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Abstract

QRS complex detection is regarded as a baseline proce-
dure for the segmentation of electrocardiographic (ECG)
signals, as it is usually the most distinctive component
of the signal. Unfortunately, many QRS detection algo-
rithms do not work well in pathological heartbeats, where
QRS morphology changes radically. This paper addresses
QRS detection by using a novel approach based on re-
cursive estimation of the QRS envelope using Kalman Fil-
ter and smoothness priors. This approach effectively esti-
mates fiducial points, as it considers an interval-dependent
adaptive threshold, which is independent of the heartbeat
morphology, reaching a robust detection. In order to vali-
date this proposal, the MIT-BH, QT, and ST-T databases
were used. A global accuracy of 99.4% with a sensi-
tivity of 96.9% was achieved. The experimental results
demonstrated an improvement of the proposed Kalman fil-
ter, showing that the performance is stable, maintaining a
high performance as the noise level increases.

1. Introduction

Commonly, from the QRS detection, a backward/forward
search is carried out to find other components, i.e., P-
wave, T -wave, and sometimes U-wave, in electrocardio-
graphic (ECG) signal studies [1]. Likewise, the QRS de-
tector is useful for obtaining the RR interval, which ana-
lyzes heart rate variability (HRV), as the synchronization
with the phonocardiographic signal, for several studies of
arrhythmia [2–4] or heart murmur detection [5]. Accord-
ingly, it is imperative that the QRS is detected from hetero-
geneous morphology; but, when the QRS complex changes
radically, many detectors yield wrong results [6].

Onset, offset and peak location of ECG waves are
known as fiducial points (FPs) [7]. Several algorithms for
automatically detecting QRS complexes have been pro-
posed; for instance, using empirical mode decomposi-

tion [8], artificial neural networks [9], wavelets [10–13],
reverse biorthogonal wavelet decomposition and nonlin-
ear filtering [14], quadratic filtering [15], locally adaptive
weighted total variation denoising [16], regular grammar
and deterministic automata [17], combination of interval
and trigonometric threshold values [6], and approaches for
ultra-long-term ECG recordings [18]. The advantages of
Kalman filter have been discussed in several studies re-
garding QRS complex detection [7,19]; however, the main
problem is the initialization of both search locations and
operating parameters.

This paper is focused on cases where the QRS com-
plex morphology drastically changes due to pathologies
related to severe arrhythmias. A Kalman filter approach
uses recursive estimation routines associated with adaptive
thresholding techniques, with the aim of improving the de-
tection robustness independently of the heartbeat morphol-
ogy. The algorithm parameter optimization is carried out
on standard databases for comparing with other studies,
using as evaluation criteria the values of accuracy and sen-
sitivity.

2. Proposed approach

2.1. Hybrid algorithm for QRS detection

ECG signal can be described as a signal with additive
noise, given by:

y[k] = x[k]+ s[k] (1)

where y[k] is a noisy ECG signal, x[k] is the known struc-
ture and s[k] the unknown structure. Some types of distur-
bances (e.g., powerline interference and baseline wander)
have a known basic structure, while a clean ECG signal can
be modeled by the residual derived from the noisy signal
and the estimated interference with time-varying variance.
Thus, the interference can be estimated as the sum of M
basis functions, φi[k], multiplied by a set of time-varying
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coefficients αi[k], expressed by:

x[k] =
M

∑
i=1

αi[k]φi[k] (2)

This model (2) can be expressed by a state-space repre-
sentation, as follows:

zzz[k+1] = AAA[k]zzz[k]+BBBv[k] (3a)
y[k] =CCC[k]zzz[k]+ s[k] (3b)

where, zzz[k] is the state vector containing the dynamics ex-
pressed by αi[k] and φi[k], AAA[k] is the state transition ma-
trix, and CCC[k] is the state measurement matrix. Thus, from
expressions (1) and (3b), x[k] = CCC[k]zzz[k], where the inter-
ference dynamics is governed by (3a) and mixed with the
clean ECG signal. The interference reduction can be in-
terpreted as an estimation problem of unknown structures,
which can be solved using Kalman filtering, as discussed
in [20]. Then, a variance estimator of ŝ[k] can be ap-
plied in order to determine the QRS complex envelope.
This variance can be estimated using a smoothness pri-
ors method proposed in [21], where the noise model is
obtained as a realization of white noise for k = 1, . . . ,N
of s[k] ≈ N(0,σ2[k]) with unknown time-varying variance
σ2[k]. Using a transformation for s[k], given by

χ
2[m] =

1
2
(
s2[2m−1]+ s2[2m]

)
(4)

A stochastic process χ2[m] is achieved, which is an in-
dependent sequence of random variables with chi-square
distribution and two freedom degrees of χ2[m]∼ χ2

2 . Con-
sidering the following transformation

t[m] = ln χ
2[m]+ γ, (5)

where γ = 0.5772157 is the Euler-Mascheroni constant, an
independent random variable, t[m], is generated with an
almost normal distribution and moments, given by

E{t[m]}= lnσ
2[m], σ

2{t[m]}= π2

36
In order to obtain a smooth estimation of σ2[m], the n-th

order difference equation should be considered for restrict-
ing the variance evolution, as follows

∇
kt[m] = w[m] (6)

where w[m]∼ N(0,τ2) iid. Thus, the restriction model is

xxx[m] = FFFxxx[m−1]−GGGw[m] (7)
t[m] = HHHxxx[m]+ξ [m]

Having t[m], the envelope b[k] can be recovered by

b[k] = exp(t[m/2]) (8)

This recursive estimation requires the signal resampling of
t[m], twice its sample rate.

2.2. Adaptive threshold

The final step of this approach consists of an interval-
dependent threshold that can be updated at each detection
for the θi-time and remains fixed for the next interval until
the threshold is exceeded and a new QRS is detected. This
interval-dependent threshold structure ηI [k] is based on the
peak amplitude, updated exponentially from the QRS com-
plex previously detected, as shown below:

ηI [k] = µz̃e,i , k = θi,θi+1, . . .

z̃e,i = z̃e,i−1 +α(z(θi)− z̃e,i−1), i≥ 1

where z̃e,i is the exponential mean, and z(θi) represents
the preprocessed signal amplitude of the more recently de-
tected QRS complex in the time θi. The µ parameter de-
termines the fraction of the amplitude z̃e,i to be used in the
threshold estimation and α-parameter determines the rate
with which the threshold may change.

3. Experimental setup

The hybrid algorithm for QRS detection consists of three
stages (see Figure 1): conventional digital filtering, nonlin-
ear transformation using the envelope detection algorithm
based on Kalman filter and a decision rule.

Figure 1. Experimental procedure stages

Algorithms were tested on three databases: MIT-BIH
[22], QT [23], and European ST-T [24]. These properly
labeled and validated databases provide reproducible and
comparable results, with a large number of the most com-
mon ECG morphologies, as well as signals that are rarely
observed, but clinically important. The proposed approach
was compared with three approaches: a method based
on moving-averaging incorporating with wavelet denois-
ing [25], a detector based on the MaMeMi filter [26], and
a detector based on dual-slope [27]. Firstly, Kalman fil-
ter parameters were adjusted in order to achieve a proper
performance on the analyzed databases. In particular, the
parameters τ2 for the envelope estimator and σ2 under the
powerline and baseline interference filter configurations.
For both parameters, a scan between 10−3 and 106 was
performed, where the best performance was achieved for
τ2 = 1 and σ2 = 103. Next, ECG signals without interfer-
ence were considered, and subsequently, the performance
with powerline interference and baseline wander, using a
range of signal to noise ratio (SNR) from−12 dB to 12 dB,
was analyzed. Likewise, the effect of the parameter vari-
ation was studied, in order to generalize the properties of
this approach in other scenarios.
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4. Results

Table 1 shows the performance of the hybrid-KF algo-
rithm in terms of sensitivity for all the databases, com-
paring with the other three approaches. Results for pow-
erline interference (S.PL.) and baseline wander (S.BL.)
were considered. The best detection of fiducial points was
achieved with the proposed approach. Figures 2 and 3
present accuracy results, taking both types of noise with
different SNR levels. The hybrid-KF method (proposed
approach) has a better performance in most of the SNR
levels.

Table 1. Sensitivity results for all databases in −6 dB
Database Algorithm S. PL. S. BL.

MIT-BIH

MA-Wavelet [25] 99.5±0.5 96.4±0.5
MaMeMi [26] 99.4±0.5 96.7±0.3
Dual Slope [27] 99.7±0.3 96.7±0.4
This approach 99.8 ± 0.2 96.8 ± 0.2

QT

MA-Wavelet [25] 99.1±0.4 96.2±0.4
MaMeMi [26] 99.3±0.4 96.3±0.5
Dual Slope [27] 99.5±0.2 96.1±0.5
This approach 99.6 ± 0.2 97.1 ± 0.2

ST-T

MA-Wavelet [25] 99.3±0.2 96.7±0.2
MaMeMi [26] 99.3±0.3 96.5±0.3
Dual Slope [27] 99.5±0.3 96.6±0.3
This approach 98.8 ± 0.2 96.7 ± 0.2

5. Conclusion

A QRS detection approach has been proposed based on
recursive estimation of the envelope using the Kalman fil-
ter strengths. This approach effectively allows the estima-
tion of fiducial points with similar or better performance
than other well-known methods in the literature. It also
allows real-time robust estimation. The QRS detector of
this approach with interval-dependent threshold can be im-
proved by using a time-dependent threshold, with the aim
of rejecting large amplitude T -waves, allowing the detec-
tion of even low-amplitude ectopic beats. In general, the
performance is consistent and stable in the presence of
powerline and baseline wander noises, maintaining a high
performance as the noise level increases.
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Figure 2. Accuracy results for baseline wander

Figure 3. Accuracy results for powerline interference
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