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Abstract 

With the development of wearable electrocardiogram 

(ECG) monitoring equipment, the ECG signal quality 

assessment algorithm is becoming critical. At present, 

there is no unified classification standard for signal 

quality assessment. Signal quality can be divided into 

three categories in this work: Class A, ECG waveform (P 

wave and T wave, QRS complex wave) is visible. Class B, 

the signal can only reliably detect QRS. Class C, the 

signal is not suitable for analysis. Eighteen features were 

analyzed. Three models based on the decision tree were 

trained according to diagnostic requirements for 

wearable ECG. The first model uses twelve practical 

features to select Class A and B. The single-lead wearable 

ECG monitoring device is a convenient means of 

monitoring arrhythmia, which can be used for disease 

screening only by RR interval analysis. The second model, 

uses eight practical features to screen out Class A signals. 

Clean ECG waveforms are essential for the diagnosis of 

the disease. In the third model, seven practical features 

are used to classify Class A, B, and Class C. The test 

results from the first model are as follows: Sp is 97.97%, 

and Se is 99.80%. The results from the second model are 

92.12% and 92.19%. The third model report that the Acc 

of A, B, and C are:90.74 %, 89.72%, and 97.60%. The 

results showed that models could evaluate the ECG signal 

quality to meet the need for disease screening and 

diagnosis. 

 

1. Introduction 

With the development of health medical technology, 

more and more wearable electrocardiogram (ECG) 

devices appear in people's lives, which are used to 

monitor and screen arrhythmia [1]. Middle-aged and older 

people choose to wear wearable devices to monitor their 

ECG signals for disease screening. Patients with occult 

arrhythmia generally need to carry out long-term wearable 

ECG monitoring to capture abnormal ECG signals [2]. 

Clean ECG waveforms and important ECG feature points 

are typically required for diagnostic algorithms of cardiac 

rhythm diseases [3]. Compared with traditional ECG 

monitoring devices, the signals collected by wearable 

devices will have more noise. The ECGs contaminated by 

noise will bring significant problems to the ECG 

diagnosis algorithm, such as affecting the recognition of 

QRS, resulting in the misjudgment of the ECG diagnosis 

algorithm [4, 5]. Therefore, it is vital to evaluate the 

quality of wearable ECG signals. 

Studies have developed signal quality indicators (SQIs), 

including time-domain, frequency-domain and nonlinear 

features. Classical signal quality indicators (SQI) include 

sSQI, kSQI, pSQI, SDN-SQI, purSQI, LpSQI, HpSQI et 

al [6-9]. The 2011 PhysioNet Computing in Cardiology 

Challenge aimed at improving the quality of ECGs 

collected using mobile phones. It provided a database 

with assigned ECGs a letter grade (A (0.95): excellent, B 

(0.85): good, C (0.75): adequate, D (0.60): poor, or F (0): 

unacceptable) for signal quality [10]. Since then, a lot of 

SQIs have been developed. 

At present, there is no unified classification standard 

for signal quality assessment. Due to the analysis of 

different arrhythmia diseases, ECG feature points required 

are different. The quality of ECG signals is usually 

classified differently according to the requirement of heart 

disease analysis. The single-lead wearable ECG 

monitoring device is a convenient means of monitoring 

arrhythmia, and it can be used for disease screening only 

by the RR interval analysis. It is necessary to require the 

ECG signal to have a clear QRS complex wave. For the 

screened arrhythmia disease, it is necessary to diagnose 

the disease according to the critical feature points of the 

ECG waveform [11]. Signal quality can be divided into 

three classes in this work, as shown in Table1. 

Table 1. The three classes of wearable ECG signal quality 

 

Class Define 

A ECG waveform (P wave and T wave, QRS 

complex wave) is visible. 

B ECG signals can only reliably detect QRS 

complex waves. 

C ECG signal is not suitable for analysis. 

 

This work analyses the effects of different SQIs on 

wearable signals. The first task is to analyze the indicators 

used to choose Class A and B, which is vital for screening 

for arrhythmia. The second analysis is to explore the 

practical features used to screen out Class A signals, 
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which are essential for diagnosing the disease. The third 

task analyzes the indicators used to distinguish between 

Class A, B, and C. The quality evaluation model based on 

the decision tree is built on the basis of practical index 

analysis. 

 

2. Methods 

2.1. Database 

The Brno University of Technology ECG Quality 

Database (BUT QDB) is a database created by the 

cardiology team at the Department of Biomedical 

Engineering, Brno University of Technology, to evaluate 

ECG quality [12]. The data was collected using a mobile 

ECG with a sampling frequency of 1,000 Hz, including 18 

long-term recordings of single-lead ECGs. Three signals 

were fully annotated in terms of ECG signal quality. The 

sliding window of 10  s was used to intercept data, and 

each window overlapped for 5s. The data details are 

shown in Table 2. 

Table 2. The details of the database 

 

Class Sample size Percentage 

A 33,279 51,6% 

B 20,663 32.1% 

C 10,510 16.3% 

Total 64,452 100% 

 

2.2. Processing 

To facilitate the processing of the ECGs, this work 

used the minimum-maximum normalization measure to 

regularize the filtered ECG segments to the interval (0, 1). 

Due to the high computational complexity of nonlinear 

indicators, the signal was sampled down to 200 Hz. 

 

Figure 1 The boxplot of frequency-domain feature. 

 

Figure 2 The boxplot of time-domain feature. 

 

 

Figure 3 The boxplot of nonlinear feature. 

 

2.3. Signal quality indicators 

This work extracted 18 features for signal quality 

evaluation, including six frequency-domain features [7, 9]: 

basSQI, pSQI, HpSQI, LpSQI, MpSQI, purSQI, four 

time-domain features [6-8]: sSQI, kSQI, SDN-SQI, PLI-

SQI. And 8 nonlinear features [13-16]: ApEn, SampEn, 

FuzzyEn, DisEn, MSEn, MFEn, RCMFEn, and ELZSQI. 

The distribution of each feature is plotted by boxplot, as 

shown in Figure1, Figure2, and Figure3. 

 

2.4. Model building 
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After the boxplot analysis, 12 practical features are 

used to choose Class A and B, including sSQI, kSQI, PLI-

SQI, basSQI, pSQI, HpSQI, LpSQI, ApEn, SampEn, 

FuzzyEn, MSEn, MFEn. 8 practical features are screening 

Class A, including sSQI, kSQI, ApEn, SampEn, FuzzyEn, 

MSEn, MFEn, RCMFEn. The seven features are helpful 

features for the classification of Class A, B and C, 

including sSQI, kSQI, ApEn, SampEn, FuzzyEn, MSEn, 

RCMFEn. Due to the imbalanced training samples, we 

choose the decision tree algorithm to train three models 

respectively when selecting classifiers. 

 

2.5. Evaluation methods 

For classification of two category, there are four 

evaluation indicators used: Sensitivity (Se), Specificity 

(Sp), Accuracy (Acc), and Measure of Accuracy (Macc). 

According to the positive or negative of the label, two 

indexes were used: true positive (TP), true negative (TN), 

false positive (FP), and false negative (FN).  

Se is defined as: 

Se=TP/(TP+FN). 

Sp is defined as: 

Sp=TN/(TN+FP). 

Acc is defined as: 

Acc=(TP+TN)/(TP+FN+TN+FP). 

Macc is defined as: 

Macc=(Se+Sp)/2. 

For classification of three categories, Aacc, Bacc and 

Cacc are the proportion of the total number of correct 

labels predicted for Class A, B and C respectively. Accz 

is the proportion of the sum of predicted correct labels A, 

B and C to the total. 

Maccz is defined as: 

Maccz=(Aacc+Bacc+Cacc)/3. 

 

3. Results 

3.1. Results of the Class A and B  

When selecting Calss A and B signals, Class A and B 

signal are positive and Class C signals are negative. 5-fold 

cross-validation was perfsormed, and the experimental 

results are shown in Table 3. The average of the results is 

to be evaluated, and Macc, Acc, Se, Sp are 98.89%, 

99.51%, 99.80%, 97.97%. 

 

3.2. Results of the Class A 

When chooseing Class A signals, Class A signals are 

positive, and Class B and C signals are negative. The 

results from the 5-fold cross-validation are shown in 

Table 4, reporting Macc of 92.16%, Acc of 92.14%, Se of 

92.19%, Sp of 92.12%. 

Table 3. The result of the screening class A and B 

 

Fold Macc 

(%) 

Acc 

(%) 

Se 

(%) 

Sp 

(%) 

1 98.72 99.43 99.77 97.67 

2 98.90 99.57 99.89 97.91 

3 98.84 99.53 99.85 97.86 

4 99.00 99.48 99.71 98.29 

5 98.97 99.53 99.80 98.14 

Mean 98.89 99.51 99.80 97.97 

SD 0.08 0.05 0.07 0.24 

 

Table 4. The result of the screening class A  

 

Fold Macc 

(%) 

Acc 

(%) 

Se 

(%) 

Sp 

(%) 

1 92.24 92.14 91.77 92.70 

2 91.85 91.85 91.84 91.85 

3 91.98 91.99 92.46 91.50 

4 92.25 92.26 92.47 92.03 

5 92.48 92.47 92.41 92.54 

Mean 92.16 92.14 92.19 92.12 

SD 0.20 0.24 0.35 0.49 

 

3.3. Results of three classification  

This work train the model on Class A, Class B, and 

Class C signals, and the results from 5-fold cross-

validation are shown in Table 5, achieving Maccz of 

92.68%, Accz of 91.52%, Aacc of 90.74%, Bacc of 

89.72%, Cacc of 97.60%. 

Table 5. The result of the three classification 

 

Fold Maccz 

(%) 

Accz 

(%) 

Aacc 

(%) 

Bacc 

(%) 

Cacc 

(%) 

1 92.86 91.61 90.43 90.85 97.29 

2 92.65 91.45 90.70 89.40 97.86 

3 92.62 91.37 90.04 90.44 97.38 

4 92.61 91.54 91.26 88.72 97.95 

5 92.66 91.63 91.28 89.18 97.53 

Mean 92.68 91.52 90.74 89.72 97.60 

SD 0.09 0.09 0.54 0.89 0.29 

 

4. Discussion 

For the Class A and B signals quality assessment, the 

accuracy is relatively high. The signal from Class A and B 

can be ued to screen for arrhythmia by RR interval 

analysis. For example, the single-lead wearable ECG 

monitoring devices have been used for long-term 

monitoring of patients with atrial fibrillation. The 
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abnormal rhythm can be determined through RR interval. 

For Class A signals quality assessment, the accuracy is 

only 90%. Class A signals are the complete signal and 

used to the diagnosis of diseases directly, which is very 

valuable. The accuracy rate of Class A, B, and C 

classification is only 90%, it is not very meaningful to 

only carry out the three classifications. In practical 

application, the signal quality can be screened according 

to the needs of disease diagnosis. 

In this work, 18 features were analyzed for ECG signal 

quality assessment. Based on the needs of clinical 

diagnosis, feature analysis and model building were made 

for the signal quality assessment for disease screening and 

diagnosis, as well as for the three-stage signal quality 

assessment. Among them, the accuracy of signal quality 

assessment for disease screening can reach more than 

97.5%, and the accuracy of signal quality assessment for 

disease diagnosis can get more than 90%, which is a 

guarantee for the analysis of wearable ECG monitoring 

algorithm.  
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