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Abstract 

Heart failure (HF) is one of the biggest concerns for 
health care systems in developed countries. To support the 
long-term treatment of HF patients, the Austrian Institute 
of Technology implemented a HF telehealth network called 
"HerzMobil". While most data within this network are 
stored in a structured format, health care professionals 
can also communicate via clinical notes in free text format. 
These notes are hardly ever analyzed automatically, even 
though a large number contains valuable information for 
the patient's treatment process. With currently more than 
20,000 notes stored in the system, an automatic approach 
is beneficial to spare manual screening time. One 
important step in this process concerns the extraction of 
time references from the notes. This information could, for 
example, be used to match the time references with events 
from the same note. Therefore, two Python scripts were 
developed to: extract time references from the notes (Script 
A) and subsequently calculate the corresponding dates 
(Script B). Script A was compared to an already existing 
Python library and achieved superior results for all 
calculated key figures. The time calculation algorithm of 
Script B achieved an accuracy of 75.34%. These scripts 
could be implemented in the HerzMobil network to provide 
additional information for the treatment process and 
further improve the telehealth system. 

 
 

1. Introduction 

1.1. Background 

With an increasingly old population, chronic diseases 
are on the rise. With an estimated prevalence of one to two 
percent in adults, heart failure (HF) is one of the biggest 
concerns for health care systems in developed countries 

[1]. The 12-month all-cause hospitalization rates are 44% 
for hospitalized HF patients and 32% for ambulatory 
patients. These rates are amongst the highest for the elderly 
population [1,2].  

To improve the treatment management for HF patients 
and to reduce the hospitalization rates, a HF telehealth 
network called "HerzMobil Tirol" was established in the 
Austrian province of Tyrol [2]. Patients within HerzMobil 
transmit data like e.g. daily measurements of their vital 
parameters, like blood pressure or heart rate, in a structured 
form. Amongst other communication methods, healthcare 
professionals exchange information about a patient’s status 
of health via clinical notes in the form of free text [2].  

The majority of the notes contains information directly 
related to a patient’s treatment process, such as a change in 
medication or an adaptation of a threshold value. Thus, 
analysing these notes can provide valuable information for 
the involved health professionals.  

At the moment, more than 20.000 notes written in 
German language were been created in the HerzMobil 
network. Due to the large volume of notes, an automated 
analysis approach is beneficial to reduce manual screening. 
Additionally, once an algorithm for an automated analysis 
is developed, it can be slightly adapted and deployed in 
various other telehealth solutions provided by the AIT. 

 
1.2 State-of-the-art 

Efforts towards the analysis of clinical notes have 
already been made, like a system developed by Hebal et al. 
[3]. This system, however, relied on clinical notes in a 
structured form and complete free text could not be 
analyzed. Other already existing algorithms for extracting 
information from clinical notes used domain ontologies to 
recognize and detect named entities [4]. Zhang et al. 
focussed on the use of Statistical Language Modeling, 
where a probability is assigned to a specific group of words 
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within the examined set of notes [5]. A paper by Lee et al. 
implemented a system based on a Support Vector Machine 
to extract time information and corresponding events from 
clinical notes [6]. A recent study by Gonzalez-Hernandez 
et al. used natural language processing (NLP) techniques 
such as query formulation, keyword selection or Latent 
Dirichlet Allocation to mine health data from social media 
texts [7]. Eggerth et al. used NLP to develop classifiers for 
automated categorization of clinical notes [8]. However, 
hardly any research has been done on a date extraction 
algorithm in clinical notes of HF telehealth patients. 

 
1.3 Objectives 

This paper makes first efforts towards an automated 
analysis of the HerzMobil notes by developing a time 
reference extraction algorithm and subsequently 
calculating actual dates for the corresponding time 
references. These two algorithms could be implemented in 
the HerzMobil system, to give for example real time 
feedback to healthcare professionals while entering a note. 
This feedback could consist for example of a suggested 
calendar entry or an automated allocation of tasks.  

 
2. Methods 

2.1. Dataset 

All developments were made within an experimental 
setup. In this setup, the raw notes have been de-identified 
and split into sentences by AIT scientists, using certain 
delimiters. The resulting dataset contained 8,832 
individual text snippets which originated from 3,952 raw 
notes, concerning 105 HF patients.  

In the following, the word "note" refers to such a text 
snippet on the sentence layer. 

 
2.2. General structure 

To achieve an automated time reference extraction 
algorithm, two different Python scripts were created. The 
purpose of these scripts was to extract time references from 
the notes (Script A) and subsequently calculate their 
corresponding dates (Script B). Since the amount of 
available data was not sufficient for machine learning 
approaches, the scripts used rule based regular expressions 
to filter time references. These regular expressions were 
used to match a so-called pattern with a character or a 
string [9].  
 

 
2.3. Script A – Time reference extraction 

    In Script A, 18 different regular expressions were used 
to match the correct words and right number of digits, dots, 

whitespaces, etc. with the contents from the notes.  
Whilst some expressions for unsophisticated and common 
terms like heute (today) or gestern (yesterday) were 
created once at the start of the script, others had to be 
dynamically generated at runtime. This was the case for 
e.g. months and weekdays. In addition to these phrases, the 
script filtered specific times of day and added them to the 
filtered expression. This extension was appended to every 
regular expression, where it seemed necessary. (Terms like 
e.g. “one year ago” were excluded from this procedure).  
To give an example, the regular expression, which covered 
the simplest expression, namely heute (today), was the 
following: (?:^|\s?)heute(?:\s?\w*\s\d{0,2}(?:\.|\:|\s)?\d{1 
,2}\s?(?:h|uhr))?(?:\s|$|!). Within the first and last 
parentheses were terms for the start and end of the 
expression, like optional whitespaces or line breaks. The 
literal part of this pattern aimed at the actual time reference 
heute (today). The remaining part of this expression was 
responsible for filtering the time of day in various 
variations. 
Script A returned a JSON file, containing all notes with at 
least one time reference. Each note had a newly introduced 
tag called timetoken, where the extracted time reference 
was stored to. Using this individual tag for the date 
information made it easy to utilize this information for 
post-processing steps in Script B. Additionally, saving and 
displaying the filtered term made it possible to investigate 
false-positive results.  
Script A was compared to an already existing Python 
library called parsedatetime, which seemed to be the most 
promising date extraction library available. However, this 
library could not be used in the first place due to multiple 
reasons. For example, subtle changes like from letzter 
monat (last month) to letzten monat (last month) were 
enough to cause the expression not to be recognized as a 
time reference anymore. Additionally, expressions like 
letzter monat (last month) always resulted in the 1st of the 
previous month, regardless of any further specifications of 
the date.  
 
2.3.1. Evaluation of Script A 

For the calculation of the following key figures, a subset of 
250 randomly chosen notes with time references and 250 
notes without time references were created to ensure a fair 
comparison. These two subsets were used as input data for 
both, Script A and the parsedatetime library to detect those 
notes containing time references. Evaluation was done by 
calculating precision, recall and accuracy for both 
algorithms. 
 
2.4. Script B – Time calculation 

Script A only extracted time references but did not 
process them any further. Therefore, Script B was 
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necessary to transform this extracted information into 
actual times. To do so, it took the entire JSON file from the 
first step as an input. From each note, only the timetoken 
with the found expression and the note’s timestamp were 
needed for this processing steps. Assuming that the 
timestamp was the actual time at which a health care 
professional added the note to the system, it was possible 
to use this point in time to add or subtract time, to 
determine the date mentioned in the note’s text. The 
calculation process was simple for some explicit time 
references like e.g. gestern (yesterday), since this would 
result in the note’s timestamp minus one day. Other 
references, which were more inexplicit, like e.g. am 
Wochenende (at the weekend) were more complex, since it 
had to be determined, whether the corresponding date took 
place in the future or past. Therefore, certain words were 
filtered in Script A in addition to the time references, which 
were used in Script B as indicators for the setting of the 
date. 

 
2.4.1. Times of the day 

A value for the time of day got attached to every 
calculated date. To obtain a notation capable of intervals, a 
parameter, which represented half the length of the time 
interval, was added to the notation format. For every time 
reference, which included a specific time of day, the time 
parameter was set to this exact value and the size of the 
interval was set to zero. For time references referring to an 
interval, the time parameter was set to the centre of the 
interval and half of the interval duration was 
added/subtracted to define the interval. 

 
2.4.2. Evaluation of Script B 

For the determination of the accuracy of the calculation 
algorithm of Script B, a subset of manually calculated dates 
and intervals from 296 individual time references was 
compared to the results of Script B. The deviation between 
the automatically calculated and annotated dates was 

evaluated via the following formula: 
|்௔ି்௥|

஼௥
. Ta stands for 

the automatically calculated date, Tr represents the 
annotated reference value and Cr is half the length of the 
dates manually annotated interval. The third parameter is 
used to standardize the results.  

The calculated result was considered correct, if the 

result of   
|்௔ି |

஼௥
 was smaller or equal to one. 

 
3. Results 

3.1. Script A – Time reference extraction  

Using the subset, described in chapter 2.3.1., led to the 
results depicted in Table 1. As shown in Table 1, the self-

written Python script achieved superior numbers in all 
examined key figures. 

 
Table 1. Results of the comparison of Script A and the 
parsedatetime library 

 
 Script A Parsedatetime library 
Precision 99.6% 97.6% 
Recall 96.4% 64.8% 
Accuracy 98.0% 81.6% 

 
 

3.2.  Script B – Time calculation 

Using the subset and method described in chapter 2.4.2., 
223 out of the 296 reference notes were correctly 
classified. Therefore, Script B achieved an accuracy of 
75.3%. 

 
4. Discussion 

Over the course of this paper, two different Python 
scripts were developed to enable a reliable time reference 
extraction from HF patients’ clinical notes from the 
HerzMobil network. Script A was responsible for an 
extraction of time references and could surpass the 
paresedatetime library in all measured key figures. Script 
B subsequently used the output from Script A to calculate 
an interval, in which the corresponding time reference was 
expected to be. This algorithm worked with an accuracy of 
75.3%.  

 
The algorithms developed in Script A and Script B have 

only been tested within the environment of a HF telehealth 
network. The designed regular expressions were tailored to 
the notes and terms of the HerzMobil network. Therefore, 
by this study, it could not be proven, that Script A is a better 
date extraction software than the parsedatetime library. It 
has yet to be investigated if the results of this study apply 
to similar datasets as well. A test outside of the scope of 
the HerzMobil notes would be necessary to ensure a fair 
comparison to the parsedatetime library. Additionally, this 
could show, if Script A is also applicable for notes, which 
were derived from other sources than the HerzMobil 
network.  

One reason for the superior results of Script A could be 
due to the testing phase, which has been done with notes 
from the HerzMobil network. During this phase the regular 
expressions were frequently altered and extended to cover 
the most common but also quite specific time references as 
well. Another reason could be that Script A solely focused 
on the German language, while the parsedatetime library 
implemented extraction algorithms for multiple languages. 

Further investigating the reasons for false-positive 
results of the parsedatetime library was not possible, since 

Page 3



the result was only a calculated date without an exact 
reference to the underlying expression. Since the regular 
expressions were continuously adapted during the 
development process and therefore optimized for the 
HerzMobil notes, it could be possible that Script A is 
overfitted.  

 
The calculation of specific dates and timespans works 

reasonably well with the algorithm of Script B. One issue 
that could be improved in future work is the distinction 
between a future and a past setting of the time reference. 
Although a list of indicators for either a future or a past 
setting should mitigate this problem, this method is not 
perfect and could use improvements.  

 
As a next step, the two developed Python scripts could 

be implemented in the HerzMobil network either for 
retrospective analysis of all notes or, after slight adaptions, 
to support structured entry of data or for real time feedback 
in the live system. This feedback could be given in the form 
of automated calendar entries or automated creation and 
allocation of tasks. This would reduce manual work and, 
therefore, further improve the HerzMobil system.  

Additionally, the underlying ideas and techniques of the 
scripts can be used to develop similar algorithms, which 
are not specifically designed to process HF related notes. 
In further research, both scripts could be slightly adapted 
and then be implemented in other telehealth systems, 
developed by the AIT. 

 
5. Conclusion 

We conclude that the HerzMobil network could be 
improved by implementing the two developed Python 
scripts.  The developed scripts can reduce manual work and 
further improve the treatment process for patients. 
Therefore, this paper is a valuable contribution to the 
enhancement of the HerzMobil telehealth network and to 
similar telehealth solutions. 
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