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Abstract 

Estimation of sympathetic-driven arousal state (SDAS) 

traditionally consists of computing frequency-based 

measures of heart rate variability. However, in the 

presence of confounds such as breathing frequency, these 

measures can incorrectly estimate the underlying SDAS. In 

this work, we present an example of such a case during a 

three-stage paced breathing task.  

Using a state space framework, we demonstrate that a 

unimodal model that relies solely on these frequency-based 

heart rate variability measures overestimates SDAS during 

the slowest breathing stage and underestimates it in 

subsequent stages. On the other hand, a multimodal model 

with both time and frequency domain heart rate variability 

observations as well as electrodermal activity information 

provides a more realistic estimate of SDAS throughout the 

task. This suggests that multimodal estimation of SDAS is 

more accurate and robust than unimodal estimation. 

 

 

1. Introduction 

Estimation of sympathetic-driven arousal state (SDAS) 

is an important problem in many conditions, including 

pain, stress, anxiety, depression, and sleep. Traditionally, 

frequency-based metrics of heart rate variability computed 

from the electrocardiogram (ECG) are used [1-2]. The 

most common of these are power in low (0.04-0.15 Hz) 

and high (0.15-0.4 Hz) frequency ranges (LF and HF 

respectively). HF has been shown to correlate with 

parasympathetic tone, while LF is thought to be a 

combination of sympathetic and parasympathetic tone. 

Other derived measures are also used, such as the ratio 

LF/HF or normalized values of LF and HF (LFu and HFu).  

However, the unimodal nature of these indices can make 

them misleading, particularly in situations where the 

breathing rate causes respiratory sinus arrhythmia (RSA) 

to be a confounding factor. We hypothesized that a 

multimodal approach to SDAS estimation would yield 

more accurate and robust results. Previous attempts at 

multimodal autonomic state estimation did not explore the 

effects of breathing rate confounds [3-5]. To test our 

hypothesis, we collected multimodal data from five 

healthy volunteers during a paced breathing task. The first 

and slowest stage of breathing during the task was at a 

frequency that falls directly within the LF range.  

We used a state space framework to estimate the 

underlying SDAS. We hypothesized that the SDAS should 

decrease with deep, slow breathing and increase with 

breathing rate. Our results show that a unimodal model 

based solely on LF and HF derived observations estimates 

the highest SDAS at the slowest stage of breathing due to 

the confound of the breathing rate. On the other hand, a 

multimodal model correctly estimates a low SDAS at the 

slowest breathing stage which then increases with 

breathing rate. These results suggest that multimodal 

estimation of SDAS is a more accurate and robust 

representation of the underlying information, especially in 

situations with possible confounds. 

 

2. Data and Methods 

In this study, we collected data from five healthy 

volunteers between the ages of 22 and 34 with approval 

from the Massachusetts Institute of Technology 

Institutional Review Board. The subjects were asked to 

perform a paced breathing task in which they had to 

breathe at each of three rates for three minutes each. The 

slowest breathing rate was 0.1 Hz (6 breaths per minute), 

then 0.2 Hz (12 breaths per minute), and the final stage was 

at 0.3 Hz (18 breaths per minute). We collected continuous 

ECG, respirations (using a deflection sensor around the 

torso), and electrodermal activity (EDA) data throughout 

the task. EDA measures the change in conductance of the 

skin due to sweat gland activity, which is purely 

sympathetically controlled [6]. Three of the subjects had a 

two-minute baseline period before the start of the task.  

We then computed a series of features from the 

collected data. Using a point process heart rate variability 

model, we computed instantaneous estimates of mean and 

standard deviation of heart rate, as well as frequency 

domain measures of heart rate variability such as LF/HF 

and HFu [7-8]. We also filtered the EDA data into a slow-
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moving tonic or baseline component and a pulsatile phasic 

component from which we extracted pulses. The details of 

EDA processing can be found in [9].  

 

Table 1. Summary of six observations for each subject. 

 

Observation  Details of Computation 

Mean heart rate Point process HRV model, 

averaged for each window 

Standard deviation 

of heart rate 

Point process HRV model, 

averaged for each window 

LF/HF Point process HRV model, 

averaged for each window 

HFu HFu = HF/(LF+HF)  

Point process HRV model 

Averaged for each window 

Tonic EDA Low pass filter on EDA data 

Averaged for each window 

Phasic EDA Pulses extracted from phasic EDA 

In each window, either 0 (if no 

pulse) or pulse amplitude (if there 

is a pulse) 

 

We took the mean of each feature after normalization in 

non-overlapping 0.5 second windows as observations for a 

state space model. For phasic EDA, observations were 

either zero or a pulse amplitude within each window. The 

six observation time series are summarized in Table 1. 

We then applied a linear Gaussian state space approach 

to estimate the underlying SDAS. This framework models 

SDAS evolution over time as an autoregressive process, 

where all of the observations depend only on the 

underlying state at each time point. The state evolution and 

observation equations of the model are below.  

 

State Evolution Equation: 

𝑥𝑘 = 𝐴 + 𝐵𝑥𝑘−1 + 𝜀𝑥,   𝜀𝑥~𝑁(0, 𝑄) 

 

Observation Equation: 

𝑌𝑘 = 𝐸 + 𝐹𝑥𝑘 + 𝜀𝑌,    𝜀𝑌~𝑁(0, 𝑅) 

 

We tested two models, one with all six observation time 

series, and one with only LF/HF and HFu as observations. 

We used the expectation maximization algorithm to 

simultaneously estimate the underlying state over time and 

the parameters of the model (𝐴, 𝐵, 𝐸, 𝐹, 𝑄, 𝑅). This 

algorithm consists of a forward filter and backward 

smoother to estimate the underlying state and maximum 

likelihood estimation of the model parameters. Finally, the 

estimates of the underlying state evolution over time from 

both models were compared.  

Figure 1. Subject 1 Paced Breathing Task results, showing (from top to bottom) respirations, instantaneous mean heart rate 

+ standard deviation, instantaneous estimate of low and high frequency power (with separate y-axes), tonic and phasic EDA 

activity with pulses labeled, and the sympathetic-driven arousal state estimates in a state space model with multimodal 

versus unimodal observations. Vertical lines in bottom panel separate the three breathing stages of the task. 
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3. Results 

Looking at the data (Figs. 1 and 2), the respirations 

clearly delineate the three stages of the task, including the 

baseline beforehand for Subject 2. While the mean heart 

rate oscillates noticeably due to RSA, there is no clear 

trend in terms of increasing or decreasing heart rate across 

the three stages of the task. This also holds true for the 

standard deviation of the heart rate. The RSA is most 

pronounced in the slowest stage of breathing.  

Because the breathing frequency of the first stage of the 

task (0.1 Hz) falls squarely in the range of LF, it is strongly 

affected by the RSA and mimics the same oscillatory 

pattern with high amplitude during the first stage of the 

task. While HF also seems to have some oscillations 

throughout, they are much smaller in amplitude. Finally, 

there seems to be no consistent trend in either the tonic or 

phasic EDA across the different stages of the task. 

Looking at the SDAS estimates for individual subjects 

and across all five subjects (bottom panel of Figs 1 and 2, 

Fig 3), the two models consistently give very different 

estimates of the SDAS throughout the task. The unimodal 

model, which uses only LF and HF derived features as 

observations, estimates the SDAS of the first stage of the 

task to be high, higher than that of baseline even. This 

initial overestimate, which is clearly influenced strongly 

by the effect of RSA on LF, is also much higher than the 

SDAS estimate in subsequent stages of the task. In 

contrast, the multimodal model estimates a very low SDAS 

during the first stage of the task, decreasing from baseline. 

Then the SDAS estimate increases through the second and 

third stages of the task, with most of the increase 

happening in the second stage. 

 

4. Discussion 

In this study, we analyzed multimodal autonomic signal 

data from five subjects during a paced breathing task. We 

used a state space framework to estimate the underlying 

SDAS, but using two different models. In the multimodal 

model, observations included both HRV and EDA 

measures, but in the unimodal model, only frequency-

based HRV metrics were observations. Because the 

breathing rate of the slowest stage of breathing fell within 

the frequency range of one of the HRV metrics, the 

unimodal model estimates the highest SDAS during the 

slowest breathing stage of the task. The multimodal model, 

on the other hand, estimates a low SDAS during this stage 

which then increases in subsequent stages. This is in better 

agreement with known physiology associated with deep, 

slow breathing.  

Slow, deep breathing is a core component of many 

stress relief practices such as yoga and meditation, as well 

Figure 2. Subject 2 Paced Breathing Task results. See Fig. 1 for details. This subject had an additional baseline period before 

the start of the task.  
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as a recommended therapeutic strategy for anxiety or panic 

attacks. In all of these cases, the goal is to drive down 

sympathetic activation. In addition, studies have shown 

that guided breathing exercises increase vagal activity and 

decrease blood pressure and peripherical sympathetic 

nerve activity [10]. Therefore, it is reasonable to conclude 

that the multimodal model provides a more accurate 

estimate of the true SDAS as being low during the first 

stage of the task, especially compared to normal baseline 

level of activity. The unimodal model not only 

overestimates the SDAS during the first stage of the task, 

it biases the SDAS for the other two stages of the task due 

to the frequency-dependent buffering of RSA [11]. 

It is noteworthy that the multimodal model is able to 

overcome influence of RSA on LF at the slowest stage of 

breathing based on combined information from the other 

observations and even in the absence of a clear trend in any 

of them. This supports the use of multimodal signals to 

inform SDAS estimation, especially when there is no 

information about breathing rate. Future work will include 

refining the observation model in the state space 

framework and adding more modalities of information, 

such as blood pressure or pulse oximetry. In addition, this 

multimodal paradigm will be tested in other settings, 

including pain, anesthesia, and sleep. 
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Figure 3. Summary of sympathetic-driven arousal state estimates across all subjects shows as the mean + standard deviation. 

The start and end of the task are at 0 and 540 seconds respectively and the stages are separated with dashed vertical lines.  
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