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Abstract
We recently proposed a Sympathetic Activity Index (SAI)

through an orthonormal Laguerre expansion of linear RR-
interval autoregressive kernels. The resulting heart rate
variability (HRV) instantaneous indices may be used for
the effective estimation of cardiac sympathetic outflow be-
cause the model is independent from the overlapping dy-
namics of the sympathetic and vagus nerves in the low
frequency (LF) band (0.04-0.15Hz). In this study, we
perform a preliminary validation of the SAI performance
through concurrent estimates from efferent muscle sympa-
thetic nerve activity (MSNA) recordings. ECG and MSNA
were simultaneously recorded in 12 hypertensive patients
during a 10min resting state in the supine position and up
to 30min sodium nitroprusside (SNP, 0.4 µg/kg per minute)
administration. Results show a characteristic increase of
the MSNA during SNP intake with respect to the resting
state (p< 0.001). While SAI was associated with a sig-
nificant increase during SNP (p<0.001), LF power did
not show significant changes between sessions (p>0.05).
Spearman analysis highlighted a significant correlation
between SAI and MSNA (r=0.47; p<0.02) and a non-
significant correlation between LF power and MSNA (r=-
0.09; p>0.05). This study provides a further validation
step of the SAI and supports the use of HRV parameters as
a reliable proxy of cardiac sympathetic outflow dynamics.

1. Introduction

The sympathetic and parasympathetic nervous systems
are essential to guarantee physiological homeostasis in
health and disease states. They play a major role in the
effective control for heartbeat dynamics, and their dys-
functional interaction contributes to the evolution of car-
diovascular disorders [1]. Consequently, a precise quan-

tification of sympathetic and parasympathetic dynamics is
a fundamental requirement for the effective characteriza-
tion of cardiac states.

While plasma noradrenaline measurement have repre-
sented a gold standard measurement for the quantification
of sympathetic neural functions, direct recording of ef-
ferent postganglionic sympathetic nerve activity (muscle
sympathetic nerve activity, MSNA) via microneurography
have largely supplanted other approaches [2–4]. MSNA
recording has constituted a fundamental tool for the direct
assessment of the neuro-adrenergic cardiovascular drive in
healthy people and patients with cardiovascular, metabolic,
and renal diseases; however MSNA studies have mostly re-
lied on a small number of subjects due to the difficulty in
obtaining stable MSNA recordings with optimal signal-to-
noise ratios in many patients and experimental conditions.

To generalize the autonomic assessment of cardiovas-
cular control to large populations, heart rate variability
(HRV) analysis has been investigated for more than four
decades in clinical and laboratory research [5]. If using a
frequency-domain analysis, the HRV spectrum comprises
a Low Frequency (LF) band, centered at 0.1Hz, whose
power is known to be modulated by both cardiac vagal and
sympathetic nerve activity, as well as arterial blood pres-
sure [5–7], and a High Frequency (HF) band, including
oscillations greater than 0.15 Hz, which has been proposed
as a marker of vagal activation. The HF band is driven pri-
marily by the respiratory frequency (so-called Respiratory
Sinus Arrhythmia) [5]. Since neither the LF of HF bands
are specific for sympathetic activity, it has not been pos-
sible to use HRV for a reliable estimation of sympathetic
control.

To overcome this limitation, we recently defined the
Sympathetic Activity Index (SAI) and the Parasympathetic
Activity Index (PAI), which are able to effectively quantify
the functioning of the two autonomic branches for time-
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varying cardiovascular control without the need for a pre-
liminary calibration at the level of the individual [8–10].
An orthonormal Laguerre expansion is combined through
a set of disentangling coefficients estimated from a pre-
vious autonomic blockade study [9]. From an estima-
tion viewpoint, there is no need for interpolation of the
HRV series, and the SAI and PAI coefficients may be cal-
culated through different optimization methods including
least square, instantaneous point-process [9], and beat-to-
beat Kalman filtering [8, 10]. The SAI and PAI has been
previously evaluated using data gathered from healthy vol-
unteers undergoing different autonomic maneuvers [8, 9],
as well as data from patients with congestive heart failure
[10].

In this study, we enrich the previous evaluation set by in-
vestigating SAI and PAI performance in following MSNA
changes. To this end, we use ECG and MSNA data that
were simultaneously recorded in 12 hypertensive patients
undergoing a resting state in the supine position, and a
sympathetic activation session through pharmacological
intervention. Details on the signal processing methodol-
ogy and experimental setup, and results and study conclu-
sions follow below.

2. The Sympathetic and Parasympathetic
Activity Indices

Heartbeat events {uk} correspond to R-waves from the
ECG, and RRk = uk − uk−1 > 0 denote the kth RR
interval, or equivalently, the waiting time until the next R-
wave event. The SAI and PAI were estimated from HRV
series using a Kalman filtering approach, whose details are
reported in [8–10]. Briefly, a model including a theoret-
ical separation between the slow sympathetic and faster
parasympathetic dynamics is identified as follows:

µRR(k, ξ(k)) = g0(k) +

PSymp∑
j=0

g1,j(k) lj(k)︸ ︷︷ ︸
Sympathetic

+

PParSymp∑
j=PSymp+1

g1,j(k) lj(k)

︸ ︷︷ ︸
Parasympathetic

(1)

where

ξ(k) = [g0(k), g1,0(k), . . . , g1,J(k)]> (2)
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as the jth-order discrete-time orthonormal Laguerre func-
tion, and α the constant of decay parameter of the Laguerre
functions. Note that such statistically independent func-
tions at different orders have all the same magnitude and
different phase spectra [11], such that a proper combina-
tion of Laguerre bases may selectively reflect the actual
sympathetic or parasympathetic system response [9]. Note
also that the Laguerre functions may effectively be esti-
mated through a recursive form [8, 10].

The SAI and PAI are then defined as a combination of
disentangling Laguerre coefficients ΨS and ΨP , and the
coefficients g1,j as follows:

SAI(k, ξ(k)) =
[
ΨS0

+

N1∑
j=1

ΨSj
g1,j−1(k)

]
/RR(k)2

PAI(k, ξ(k)) =
[
ΨP0 +

N2∑
j=1

ΨPj g1,j+1(k)
]
2RR(k)

In this study, we set N1 = 2 and N2 = 7 and α = 0.2 to
match the frequency response of the Laguerre filters with
the dynamic response of the sympathetic and the parasym-
pathetic systems [5, 6, 9]. The disentangling ΨS and ΨP

kernels were derived from a previous selective autonomic
blockade study through multiple regression analysis [6,9].
Importantly, the use of these coefficients do not need any
calibration procedure at a single subject/recording level.
Particularly, results reported below were obtained using
the following realizations of ΨS and ΨP coefficients:

ΨS = {39.2343, 10.1963,−5.9242}
ΨP = {28.4875,−17.3627, 5.8798, 12.0628,

5.6408,−7.0664,−5.6779,−3.9474}

The vector parameter ξ to be estimated may be modeling
as the output of a linear dynamic system, which is observed
through the series of RR intervals:

ξ(k) = ξ(k − 1) + εξ(k) (4)

RR(k) = `(k)>ξ(k) + εRR(k) (5)

where εξ(k) is the state noise with covariance matrix Sξ

and εRR(k) is the observation noise with variance SRR.
In this model, (5) replaces (1) while (4) describes how the
Laguerre coefficients evolve in time. These coefficients
can be readily estimated using a Kalman filter with a time-
varying observation matrix [8, 10].
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2.1. Experimental Setup, Signal Prepro-
cessing, and Statistical Analysis

Extensive details on the experimental setup and data
acquisition are reported in [2]. Briefly, ECG and mul-
tiunit recording of efferent postganglionic MSNA series
were simultaneously gathered from 12 hypertensive pa-
tients in the supine position during a 10min resting state
and up to 30min sodium nitroprusside (SNP, 0.4 µg/kg
per minute) administration. SNP is a direct vasodilating
agent (Malesci) expected to increase MSNA. MSNA was
recorded at 1000 Hz (ACQ-16, Gould Electronics) using
a microelectrode with diameter 200 µm transcutaneously
inserted into the right or left peroneal nerve posterior to
the fibular head; the MSNA signal was integrated with a
0.1s time constant, band-pass filtered between 700-2000
Hz. MSNA was identified according to criteria outlined
in previous studies [2]. The recording was considered ac-
ceptable if the signal-to-noise ratio exceeded the value of
3. The study protocol was approved by the local ethical
committee and was in accordance with institutional guide-
lines. Patients gave their written informed consent to par-
ticipation in the study after explanation of its nature and
purpose.

Regarding ECG, an automatic R-peak detection algo-
rithm based on the Pam-Tompkin procedure was applied
to derive HRV series, which were inspected for algorithmic
and physiological (e.g., ectopic beats) artifacts through vi-
sual inspection and using our previously proposed method
based on point-process statistics [12].

Together with the SAI and PAI measures estimated
according to the methodology described in the previ-
ous paragraph, standard time-varying LF (0.04-0.14Hz)
and HF (0.14-0.40Hz) powers were estimated using a
similar Kalman approach as well. The features within-
session time-varying changes were condensed as edian be-
tween samples. Consequently, descriptive statistics were
expressed as median ± MAD(X) where MAD(X) =
median(|X − median(X)|)) and X is the variable of in-
terest (e.g., SAI, PAI, LF, HF). Group-wise, between-
session comparison was performed through Wilcoxon non-
parametric tests for paired data, with null hypothesis of
equal medians between sessions.

Further non-parametric correlation analyses were car-
ried out using the Spearman correlation coefficient, along
with a linear regression analysis with least square coef-
ficient estimation, between MSNA-SAI and MSNA-LF
pairs.

3. Results

Experimental results are shown in Table 1. As expected,
SNP induces a significant increase in MSNA with respect
to the rest condition, and similar statistically-significant

changes are with the σ2
RR, SAI, and SAI/PAI ratio. While

SNP also induced a significant decrease in µRR and PAI,
the LF and HF powers did not show statistical changes be-
tween sessions.

Table 1. Results from the Rest vs. SNP statistical compar-
ison.

Rest SNP p-value

MSNA [b/100hb] 39± 4.5 54.33± 5 < 0.0005

µRR [ms] 915.3± 192.22 820.73±102.17 < 0.002

σ2
RR [ms] 2384.3±1407.5 11299±7133.7 < 0.0005

SAI [a.u.] 39.07±13.46 52.66±17.76 < 0.001

LF [ms2] 61.90±36.24 63.45±49.62 > 0.05

PAI [a.u.] 63.90± 12.43 46.99±8.26 < 0.001

HF [ms2] 457.97±315.83 504.53±418.24 > 0.05

SAI/PAI 0.616± 0.273 1.136±0.517 < 0.001

LF/HF 0.162±0.027 0.146± 0.034 > 0.05

p-values are from the Wilcoxon non-parametric test for paired data.

b/100hb indicates bursts per 100 heartbeats;.

Considering aggregated data from all patients in both
resting and SNP sessions, i.e., two samples per subject,
a Spearman analysis revealed a correlation coefficient as
high as 0.475 for the MSNA-SAI samples (p<0.02) and
-0.090 for MSNA-LF (p>0.05). Scatter plots and regres-
sion lines for these samples are shown in Fig. 1.

4. Discussion and Conclusions

This study demonstrates the reliability of the SAI in-
dex for a quantitative, HRV-based, autonomic assessment
of MSNA which should be correlated with cardiac sym-
pathetic activity. We have recently proven that the SAI
follows sympathetic changes expected in healthy individu-
als during active and passive postural changes, lower-body
negative pressure conditions, and handgrip tests [8, 9], as
well as expected increase in sympathetic activity in pa-
tients with congestive heart failure [10]. Here, the use
of Spearman correlation analysis and between-session sta-
tistical tests demonstrated that the SAI is able to fol-
low MSNA changes in hypertensive patients undergoing
SNP infusion, which increases sympathetic activity. The
MSNA-SAI correlation coefficient was 0.475, presumably
due to inter-subject variability (which is not eliminated by
the SAI estimation technique). Higher values for MSNA-
SAI correlation coefficients would be expected at a single-
subject level.

The SAI algorithm relies on the orthonormal Laguerre
functions, whose spectral properties and statistical inde-
pendence between different orders help overcome the lim-
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Figure 1. Scatter plots and linear regression analyses (or-
ange line and equations) for the MSNA-SAI (top panel)
and MSNA-LF (bottom panel) samples considering data
from all patients in both resting and SNP sessions.

its of the HRV spectral paradigm, allowing for an accurate
estimate of sympathetic dynamics in the LF band [9]. In
fact, as noted, HRV oscillations below 0.15 Hz are medi-
ated by both cardiac vagal and sympathetic nerves [6, 7],
resulting in no statistical association between SNP and LF
in the resting state or with the changes in MSNA induced
by SNP.

From an estimation viewpoint, although a Kalman fil-
tering approach was used to retrieve time-varying (beat-to-
beat) SAI estimates, it should be noted that other param-
eter estimation methods including least square and point-
process may also be used depending on the desired resolu-
tion in time [9].

Future studies will be directed towards SAI-PAI evalua-
tion, together with MSNA, at a single-subject level, as well
as applications in other clinical and applicative settings.

Disclosure

An International patent application (PCT/US2016/044844)
was filed on July 29, 2016 for the method described in this
paper.
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