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Abstract

Electrocardiogram (ECG) analysis has been used to
identify different heart problems and deep learning is
emerging as a common tool to analyse ECGs. Premature
ventricular contraction (PVC) is the most common cause
of abnormal heartbeats; in most cases this is harmless but
under specific conditions, it can lead to a life-threatening
cardiac disease. Automated PVC detection in this scenario
is a task of significant importance for relieving the heavy
workloads of experts in the manual analysis of long-term
ECGs. To identify PVCs, this research aims to use the MIT-
BIH Arrhythmia Database to classify QRS complexes us-
ing five different deep neural networks: Long Short Term
Memory, AlexNet, GoogleNet, Inception V3 and ResNet-
50. The results showed high efficiency and reliability in the
final diagnoses during two separate experiments (one with
the entire dataset and the other with a balanced dataset).
The ResNet-50 was the first experiment’s best classifier
(accuracy = 99.8%, Fl-score = 99.2%), and the second
experiment’s best classifier was Inception V3 (accuracy =
98.8%, Fl-score=98.8%). Relevant information, in this
research, was extrapolated from a study of the confusion
matrix to conduct a "failure analysis” to understand where
and why the classifiers made incorrect classifications.

1. Introduction

Currently all over the world, particularly in countries
with a predominantly western lifestyle, cardiovascular dis-
ease (CVD) is often the leading cause of death and despite
the rapid growth of new technologies, the electrocardio-
gram (ECQG) is still the main tool for analyzing and inter-
preting heart’s rhythm and its electrical activity. A healthy
person’s heartbeat has four characteristics: P-wave, QRS
complex, T-wave, U-wave and heart disease may be de-
tected by interpreting these wave variations. Therefore this
field of research will contribute not only to advancement
in cardiology but also the enhancement of the patient’s
health.

Premature ventricular contraction (PVC) is a fairly com-
mon event that occurs in many people and causes addi-
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tional heartbeats that begin in either of the heart’s two ven-
tricles and lead to QRS generation complexes of strange
and large waveforms[1]. Usually, PVC is not harmful,
but repeated PVCs may increase the risk of developing
arrhythmias or cardiomyopathy [2] or, in the worst case,
followed by other heart disorders may cause risky heart
rhythms[3]. Automatic detection of PVC is an important
challenge in the medical health domain since the conven-
tional approach (medical or specialist workers who ana-
lyze and identify the ECG’s features) is too sluggish and
unreliable and because the presence of PVCs can be chal-
lenging for algorithms monitoring the heart rhythm in the
decision-making process. Many studies in the literature
have examined types of arrhythmias[4] and the issues of
PVC-detection methods (limited dataset in ECG record-
ing numbers, presence of noise or high inter and intra-
patient variability), developing different models to over-
come these problems by using the MIT-BIH Arrhythmia
database as well. The situation in which ECG research is
being performed today indicates a considerable increase in
the use of deep learning techniques by developing models
for the detection of PVC in children[5] that are revealed to
be more efficient, models in which deep learning has been
combined with rule inference [6] and also models used as
the next step after the feature extraction phase [7]. Con-
sequently, this project aims to use supervised learning to
train five deep neural networks to classify QRS complexes
in order to identify non-PVC records from PVC records.
The research questions are: What is the performance of the
different deep learning models for PVC detection? What
type of deep learning model is the best classifier for de-
tecting PVCs, such as CNNs or LSTM? What is the im-
pact of pre-training on the performance of PVC detection
deep learning models? What insights failure analysis pro-
vide into the false positive and false negative errors made
by the classifier?

The remainder of the paper will present the methodology,
the results and the discussion and the conclusion.
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2. Methodology

In this research, five different deep neural networks,
Long Short Term Memory (LSTM), AlexNet, GoogleNet,
Inception V3 and ResNet-50, have been trained and the
technique used is divided into two main strategies: train-
ing with raw sample voltage data and training with im-
ages. After training and testing, the results are compared
with specific focus on the confusion matrix in order to do
a failure analysis. The general procedure is shown in the
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Figure 1: Activities Flow.

2.1. ECG database

The dataset used is the “MIT-BIH Arrhythmia
Database” developed by the laboratories at Boston’s Beth
Israel Hospital (now the Beth Israel Deaconess Medical
Center) and it is made up of ECGs from 47 patients of
which the 60% from a mixed population of inpatients and
the 40% from outpatients. For each patient, PVCs and
QRS complexes were extracted, resulting in 7130 PVC
records and 75048 non-PVC records, totalling 82,178 el-
ements.

For each neural network we carried out two types of exper-
iments were conducted:

o The first experiment uses the modified dataset, where
only two labels are required to obtain a binary classifica-
tion: labels O for non-PVC and labels 1 for PVC. But the
dataset was not balanced in this situation since the number
of non-PVCs was greater than the number of PVCs.

« The second experiment uses the same dataset but is bal-
anced using class balancing techniques.

The patient’s information is not considered for the clas-
sification in both experiments because it could affect the
results.

2.2. Training with raw sample data

The original dataset consists of raw sample data, in
which each column refers to one sample of an ECG signal.
For each annotation (R peak) provided from the database,

we extracted 30 samples before this R peak and 30 samples
after the R peak; hence each observation (row) represents
169 milliseconds. Only LSTM, a Recurrent Neural Net-
work[8], was used for this strategy as it was specifically
designed to prevent long-term dependencies in time series
data problems.

2.3. Training with images

The raw sample data were converted into images to
train Convolutional Neural Networks with transfer learn-
ing technique. These networks have the benefit of al-
lowing the tacit presumption that the inputs are images,
which enables the models to be more efficient by minimiz-
ing the number of network parameters. The Convolutional
Neural Networks used were: AlexNet (AN), GoogleNet
(GN), Inception V3 (I-V3), and ResNet-50 (RS-50); only
the GoogleNet was used in both pre-trained and non pre-
trained (NP) mode to better compare the non pre-trained
LSMT.

3. Evaluation

Validating the classifier’s performance is an essential
part of any project since the selection of metrics influences
how the performance of machine learning algorithms is
measured and compared. The performance of classifiers is
measured by standard metrics: Accuracy(Acc), Sensitivity
(Se), Specificity (Sp), Positive Predictivity (PPV) and also
F1-score (F1) which is the harmonic mean between sensi-
tivity and specificity and the Area Under the Curve (AUC).

4. Results

To validate the models used in this study, the dataset was
split randomly, for each experiment, in training and testing
for the LSTM, and training, validation and testing set for
the CNNs. This section provides the results about the two
experiments to provide a clearer overview of the disparity
between the different performance.

4.1.  First Experiment

In this experiment the LSTM process input signals of
fixed length with 200 hidden layers and adam optimizer
with 0.001 of learning rate. For the CNNs, instead of
the input size change depending on the input size of each
CNN, the optimizer is sgdm with 0.001 of learning rate.
The number of epochs can change based on network per-
formance. Tablel table shows the PVC detection results
ordered from best to worst based on the F1-score.

4.2. Second Experiment

Instead of the only difference in this experiment is that
the LSTM has 100 hidden layers. The2 table shows the
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Table 1: First experiment results.

Networks F1 Acc Se Sp PPV  AUC
RN-50 99.16 99.85 99.09 9993 99.23 99.50
GN 98.62 99.76 97.83 99.95 9943 98.88
AN 98.53 99.74 9839 99.87 98.66 99.13
I-v3 98.29 99.70 98.74 99.79 97.85 99.26
GN(NP) 96.09 9932 96.63 99.57 95.56 98.10
LSTM 91.28 9853 §9.18 99.41 9348 94.29

results of the PVC detection for this experiment, ordered,
also in this case, from the best to the worst based on the F1

score. )
Table 2: Second experiment results.

Networks F1 Acc Se Sp PPV AUC
I-v3 98.77 98.77 98.53 99.02 99.01 98.77
GN 98.66 98.67 9797 99.37 99.36 98.66
RN-50 9842 9842 9839 9846 98.46 9842
AN 98.29 9828 98.53 98.04 98.05 98.28
GN(NP) 98.06 98.07 97.55 98.60 98.58 98.07
LSTM 98.03 98.07 97.65 9848 98.42 98.18
S. Discussion

The experiments in the previous section showed excel-
lent results obtained with high accuracy both on the en-
tire dataset and on the balanced dataset. The CNNs com-
pared to the LSTM record higher performances, also in the
case of NP GoogleNet, even if only slightly. The reason
for this is that the CNNs used worked in different con-
texts and modes, but considering the little difference be-
tween the various performances, both CNNs and LSTM
provides reliable PVC detection while maintaining stable
performance. As noted in Section 4, the ResNet-50 was the
best classifier in the first experiment achieving 99.8% of
Acc and F1, Sp and AUC of 99.16%, 99.93% and 99.50%,
while the Inception V3 was the best classifier in the sec-
ond experiment with 98.8% of Acc, 98.8% of F1, 98.02%
of Sp and 98.8% of AUC. Based on the accuracy, statis-
tical significance tests were also used to compare the per-
formance of the classifier, the Chi-square, which more pre-
cisely demonstrated the discrepancies between the results.
The most interesting information can, however, be extrap-
olated from the study of the confusion matrix. The anal-
ysis of the False Negative and the False Positive images
allows us to perform a “failure analysis” to explain where
and why the classifiers made incorrect classifications and it
should be noted that the same typologies of images classi-
fied incorrectly recur frequently in the two different exper-

iments and also that these images are also often classified
in the same wrong class.

More particularly regarding the False Positives, there is of-
ten the presence in the various experiments of images with
only long downward curves and/or small curves before and
after the QRS. The Fig. 2 shows examples of these images
that mistakenly lead the classifier to think that they were
PVC records but they are not.

(a) AlexNet (b) GoogleNet

(c) Inception V3 (d) ResNet-50

(e) NP GoogleNet (f) LSTM

Figure 2: False Positives

On the other hand, as regards False Negatives, in all ex-
periments there are recurring images with a lot of noise
(double curves or with many steps) and for these reasons
the classifier, failing to identify them as non-PVC, classi-
fies them as PVC. Fig. 3 shows examples of these images.

The major limitations of the project, however, were that
the focus was only on PVC detection and not on identifi-
cation of other heart rhythm problems but also the use of
repeated measures from the same subject, yet the methods
used provide reliable PVC detection diagnosis with high
performance in both experiments.

6. Conclusion

Five deep neural networks were proposed and evaluated
on the MIT-BIH Arrhythmia Database for the ECG rhythm
evaluation, specifically for PVC detection techniques. In
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(a) AlexNet (b) GoogleNet

(c) Inception V3 (d) ResNet-50

(e) NP GoogleNet (f) LSTM

Figure 3: False Negatives

recent years, deep learning has been shown to be more and
to improve diagnostic quality to detect heart rhythms com-
pared to other techniques, even with images of outpatient
ECGs produced at half resolution [9], this research shows
interesting results with images respecting raw data even
when there was noise. Finally, the research questions out-
lined in the Section 1 can be answered.

1. What is the performance of the different deep learning
models for PVC detection? For almost all models, the per-
formance is higher than 97%, except for the LSTM. The
performance of CNN models were greater than the perfor-
mance of the LSTM model, according a Chi-square test (p
< 0.05).

2. What type of deep learning model is the best classifier
for detecting PVCs, such as CNNs or LSTM? The best
classifier in the first experiment was ResNet-50, then the
best classifier in the second experiment was Inception V3.
The results suggest that training using the original time
series sample data with an LSTM does not outperform a
CNN trained using images. Perhaps it may hinder the per-
formance.

3. What is the impact of pre-training on the performance
of PVC detection deep learning models? The statistical
analysis has shown that the pre-trained models perform
better than non pre-trained models (p <0.05).

4. What insights failure analysis provide into the false pos-
itive and false negative errors made by the classifier? The
analysis of False Positive and False Negative to conduct a
“failure analysis” has shown interesting information to un-
derstand when and why the classifier made incorrect clas-
sification.

The detection of PVC is an environment where studies are
still required to improve accuracy and to develop new tech-
niques.
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