. Background

With an increasingly old population, chronic diseases
are on the rise. With an estimated prevalence of one to two
percent in adults, heart failure (HF) is one of the biggest
concerns for health care systems in developed countries

[1]. The 12-month all-cause hospitalization rates are 44%
for hospitalized HF patients and 32% for ambulatory
patients. These rates are amongst the highest for the elderly
population [1,2].

To improve the treatment management for HF patients
and to reduce the hospitalization rates, a HF telehealth
network called "HerzMobil Tirol" was established in the
Austrian province of Tyrol [2]. Patients within HerzMobil
transmit data like e.g. daily measurements of their vital
parameters, like blood pressure or heart rate, in a structured
form. Amongst other communication methods, healthcare
professionals exchange information about a patient’s status
of health via clinical notes in the form of free text [2].

The majority of the notes contains information directly
related to a patient’s treatment process, such as a change in
medication or an adaptation of a threshold value. Thus,
analysing these notes can provide valuable information for
the involved health professionals.

At the moment, more than 20.000 notes written in
German language were been created in the HerzMobil
network. Due to the large volume of notes, an automated
analysis approach is beneficial to reduce manual screening.
Additionally, once an algorithm for an automated analysis
is developed, it can be slightly adapted and deployed in
various other telehealth solutions provided by the AIT.

1.2 State-of-the-art

Efforts towards the analysis of clinical notes have
already been made, like a system developed by Hebal et al.
[3]. This system, however, relied on clinical notes in a
structured form and complete free text could not be
analyzed. Other already existing algorithms for extracting
information from clinical notes used domain ontologies to
recognize and detect named entities [4]. Zhang et al.
focussed on the use of Statistical Language Modeling,
where a probability is assigned to a specific group of words

Computing in Cardiology 2020; Vol 47 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2020.186

within the examined set of notes [5]. A paper by Lee et al.
implemented a system based on a Support Vector Machine
to extract time information and corresponding events from
clinical notes [6]. A recent study by Gonzalez-Hernandez
et al. used natural language processing (NLP) techniques
such as query formulation, keyword selection or Latent
Dirichlet Allocation to mine health data from social media
texts [7]. Eggerth et al. used NLP to develop classifiers for
automated categorization of clinical notes [8]. However,
hardly any research has been done on a date extraction
algorithm in clinical notes of HF telehealth patients.

1.3 Objectives

This paper makes first efforts towards an automated
analysis of the HerzMobil notes by developing a time
reference extraction algorithm and subsequently
calculating actual dates for the corresponding time
references. These two algorithms could be implemented in
the HerzMobil system, to give for example real time
feedback to healthcare professionals while entering a note.
This feedback could consist for example of a suggested
calendar entry or an automated allocation of tasks.

2. Methods

2.1. Dataset

All developments were made within an experimental
setup. In this setup, the raw notes have been de-identified
and split into sentences by AIT scientists, using certain
delimiters. The resulting dataset contained 8,832
individual text snippets which originated from 3,952 raw
notes, concerning 105 HF patients.

In the following, the word "note" refers to such a text
snippet on the sentence layer.

2.2. General structure

To achieve an automated time reference extraction
algorithm, two different Python scripts were created. The
purpose of these scripts was to extract time references from
the notes (Script A) and subsequently calculate their
corresponding dates (Script B). Since the amount of
available data was not sufficient for machine learning
approaches, the scripts used rule based regular expressions
to filter time references. These regular expressions were
used to match a so-called pattern with a character or a
string [9].

2.3. Script A – Time reference extraction

 In Script A, 18 different regular expressions were used
to match the correct words and right number of digits, dots,

whitespaces, etc. with the contents from the notes.
Whilst some expressions for unsophisticated and common
terms like heute (today) or gestern (yesterday) were
created once at the start of the script, others had to be
dynamically generated at runtime. This was the case for
e.g. months and weekdays. In addition to these phrases, the
script filtered specific times of day and added them to the
filtered expression. This extension was appended to every
regular expression, where it seemed necessary. (Terms like
e.g. “one year ago” were excluded from this procedure).
To give an example, the regular expression, which covered
the simplest expression, namely heute (today), was the
following: (?:^|\s?)heute(?:\s?\w*\s\d{0,2}(?:\.|\:|\s)?\d{1
,2}\s?(?:h|uhr))?(?:\s|$|!). Within the first and last
parentheses were terms for the start and end of the
expression, like optional whitespaces or line breaks. The
literal part of this pattern aimed at the actual time reference
heute (today). The remaining part of this expression was
responsible for filtering the time of day in various
variations.
Script A returned a JSON file, containing all notes with at
least one time reference. Each note had a newly introduced
tag called timetoken, where the extracted time reference
was stored to. Using this individual tag for the date
information made it easy to utilize this information for
post-processing steps in Script B. Additionally, saving and
displaying the filtered term made it possible to investigate
false-positive results.
Script A was compared to an already existing Python
library called parsedatetime, which seemed to be the most
promising date extraction library available. However, this
library could not be used in the first place due to multiple
reasons. For example, subtle changes like from letzter
monat (last month) to letzten monat (last month) were
enough to cause the expression not to be recognized as a
time reference anymore. Additionally, expressions like
letzter monat (last month) always resulted in the 1st of the
previous month, regardless of any further specifications of
the date.

2.3.1. Evaluation of Script A

For the calculation of the following key figures, a subset of
250 randomly chosen notes with time references and 250
notes without time references were created to ensure a fair
comparison. These two subsets were used as input data for
both, Script A and the parsedatetime library to detect those
notes containing time references. Evaluation was done by
calculating precision, recall and accuracy for both
algorithms.

2.4. Script B – Time calculation

Script A only extracted time references but did not
process them any further. Therefore, Script B was

Page 2

necessary to transform this extracted information into
actual times. To do so, it took the entire JSON file from the
first step as an input. From each note, only the timetoken
with the found expression and the note’s timestamp were
needed for this processing steps. Assuming that the
timestamp was the actual time at which a health care
professional added the note to the system, it was possible
to use this point in time to add or subtract time, to
determine the date mentioned in the note’s text. The
calculation process was simple for some explicit time
references like e.g. gestern (yesterday), since this would
result in the note’s timestamp minus one day. Other
references, which were more inexplicit, like e.g. am
Wochenende (at the weekend) were more complex, since it
had to be determined, whether the corresponding date took
place in the future or past. Therefore, certain words were
filtered in Script A in addition to the time references, which
were used in Script B as indicators for the setting of the
date.

2.4.1. Times of the day

A value for the time of day got attached to every
calculated date. To obtain a notation capable of intervals, a
parameter, which represented half the length of the time
interval, was added to the notation format. For every time
reference, which included a specific time of day, the time
parameter was set to this exact value and the size of the
interval was set to zero. For time references referring to an
interval, the time parameter was set to the centre of the
interval and half of the interval duration was
added/subtracted to define the interval.

2.4.2. Evaluation of Script B

For the determination of the accuracy of the calculation
algorithm of Script B, a subset of manually calculated dates
and intervals from 296 individual time references was
compared to the results of Script B. The deviation between
the automatically calculated and annotated dates was

evaluated via the following formula:
|்௔ି்௥|

஼௥
. Ta stands for

the automatically calculated date, Tr represents the
annotated reference value and Cr is half the length of the
dates manually annotated interval. The third parameter is
used to standardize the results.

The calculated result was considered correct, if the

result of
|்௔ି |

஼௥
 was smaller or equal to one.

3. Results

3.1. Script A – Time reference extraction

Using the subset, described in chapter 2.3.1., led to the
results depicted in Table 1. As shown in Table 1, the self-

written Python script achieved superior numbers in all
examined key figures.

Table 1. Results of the comparison of Script A and the
parsedatetime library

 Script A Parsedatetime library
Precision 99.6% 97.6%
Recall 96.4% 64.8%
Accuracy 98.0% 81.6%

3.2. Script B – Time calculation

Using the subset and method described in chapter 2.4.2.,
223 out of the 296 reference notes were correctly
classified. Therefore, Script B achieved an accuracy of
75.3%.

4. Discussion

Over the course of this paper, two different Python
scripts were developed to enable a reliable time reference
extraction from HF patients’ clinical notes from the
HerzMobil network. Script A was responsible for an
extraction of time references and could surpass the
paresedatetime library in all measured key figures. Script
B subsequently used the output from Script A to calculate
an interval, in which the corresponding time reference was
expected to be. This algorithm worked with an accuracy of
75.3%.

The algorithms developed in Script A and Script B have

only been tested within the environment of a HF telehealth
network. The designed regular expressions were tailored to
the notes and terms of the HerzMobil network. Therefore,
by this study, it could not be proven, that Script A is a better
date extraction software than the parsedatetime library. It
has yet to be investigated if the results of this study apply
to similar datasets as well. A test outside of the scope of
the HerzMobil notes would be necessary to ensure a fair
comparison to the parsedatetime library. Additionally, this
could show, if Script A is also applicable for notes, which
were derived from other sources than the HerzMobil
network.

One reason for the superior results of Script A could be
due to the testing phase, which has been done with notes
from the HerzMobil network. During this phase the regular
expressions were frequently altered and extended to cover
the most common but also quite specific time references as
well. Another reason could be that Script A solely focused
on the German language, while the parsedatetime library
implemented extraction algorithms for multiple languages.

Further investigating the reasons for false-positive
results of the parsedatetime library was not possible, since

Page 3

the result was only a calculated date without an exact
reference to the underlying expression. Since the regular
expressions were continuously adapted during the
development process and therefore optimized for the
HerzMobil notes, it could be possible that Script A is
overfitted.

The calculation of specific dates and timespans works

reasonably well with the algorithm of Script B. One issue
that could be improved in future work is the distinction
between a future and a past setting of the time reference.
Although a list of indicators for either a future or a past
setting should mitigate this problem, this method is not
perfect and could use improvements.

As a next step, the two developed Python scripts could

be implemented in the HerzMobil network either for
retrospective analysis of all notes or, after slight adaptions,
to support structured entry of data or for real time feedback
in the live system. This feedback could be given in the form
of automated calendar entries or automated creation and
allocation of tasks. This would reduce manual work and,
therefore, further improve the HerzMobil system.

Additionally, the underlying ideas and techniques of the
scripts can be used to develop similar algorithms, which
are not specifically designed to process HF related notes.
In further research, both scripts could be slightly adapted
and then be implemented in other telehealth systems,
developed by the AIT.

5. Conclusion

We conclude that the HerzMobil network could be
improved by implementing the two developed Python
scripts. The developed scripts can reduce manual work and
further improve the treatment process for patients.
Therefore, this paper is a valuable contribution to the
enhancement of the HerzMobil telehealth network and to
similar telehealth solutions.

References

[1] P. Ponikowski, “2016 esc guidelines for the diagnosis and
treatment of acute and chronic heart failure,” European
Heart Journal, vol. 37, no. 27, pp. 2129-2200, Jul. 2016.

[2] A. Heidt et al, “HerzMobil Tirol network: Rationale for and
design of a collaborative heart failure disease management
program in Austria,” Wiener klinische Wochenschrift, vol.
126, Nov. 2014.

[3] F. Hebal et al, “Automated data extraction: merging clinical
care with real-time cohort-specific research and quality
improvement data.,” J Pediatr Surg, vol. 52, pp. 149-152,
Jan 2017.

 [4] E. Yehia et al, “Ontology-based clinical information
extraction from physician’s free-text notes,” Journal of
Biomedical Informatics, vol. 98, pp. 103276, 2019.

[5] R. Zhang et al, “Detecting clinically relevant new information
in clinical notes across specialties and settings,” BMC Med
Inform Decis Mak, vol. 17, Jul. 2017.

[6] H. J. Lee et al, “Identifying direct temporal relations between
time and events from clinical notes,” BMC Med Inform Decis
Mak, vol. 18, pp. 49, Jul. 2018.

[7] G. Gonzalez-Hernandez et al, “Capturing the patient's
perspective: a review of advances in natural language
processing of health-related text.,” Yearb Med Inform, vol.
26, pp. 214-227, Sep 2017.

[8] A. Eggerth et al, “Natural language processing for detecting
medication-related notes in heart failure telehealth patients.,”
Studies in Health Technology and Informatics, vol. 270, pp.
761-765, 2020.

[9] R. Sidhu and V. K. Prasanna, “Fast regular expression
matching using FPGAs,” The 9th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines
(FCCM'01), pp. 227-238, 2007.

Address for correspondence:

Fabian Wiesmüller.
Reininghausstraße 13/1, 8020 Graz, Austria
fabian@wiesmueller.info

Page 4

