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Abstract

Atrial tachycardia (AT), flutter (AFL) and fibrillation
(AF) are very common cardiac arrhythmias and are driven
by localized sources that can be ablation targets. Non-
invasive body surface potential mapping (BSPM) can be
useful for early diagnosis and ablation planning. We
aimed to automatically classify and locate the arrhythmic
mechanisms behind AT, AFL and AF using BSPM features.
19 simulations of 567-lead BSPMs were used to obtain
dominant frequency (DF) maps from which features re-
flecting the spatial distribution of DFs and the spectral or-
ganization were extracted. Rotational activity was tracked
based on singularity points in phase maps; features were
extracted to reflect its spatio-temporal stability. The torso
was divided in 4 quadrants to assess the spatial distribu-
tion of the features. Random forest and least-square based
algorithms were used to classify the arrhythmias and their
mechanisms’ location, respectively. The analyses were re-
produced in different layouts (252 to 12 leads). The ar-
rhythmic mechanisms and their locations were classified
with 72.0% and 73.9% balanced accuracy, respectively.
Accuracy was similar along all lead layouts for arrhyth-
mia classification but decreased for mechanism location.
Classification of AT, AFL and AF and their mechanisms’
location was feasible based on BSPM features reflecting
their basic electrophysiological characteristics.

1. Introduction

Focal atrial tachycardia (AT), atrial flutter (AFL) and
atrial fibrillation (AF) are among the most common
supraventricular tachyarrhythmias (SVTs), a group of very
prevalent cardiac arrhythmias and increase morbidity and
mortality due to a higher risk of thromboembolic events
and of developing other cardiac diseases, representing sig-
nificant costs for the health services [1]. These arrhythmias
are driven by localized sources, which for certain groups
can be targeted in ablation therapy to restore sinus rhythm
[1,2]: AT is maintained by ectopic foci [1], AFL by macro-
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reentrant circuits around anatomic structures [1], and AF,
which is the most complex of these arrhythmias, has been
shown to be maintained by ectopic foci, re-entrant circuits
and functional rotors, which appear preferably when struc-
tural and/or functional atrial remodeling occurs [3]

Identification of the driving mechanisms and their loca-
tion is crucial for further understanding these arrhythmias
and for achieving higher rates of success in ablation ther-
apies, especially for AF patients [4]. This is usually per-
formed via an invasive electrophysiological study, which is
technically complex, time-consuming and poses consider-
able risks to the patients. Non-invasive techniques, such as
body surface potential mapping (BSPM), present reduced
costs and risks to the patients, while providing relevant
clinical information, thus being useful for early diagnosis,
ablation planning and follow-up of patients [5].

Detecting regions driving AT and typical AFL is rela-
tively straightforward, using analysis of activation times
to locate the site of earliest activation or reentrant circuit,
respectively [2]. In atypical AFL and AF, the complexity
of the underlying electrophysiological patterns reduces the
accuracy of direct analysis of activation times [6]. Analy-
ses based in dominant frequency (DF) or phase have been
used in recent years as a means to find periodicity mea-
surements and rotational patterns both in invasive and non-
invasive signals [4, 6-8], allowing for the location of driv-
ing mechanisms and improved ablation outcomes [4, §].

In this study, we used realistic computer models to in-
vestigate AT, AFL and AF from the non-invasive BSPM
perspective, applying DF and phase analysis to extract fea-
tures characterizing the arrhythmic driving mechanisms
and their location. Simple pattern recognition algorithms
were applied for classification of these parameters.

2. Methods

A realistic three-dimensional model of the atrial
anatomy was used to simulate the electrical behavior of
the left and right atria (LA and RA, respectively) in ar-
rhythmic conditions. 19 simulations represented arrhyth-
mias originated by three distinct mechanisms: AT (4 sim-
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Figure 1. Schematic of the methodology. A: wavelet
method for DF detection; B: Phase calculation in BSPM
signals; C: phase progression analysis for SP detection

ulations) driven by an ectopic focus; AFL (4 simulations)
driven by a macro-reentrant circuit; AF (11 simulations)
driven by functional rotors [9]. The highest peak in Welch
periodograms was used to determine dominant frequencies
(DFs) inside the atria [9]; the highest dominant frequency
(HDF) in the atria was defined as the driving frequency [8].

BSPMs were obtained by solving the forward problem
with the boundary element method, resulting in 771 data
points referenced to the Wilson central terminal and sam-
pled at f; = 500 Hz [9], of which 567 points were se-
lected to represent leads of a realistic measurement, ex-
cluding points inside the waist, neck or arms. White Gaus-
sian noise was added to the BSPM signals with a signal-
to-noise ratio (SNR) of 60 dB [9]. The 3D coordinates of
the BSPM nodes in the models were mapped to a 2D con-
figuration by projecting their positions into a cylinder wall
and unwrapping it with the left side of the torso in the cen-
ter of the image. The signals were interpolated into a 30
by 65 grid using cubic splines [7].

DFs on BSPM signals were estimated with a method
based on continuous wavelet transform (CWT) [10]. Peaks
detected in the outcomes of a CWT performed with a neg-
ative first-order Gaussian wavelet match patterns similar
to singularities [10], such as the sharp positive deflections
associated with depolarization wavefronts in BSPM sig-
nals [11]. CWT was applied for each lead along 40 lin-
early spaced scales in the pseudo-frequency range of 3 to
30 Hz (Figure 1A). Peak detection was performed in the
scale with maximum energy in this range after low-pass
filtering it at 30 Hz (4th order Butterworth) to avoid dou-
ble counting. The average of the cycle lengths (CL) was
determined from the intervals between the detected peaks
and used for the DF calculation (DF = 1/CL).

DF maps were generated by displaying the color coded

DF values in the correspondent lead positions, and were
used to approximate the driver mechanism frequencies
with the HDF from BSPMs (HDFpgspas). A spatial mask
ignoring 6% of the highest DF values was implemented
to avoid small harmonic regions present mainly in AT and
AFL maps. HDF regions (|[DF — HDF| < 1 Hz) on the
torso were segmented and used for feature extraction.

A narrow band-pass filter (4th order Butterworth) was
applied on the BSPM leads around the estimated atrial
HDFs (£1 Hz) to stabilize the atrial activity in the BSPM,
especially for AF (Figure 1B) [12]. The signals were
downsampled to 128 Hz to decrease computation time and
phase was obtained using the Hilbert transform [12].

Rotors were detected through phase singularity points
(SPs), defined as points around which all phases converge,
by detecting the discontinuity in phase maps correspond-
ing to the sharp transition between +7 and —7[9]. Canny
edge detection was used to detect these transitions in phase
maps [9] and the endpoints of the edges were considered
SP candidates. The selection of the true SPs among the
candidates is made based on the phase progression along
five rings (radii 2 to 10 cm) around them (Figure 1C, left).
The phase progression of a SP (Figure 1C, right) should
attend three criteria in at least two of the rings: the phase
progresses in an range of at least 7, the progression is at
least 60% ordered and there are no phase leaps > 7 [9].

Features reflecting the spatio-temporal distribution of
the SPs were obtained from filament and heatmaps (HMs).
A filament is defined as the connection of the SPs in phase
maps along subsequent time instants, around which at least
one full cycle of rotation was sustained. HMs are the his-
togram of the SPs belonging to filaments along time.

The signals were classified by pattern recognition algo-
rithms with respect to the underlying arrhythmia (AT, AFL
or AF) and the location of their driver in the heart (LA or
RA). Different groups of features were used for each clas-
sification task: for the arrhythmia classification, 11 fea-
tures were extracted from DF maps, filaments and HMs
for each simulation: ratio between mean DF and HDF,
number and average size of HDF regions, DF range, mean
and IQR of the organization index (OI) on each lead [13],
number, mean duration and median spatial displacement
of filaments (calculated as the median area of the bound-
ing boxes of the SP clusters originated by each individual
filament), number and median density of SP clusters.

The classifier was organized in two layers: the first dis-
criminates between AF and the remaining SVTs, whereas
the second layer discriminates between AT and AFL. Each
layer is composed by a random forest model trained using
40 decision trees of maximum depth of 2. In each node,
one of 3 randomly selected features was selected to split
the dataset using axis-aligned linear discriminators based
on the resulting information gain [14]. The average results
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from the trees determines the algorithm’s prediction.

For the mechanism location classification, the torso was
divided into 4 overlapping quadrants (left vs. right and
front vs. back). 3 features were extracted from each quad-
rant, resulting in a total of 12 features: percentage of the
region with |DF—HDFpgpp| < 1 Hz, average OI, and
percentage of SPs. The localization of the mechanisms
was classified with respect to the atrium in which it was
located (LA vs. RA) with a simple least-squares algorithm.

Leave-one-out cross validation was used to test the
generalization of the classification approaches and results
were evaluated based on confusion matrices and balanced
accuracy. The analyses were reproduced for subsets of the
original lead layout to assess the stability of the features
to lower resolution scenarios: 256 [15], 127[5], 67[7],
64[16], 32, 16 ,and 12 [17].

3. Results

Fig. 2A shows the confusion matrix for the arrhythmia
classification. Accuracy was highest for AF (90.1%), fol-
lowed by AT (75.0%), and AFL (50%). The overall bal-
anced accuracy was 72.0%. While AF classification re-
flected its distinct behavior in the DF and phase analy-
ses (Fig. 3, bottom), distinguishing AT from AFL with
the proposed features was more challenging. This hap-
pens due to the similar DF distributions (very uniform with
small harmonic regions, Fig. 3A) and SP propagation, as
most AT simulations presented at least one stable filament,
though less spatially localized than those observed in AFL
(Fig. 3B).

Fig. 2B shows the results for the classification along dif-
ferent lead layouts. AF segments are classified with high
accuracy in all layouts, whereas for AT and AFL lower ac-
curacies and greater variability is observed, mainly due to
the limited number of samples.

Fig. 2C displays the confusion matrix for the driver lo-
cation classification using the least squares algorithm. Bal-
anced accuracy value of 73.9% was achieved by this ap-
proach (70% and 77.8% for the LA and RA, respectively).
Fig. 2D shows the effect of reducing the number of leads in
the classification of the driving mechanism location. The
resulting accuracies are progressively lower with the re-
duction in the number of leads.

4. Discussion and Conclusion

In this work, features extracted from BSPM DF maps,
filaments and HMs allowed the arrhythmias classification
with good balanced accuracy, being able to distinguish AF
in the vast majority of the tested simulations, reflecting
its particular behavior detected by more heterogeneous DF
distributions and shorter, moving filaments. The more sim-
ilar patterns observed between AT and AFL indicate that
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Figure 2. Confusion matrices for the arrhythmia classi-
fication (A) and the mechanism location (B). Accuracies
along layouts are respectively shown in C and D.

Figure 3. Typical examples of DF maps (A) and filaments
with HMs (B), for each arrhythmia

adding more features reflecting the specific characteristics
of these arrhythmias, such as detecting breakthroughs in
AT or analyzing the polarity of P waves, may improve the
classification outcomes. The results for the localization of
mechanisms highlight the need of incorporating additional
metrics to achieve more reliable results with BSPM. The
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poorer performance in lower resolution layouts highlight
the relevance of analyzing critically results obtained with
a limited number of leads. Additional classification algo-
rithms, including support vector machines and k-nearest
neighbors, were also applied to the data but had worse per-
formances than those presented here, both for arrhythmia
and driver location classification.

SVT detection based on non-invasive techniques is
highly desirable, especially for AF due to its complex-
ity. Different from the previous studies in the literature,
the present work could classify the three most important
SVTs and their driving mechanism location on the atria
with relatively simple machining learning algorithms. The
classification was based on relevant arrhythmia biomark-
ers extracted from maps reflecting the basic electrophys-
iological mechanisms maintaining the arrhythmias, gen-
erated with an unified methodology and using high den-
sity BSPM signals, contributing to the current knowledge
of non-invasive electrophysiological analysis of atrial ar-
rhythmias. This is the first study to the extent of the au-
thors’ knowledge to classify AT, AFL and AF and their
driving mechanisms’ locations using BSPM data and ap-
plying an unified methodology.

Acknowledgements

This study was supported in part by grants from Sao
Paulo Research Foundation (2017/19775-3), Instituto de
Salud Carlos III FEDER (Fondo Europeo de Desarrollo
Regional PI17/01106) and Generalitat Valenciana Grants
(AICO/2018/267).

References

[1] Page RL, Joglar JA, Caldwell MA, Calkins H, Conti JB,
Deal BJ, et al. 2015 acc/aha/hrs guideline for the manage-
ment of adult patients with supraventricular tachycardia. J
Am Coll Cardiol 2016;67(13):e27-e115.

[2] Issa ZF, Miller JM, Zipes DP. Clinical arrhythmology and
electrophysiology: a companion to Braunwald$ heart dis-
ease. Elsevier Health Sciences, 2009.

[3] Jalife J, Berenfeld O, Mansour M. Mother rotors and fibril-
latory conduction: a mechanism of atrial fibrillation. Car-
diovasc Res 2002;54(2):204-216.

[4] Narayan SM, Krummen DE, Shivkumar K, Clopton P, Rap-
pel WJ, Miller JM. Treatment of atrial fibrillation by the
ablation of localized sources: CONFIRM trial. J Am Coll
Cardiol 2012;60(7):628-636.

[5] Vanheusden FJ, Chu GS, Li X, Salinet J, Almeida TP,
Dastagir N, et al. Systematic differences of non-invasive
dominant frequency estimation compared to invasive domi-
nant frequency estimation in atrial fibrillation. Comput Biol
Med 2019;104:299-309.

[6] Ng J, Kadish AH, Goldberger JJ. Effect of electrogram
characteristics on the relationship of dominant frequency

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

(16]

[17]

to atrial activation rate in atrial fibrillation. Heart Rhythm
2006;3(11):1295-1305.

Guillem MS, Climent AM, Millet J, Arenal n, Fernandez-
Avilés F, Jalife J, et al. Noninvasive localization of max-
imal frequency sites of atrial fibrillation by body surface
potential mapping. Circ Arrhythm Electrophysiol 2013;
6(2):294-301.

Atienza F, Almendral J, Ormaetxe JM, Moya n, Martinez-
Alday JD, Herndndez-Madrid A, et al. Comparison of ra-
diofrequency catheter ablation of drivers and circumferen-
tial pulmonary vein isolation in atrial fibrillation: a nonin-
feriority randomized multicenter radar-af trial. J Am Coll
Cardiol 2014;64(23):2455-2467.

Rodrigo M, Climent AM, Liberos A, Fernandez-Avilés F,
Berenfeld O, Atienza F, Guillem MS. Technical considera-
tions on phase mapping for identification of atrial reentrant
activity in direct-and inverse-computed electrograms. Circ
Arrhythm Electrophysiol 2017;10(9):e005008.

Marques VG, Rodrigo M, Guillem MS, Salinet J. A ro-
bust wavelet-based approach for dominant frequency anal-
ysis of atrial fibrillation in body surface signals. Physiol
Meas 2020;.

Guillem MS, Climent AM, Castells F, Husser D, Millet J,
Arya A, Piorkowski C, Bollmann A. Noninvasive mapping
of human atrial fibrillation. J Cardiovasc Electrophysiol
2009;20(5):507-513.

Rodrigo M, Guillem MS, Climent AM, Pedrén-Torrecilla
J, Liberos A, Millet J, Fernandez-Avilés F, Atienza F,
Berenfeld O. Body surface localization of left and
right atrial high-frequency rotors in atrial fibrillation pa-
tients: a clinical-computational study. Heart Rhythm 2014;
11(9):1584-1591.

Everett IV TH, Moorman JR, Kok LC, Akar JG, Haines
DE. Assessment of global atrial fibrillation organization to
optimize timing of atrial defibrillation. Circulation 2001;
103(23):2857-2861.

Criminisi A, Shotton J. Decision forests for computer vi-
sion and medical image analysis. Springer Science & Busi-
ness Media, 2013.

Haissaguerre M, Hocini M, Denis A, Shah AJ, Komatsu
Y, Yamashita S, et al. Driver domains in persistent atrial
fibrillation. Circulation 2014;130(7):530-538.

Salinet J, Paredes JG, Mazzetto M, Marques VG, Sames-
ima N, Pastore CA, Cestari IA. Non-invasive characteriza-
tion of cardiac activation patterns: Contributions of body
surface potential mapping in healthy volunteers. In 2019
Computing in Cardiology (CinC). IEEE, 2019; 1-4.

van Oosterom A, Thara Z, Jacquemet V, Hoekema R. Vec-
torcardiographic lead systems for the characterization of
atrial fibrillation. J Electrocardiol 2007;40(4):343—¢l.

Address for correspondence:

Victor Gongalves Marques
Biomedical Engineering - CECS
Federal University of ABC

E-mail: vgmarques.ufabc@gmail.com

Page 4



