
Intl. Journal on Cyber Situational Awareness, Vol. 4, No. 1, 2019 

Published online: 2nd December 2019       Copyright © 2019+ C-MRiC.ORG 

Concept and Practical 

Evaluation for Adaptive and 

Intelligible Prioritization for 

Network Security Incidents 

 
Leonard Renners*, Felix Heine*, Carsten Kleiner*, Gabi Dreo 

Rodosek† 

 

*University of Applied Sciences and Arts, Hannover.  
†Universitaet der Bundeswehr Muenchen, Neubiberg. 
 

ABSTRACT 
Incident prioritization is nowadays a part of many approaches and tools for 

network security and risk management. However, the dynamic nature of the 

problem domain is often unaccounted for. That is, the prioritization is 

typically based on a set of static calculations, which are rarely adjusted. As a 

result, incidents are incorrectly prioritized, leading to an increased and 

misplaced effort in the incident response. A higher degree of automation 

could help to address this problem. In this paper, we explicitly consider 

flaws in the prioritization an unalterable circumstance. We propose an 

adaptive incident prioritization, which allows to automate certain tasks for 

the prioritization model management in order to continuously assess and 

improve a prioritization model. At the same time, we acknowledge the 

human analyst as the focal point and propose to keep the human in the loop, 

among others by treating understandability as a crucial requirement. 

 

Keywords:  Incident Prioritization, Network Security, Cyber Security, 

Adaptive Learning. 
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1 INTRODUCTION 

An important part of the analysis of network security incidents is to estimate 

a priority, describing the importance of the situation and determining the 

order and magnitude of the incident response. This prioritization becomes 

necessary due to the fact that the number of incidents outweighs a limited 

working power. In the worst case, some incidents are continually left 

unaddressed, but in any case the response time can be delayed by the 

handling of other incidents. Therefore, the limited time of the analysts needs 

to be assigned cautiously. Although prioritization itself is nowadays a part 

of many approaches and tools towards incident detection and risk 

assessment exist, the dynamic nature of the problem domain is often 

unaccounted for.  

 

The prioritization is typically based on a set of static calculations, which are 

rarely adjusted. Oftentimes, there is no explicit process to identify errors and 

even then, improvements are made and evaluated manually on a best guess 

basis. The problem can be again attributed to the necessary manual effort, 

which is already a problem in the application domain in general. For one, 

reports still show an increasing number of vulnerabilities, threats and cyber 

incidents on the whole (IBM, 2017) At the same time, the available human 

domain experts already depict the bottleneck regarding these issues (Bhatt, 

Manadhata, & Zomlot, 2014). Incorrect prioritization further aggravates this 

problem, as errors in the rating lead, among other things, to false positives 

and respective misplaced efforts. In fact, false positives can even result in 

mistrust in the system, which leads to potential harmful incidents being 

ignored, as they are assumed to be false alarms as well (FireEye, 2014).  

 

Moreover, the number of devices to be monitored and secured is also 

continuously increasing at a rate larger than the human resources, even 

further aggravating the problem of accurate and timely incident 

prioritization. Unfortunately, the automation of respective tasks within tools 

for network security, and most importantly Security Information and Event 

Management (SIEM) systems, is still lackluster and the prioritization has 

been identified as one of the major challenges in achieving SIEM 

optimization (Ponemon Institute LLC, 2017). 

 

In this paper, we target these problems explicitly. That is, we focus on 

different aspects of automation and assistance for tasks related to the 

incident prioritization. In turn, this results in more accurately prioritized 

incidents and an improved distribution of the limited working power for the 

incident response. However, we also believe that the human resource has to 

be the focal point of network security. Therefore, we argue for an approach 
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that adds intelligibility as a crucial requirement for any effort towards an 

increased automation. 

 

Contribution 
This paper presents concepts for an adaptive and intelligible prioritization of 

network security incidents. In particular, we integrate and propose the 

combined use of individually presented additions to the incident 

prioritization process. We specify an approach to define and learn 

prioritization rules, collect feedback data and generate as well as evaluate 

adaptations for existing calculation directives. For the entire process, 

comprehensibility is considered an important requirement. Thus, our 

approach introduces an increased degree of automation in this domain, 

while aiming to keep the prioritization as well as the adaptation intelligible. 

 

Outline 
The remainder of this paper is structured as follows: First, related work is 

covered in Section 2. In Section 3, we discuss requirements and introduce 

our process and conceptual models for an adaptive and intelligible incident 

prioritization. Section 4 then presents an overview of the evaluation of the 

main components from the presented approach. Future directions of research 

are identified and discussed in the subsequent Section 5. The final Section 6 

provides a conclusion and reviews our ideas and contribution. 

 

2 RELATED WORK 

The following Table 1 summarizes the areas of related work with regard to 

the two major requirements outlined in the introduction: (1) incident 

prioritization with (2) a higher degree of automation (learning/adaptation). 

Within the table, a full circle (●) corresponds to a fulfilled requirement, 

whereas the semi-filled circle (◑) indicates a partial fulfilment and the 

empty circle (○) depicts an unaddressed requirement. We thereby show 

open topics and underline the contributions of this work, as we target both 

aspects explicitly. 

 

Table 1: Overview of areas of related work. 
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Approaches that address the prioritization of network security incidents do 

not yet explicitly account for the dynamic aspect of the domain in terms of 

an automated learning or adaptation. In contrast, advances towards more 

automated processes by implementing machine learning techniques for the 

learning and adaptation do not target incident prioritization. The most 

closely related approaches still target different outcomes (primarily 

classification) and thus underly other requirements, which lead to distinct 

results. Individual approaches from the areas shown in Table 1 will be 

shortly discussed in the remainder of this section in the same order as 

displayed in the overview. 

 

Generally, the realm of commercial products and especially SIEM systems 

pose an area of related work, as the goal of incident prioritization has been 

established within these systems alongside different realizations. However, 

most of the systems are based on static calculation formula, which 

sometimes refer to user-defined or manually changeable prioritization 

concepts. For example, QRadar defines an event magnitude on the basis of 

three sub-priorities. Each of those is influenced by rules within the event 

processing, which add or subtract scores based on specific event properties. 

In contrast, ArcSight employs one particular calculation formula. However, 

this formula uses external concepts, which again can be influenced by the 

SIEM configuration. In that sense, both systems operate on similar terms 

and use a configurable, but fixed, priority calculation. And neither offers 

methods to learn or adapt the prioritization model or configuration 

automatically. 

 

From the research community, similar approaches for risk assessment and 

threat evaluation frameworks have been proposed to calculate the risk and 

thereby priority of alert and incident data. Townsend and McAllister 

(Townsend & McAllister, 2013) provide a prioritization framework in 

which they define the priority, called threat, of an incident as a combination 

of likelihood, impact and risk. They further describe each aspect in an 

abstract and textual description. Kim et al. (Kim, Kang, Luo, & Velasquez, 

2014) propose a similar approach, but add specific, quantitative 

measurements for each factor and concrete calculation formulas. Yet again, 

these priorities and calculations are based on the static framework 

definitions. 

 

Within the research community, alert and incident detection, prioritization 

and response has in general gained a lot of attention in recent years. 

Multiple approaches have been proposed towards data integration and 

correlation, but also regarding automatically induced models. However, 
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most progress has been within, and limited to, the intrusion detection 

domain. For this area of work, we would like to refer to the different survey 

papers, e.g. the taxonomies presented by Axelsson (Axelsson, 2000) or 

Debar et al. (Debar, Dacier, & Wespi, 2000) and, with more focus on the 

computational intelligence, the review by Wu and Banzhaf (Wu & Banzhaf, 

2010). Here, the discussion will primarily concern prioritization and the 

integration of human analysts, especially towards adaptation. 

 

Interesting work has been proposed by Veeramachaneni et. al. 

(Veeramachaneni, Arnaldo, Korrapati, Bassias, & Li, 2016) as they present 

an analyst-in-the-loop system for big data analytics. Their framework is 

composed of four building blocks: big data behavioral analytics, outlier 

detection, feedback and supervised learning. They describe an application of 

their system, combining supervised and unsupervised learning techniques, 

by which major improvements of the performance of the outlier detection 

are achieved. With respect to our concepts, the most important aspect of the 

framework is the feedback mechanism and its use in model improvement. 

However, since the approach focuses on outlier detection, the feedback 

consists of the classification labels, which in turn are used to learn a 

supervised model to be used in conjunction with the unsupervised model 

from the big data behavioral analytics. This is greatly different from our 

approach, as we propose an incorporation of feedback in an already existing 

model, which originated possibly, but not necessarily, from supervised 

learning. Furthermore, their feedback and learning refer to the classification, 

which poses different challenges and requirements than the prioritization. 

 

Das et. al (Das, Wong, Dietterich, Fern, & Emmott, 2016) proposed a 

feedback improved anomaly detection system. They provide an approach to 

employ an unsupervised anomaly detection and build a supervised weighing 

for an accuracy on top to decrease the ranking of similar instances of 

nominal data. In these aspects, their work is rather similar to the approach of 

Veeramachaneni et. al. as they also apply supervised learning on top of an 

unsupervised model. Thus, our work also differs regarding the classification 

in contrast to prioritization, as well as concerning the multiple objective 

functions used within our approach. However, their work, similar to our 

approach, focuses on the issue, which events to show to the analyst to gather 

feedback. Das et. al. assume that the highest scored anomalies should be 

shown to the analyst, which neglects false negatives. We explicitly target 

this type of error as an application scenario and consider concepts to deal 

with resulting requirements. 
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Another approach was proposed by Ben-Asher and Yu (Ben-Asher & Yu, 

2017), which follows a similar line of thought. They describe a so-called 

synergistic architecture for human-machine intrusion detection. This 

architecture is composed of three primary building blocks: the analyst, data 

collection and a detection engine. The analyst is supposed to actively 

interact with the other two components. As a result, an improvement in the 

automated tasks is achieved, whereas the automation helps in reducing the 

workload of the analyst, leading towards a better control of the detection 

instead of the alert evaluation. The general idea and especially the 

motivation for automation and human interaction align well with our 

approach, but this work differs in the architecture and its application 

scenario. We consider a SIEM environment (which is on a higher level of 

abstraction) and highlight the prioritization aspect. Therefore, we develop 

more specific means to decide where interaction (i.e. feedback) is needed 

and how it can be incorporated to improve the prioritization model. 

 

Work in a different, but also interesting direction was introduced by 

Shedden et. al. (Shedden, Ahmad, & Ruighaver, 2010). They propose a 

learning focused research in the incident response domain. Learning in this 

case involves advancing human knowledge as well, as they define single 

and double loop learning for incident response. They underline the need for 

the latter one, i.e. questioning the incident handling in the first place and 

also organizational structures. As a result, they propose to use the incident 

response process to increase the analyst’s knowledge and the usefulness 

within the company. However, these processes focus on organizational 

learning and general knowledge induction from the incident response 

process and is not concerned with the technical model and evaluation. 

Hence, in comparison, our approach can rather be seen as a tool to facilitate, 

especially single-loop, learning. And as such, we focus on a task not further 

detailed by Shedden et. al., but which does not contradict the concepts they 

propose. 

 

The human factor within an adaptation approach and more specifically as 

the target of multi-objective optimization is part of the concepts proposed by 

Kelley et al. (Kelley, Drielsma, Sadeh, & Cranor, 2018). They present an 

optimization approach for the adaptation of privacy policies based on user 

feedback in a location sharing application. They also define the problem 

regarding different objective functions and discuss methods to meet these 

requirements in an automated search for improvements of the privacy 

settings. However, these aspects also depict the only similarity to our 

approach and as such, the work only concerns one particular part of the 

approach proposed in this paper. Furthermore, their application scenario, 
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adaptation of privacy settings, yields different challenges and responses. 

Consequently, the algorithms for the assessment and adaptation are different 

from our work. 

 

3 APPROACH FOR AN ADAPTIVE AND INTELLIGIBLE 

INCIDENT PRIORITIZATION 

This section introduces our approach for an adaptive and intelligible 

incident prioritization. Coming from an understanding that sees flaws in the 

prioritization as an unalterable circumstance, we define concepts for a 

continuously improving incident prioritization to cope with resulting 

challenges. Therefore, we propose the following process model depicted in 

Figure 1. 

 

 
Figure 1: Overview of the main processes for an adaptive incident 

prioritization. 

 

We consider the incident prioritization and an adjusted priority in terms of 

incident selection (middle lane). The latter is introduced due to the feedback 

process, which takes place at incident response time. The adjusted priority 

directs the response and thus feedback to rare and unseen instances, while 

the feedback is an appraisal of the priorities by the analyst in order to assess 

and later adapt the system. The other two parts deal with the increase of 
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automation and describe the automated induction (top lane), assessment and 

adaptation (bottom lane) of the prioritization policy. The policy is hereby a 

central element and defines the actual rules for the priority calculation. Note 

that the policy, although displayed multiple times for better readability, 

actually represents a single instance, similar to the database. 

 

The individual process paths and lanes are loosely coupled, although some 

dependencies between the different tasks exist. For example, an incident 

needs to be prioritized before it receives a response and similarly, feedback 

is necessary for the adaptation process, as will be detailed later in this 

section. Furthermore, the processes are envisioned to be performed in a 

continuous loop, where each path can start repeatedly due to the depicted 

events. That is, each new incident will be prioritized and similarly, an 

incident response is executed for every incident, in order of their priority 

and depending on the availability of an analyst. The adaptation can as well 

be triggered on the basis of different events, e.g. manually, after a specific 

amount of time, after a certain number of feedback has been recorded or 

when the average error surpasses a given threshold. Yet again, the 

individual aspects influence each other, as new incidents with different 

priorities may change the order of the incident response and the adaptation 

is used to modify the prioritization policy, which again results in reordering 

of open incidents and further influences future prioritization. That being 

said, the processes themselves can generally be executed asynchronously 

and in parallel. 

 

Within the remainder of this section, we first establish an understanding of 

the prioritization process, including the possibility for feedback and an 

adjusted prioritization for an improved feedback collection. The second part 

is concerned with the increase of automation. That is, we discuss how the 

quality of a prioritization policy can be assessed and finally consider means 

for the automated induction of a prioritization model and adaptations to an 

existing policy. 

 

Prioritization 
Model 
The first aspect is the definition of an incident prioritization model, also as a 

basis for the remaining concepts. A suitable model should be human 

readable and modifiable. For one, this is a lesson learned from the intrusion 

detection domain. Maloof et al. established that “human understandability of 

learned concepts is important because if a system could act in a way that is 

harmful to humans, then the concepts responsible for this behavior require 

modification” (Maloof & Michalski, 1995). Clearly, a system for the 
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prioritization of incidents falls under this definition as cyber-attacks are 

threatening to harm humans and companies, which a timely and proper 

incident response may prevent. Additionally, especially in the network 

security domain, we need to establish trust in the automated decisions, for 

which an understandable processing is certainly advantageous. The 

possibility to comprehend the realization of an outcome allows for a deeper 

understanding and better interpretation, which again is a necessary 

requirement to reasonably propose and validate modifications of the 

prioritization model. We propose to use a rule-based model in order to 

express prioritization directives. Expert systems have proven to be both 

understandable for humans and enable an automated processing of the 

application logic. Furthermore, they can be used to explicitly model 

influential factors for the priority calculation. An according model has first 

been established in (Renners, Heine, & Rodosek, Modeling and learning 

incident prioritization, 2017) and a short overview is given in Figure 2. 

 

 
Figure 2: Conceptual class model for rule-based incident prioritization 

 

An Incident is generically defined as an entity with Attributes. Each attribute 

is a key-value pair with a name and a value. We then define a Policy to 

express and implement prioritization directives for those incidents. Each 

policy has a set of Rules and Derived Attributes. The derived attributes are 

used to encapsulate re-usable knowledge, for example a check, whether the 

source ip-address of an incident is within a certain network range. This 

knowledge is formulated in so-called Expressions. These are either Boolean 

expressions (resulting in true or false) or arithmetic expressions (resulting 

in a number), which both may refer to the attributes of the incident. The 

actual rules to express the prioritization have Constraints and a Calculation. 

Constraints are again Boolean expressions which need to evaluate to true in 

order for the rule to fire. The calculation then is an arithmetic expression 

(which may also contain Boolean expressions) to compute the actual rating. 
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Naturally, the derived attributes can and should be used within both parts of 

the rules, simplifying the overall policy and removing redundancies of 

information. 

 

The prioritization is generally performed by evaluating the policy for 

incoming incidents, which means first evaluating the derived attributes, then 

identifying applicable rules and lastly performing the respective priority 

calculation. 

 

Incident Selection 
We add a second step after the calculation of an initial priority to derive an 

adjusted priority to lower the risk of false negatives. This step is helpful for 

our application scenario as false negatives are a double threat for incident 

prioritization. For one, incidents often times are part of an attack chain and 

the real harm follows after an initial breach. For example, establishing ways 

for data exfiltration or escalating privileges and spreading onto more critical 

systems. Thus, a timely response is generally essential to prevent and 

contain the development of incidents, and false negatives receive a late 

response as their priority is set too low. The second reason for a 

concentration on false negatives is given by the related adaptation use-case. 

A strong synergy between the feedback and the model monitoring and 

adaptation exists. Yet again, the feedback is directly related to the incident 

response and as a result, false negatives receive a late response and cannot 

be used in time to improve the system, thus retaining the errors within the 

prioritization for the future. We therefore introduce incident selection as a 

second part of the prioritization process to alter the original priority. The 

process has to focus the feedback on strong candidates for false negatives, 

for example based on uncertain decisions or rare characteristics. However, 

one also has to keep in mind the problems with false positives and the 

potential increase in work due to the incident selection with regard to a 

delay for other, regularly and correctly prioritized incidents.  

 

We propose to target this challenge by focusing on uncertainty in the 

prioritization process, combined with a threshold to account for the most 

important incidents. That is, we define a confidence measure, which is used 

to derive an adjusted priority in order to consolidate the feedback process 

and, built on top, the adaptation. The origin of this measure can be based on 

two factors: the incidents themselves and the prioritization model. In terms 

of the proposed policy model, the desired behavior can be enforced by 

adding another parameter for the confidence to the prioritization rules. 

However, this approach has the drawback to require an explicit definition of 

certainties, which again can be quite subjective and error-prone. The 
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parameters could, however, also be derived from the learning process, for 

example by leveraging the number of instances and resulting error metrics 

on a leaf- and thus rule-local level. 

 

The second way is detached from the prioritization model and instead 

focuses on the incidents. In this case, we pay attention to rare and unseen 

instances, because these are most likely to contain errors. Furthermore, if a 

similar incident has already received a response, it is more likely that a 

potential error has been expressed in terms of feedback as well, which in 

consequence already enables a correction by the adaptation. For the 

implementation, a clustering approach can be used to generate a similarity 

measure for incidents. A promising candidate is the Local Outlier Factor 

(LOF) as it is a density-based clustering, which can result in a normalized 

value to describe the outlierness of instances. Outliers are the prime targets 

for an earlier feedback, as they are the very definition of rare and unseen 

instances. Additionally, approaches have already been developed to 

implement an iterative and thus continuous cluster construction, which can 

work conjointly with the continuous prioritization of incidents. 

 

Both approaches are not necessarily contradictory, but could be applied in 

combination.  Additionally, the threshold to constrain the incident selection 

needs to be defined and the process in general should be configurable to be 

deployed in a specific environment. For the realization, we propose the 

following formula for the incident selection (cf. (Renners, Heine, Kleiner, & 

Rodosek, 2018)): 

𝑃𝑟𝑎(𝐼) = {

𝑃𝑟𝑜(𝐼), 𝑃𝑟𝑜(𝐼) ≥ 𝑡ℎ

𝑃𝑟𝑜(𝐼) + (𝐶(𝐼)⏞
[0,1]

∗ 𝑓𝑐⏞
[0,1]

∗ (𝑡ℎ − 𝑃𝑟𝑜(𝐼)))⏟                        
[0,𝑡ℎ]

, 𝑃𝑟𝑜(𝐼) < 𝑡ℎ
 

 

An adjusted priority 𝑃𝑟𝑎(𝐼) is directly determined by the original priority 

𝑃𝑟𝑜(𝐼), if it exceeds a configurable threshold 𝑡ℎ. Below this threshold, the 

confidence 𝐶(𝐼) is used to adjust the rating. The value of 𝐶(𝐼) can originate 

from either the policy, the clustering, or a combined value. The factor 𝑓𝑐 is 

introduced to further enable a customization of the influence of this 

confidence. To represent the requirement that the adjusted ratings may not 

surpass the threshold, both, the values of the confidence and its 

parametrization must have values within [0,1]. The given equation thus 

defines the adjusted priority in such a way that the values above the 

threshold remain unchanged, but the incidents below are adjusted toward the 

threshold with regard to the confidence of the prioritization process. Since 

the adjusted priority can never exceed the threshold value, a prioritized 
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response for severe incidents is ensured. All things considered, we can 

extend the prioritization process with the incident selection, as depicted in 

the following Figure 3. 

 

 
Figure 3: Prioritization and feedback process including incident selection 

as a confidence-based extensions to enable more diverse feedback and 

improve its effectiveness within the adaptation. 

 
Feedback 

The feedback itself is given in form of correct priority values for the 

incidents. Positive feedback, i.e. confirming a correct rating, is also possible. 

The feedback is considered the main data basis for the model assessment. It 

allows to monitor the quality of predicted priorities and can be used within 

the later process to evaluate different models and even to automatically 

propose adaptations. 

 

Increasing Automation for Incident Prioritization 
The main goal of our approach is an increased automation in tasks related to 

incident prioritization. The prioritization itself is already implemented as an 

automated process in most common products and approaches. The creation, 

monitoring and improvement of a given policy, however, remains a rather 

static and manually performed task. Therefore, this part of the proposed 

approach targets the policy management and discusses the origin and 

improvement of a prioritization policy. 

 

Policy Model Assessment 
First of all, we need means to evaluate the quality of a prioritization policy. 

This helps to recognize the necessity for an improvement and can direct as 

well as validate the automation effort. As mentioned before, the feedback is 

collected for this purpose and therefore plays a major role in this process. 

However, the understandability adds further important requirements that 

need to be considered. Therefore, we modeled the problem using multiple 
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objective functions and identified the following aspects for the assessment 

of prioritization policies: 

 

Quality is used to describe how accurate the model is able to produce 

correct priorities. For that matter, the prioritization results can be compared 

to the corrected feedback data. It can be evaluated using a usual error 

metric, e.g. the mean average error (MAE). The quality is calculated solely 

referring to the feedback data. Especially with the introduced incident 

selection, representatives of incident clusters receive an earlier feedback and 

the adaptation can correct errors, which are also applicable to incidents that 

did not receive a response yet. Otherwise, the adaptation would approximate 

these potentially wrong priorities. 

 

Complexity indicates how difficult to understand the prioritization model is 

and the main task of this objective function is to lead to an understandable 

policy. Thus, this objective function refers to the aspect of trust and the 

possibility to implement and understand changes by an intelligible model. 

As it is based on the size and comprehensibility of the policy, i.e. the rule 

base, a measure of the complexity can be defined as the cumulative sum of 

all elements of a policy. In other words, the complexity of a policy is viewed 

as the sum of the complexity of each rule, which in turn is based on the sum 

of the complexity of the expressions in its constraints and calculation. 

Finally, the complexity of an expression is defined recursively as the 

number of operators of the expression and all its nested expressions. 

 

Similarity/Distance models the degree of deviations between two policies, 

i.e. indicating the comprehensibility of the changes. The goal of this 

objective function is to remain as close as possible to the original one. The 

similarity can be defined with respect to the complexity and describes how 

different two policy instances are. In this case, it can be given by the 

complexity of non-overlapping parts of two policies. The distance can be 

calculated finding the best match for each element of one policy, summing 

up the distances and adding up the complexity of each unmatched element 

in the end. We first need to identify and remove identical elements from the 

policy. In a top-down approach, i.e. starting at the compound components 

like rules or derived attributes, down to an expression level, the policy 

elements are iterated and matched to potential counterparts. These matching 

elements are then removed from either policy. Finally, the sum of the 

complexity of the remaining elements depicts the actual distance between 

two policies. 
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These three objective functions depict a potential field of tension as the 

individual requirements may contradict each other. For example, more 

precise predictions may be achieved by a more complex model as specific 

cases can be treated individually. Similarly, a reduction of the complexity 

may still depict extensive disruptions in terms of the similarity, making 

changes harder to grasp. In order to yield actionable results, the individual 

objective functions require a method to be combined for an overall 

comparison. The simplest, but also effective way to achieve this is the 

application of a weighted sum. That is, weights need to be defined for the 

three objective functions and their summation yields a final, comparable 

score. Naturally, these weights should be configurable and are also 

dependent on the value ranges and a potential normalization of the 

measures. A normalization of the complexity and distance can be performed 

by viewing their values in relation to the complexity of the original policy. 

The error metric typically already has suitable properties. Thus, the 

assessment can eventually be used to assist with the task of comparing, 

discarding and approving adaptations. Note, that this comparison is also 

possible for manual adaptations and generally offers the advantage to shift 

the attention to a more holistic view. 

 

Policy Induction 
The first aspect with respect to an increased automation is the initial policy 

creation. That is, even before gathering feedback, the initial task of creating 

a prioritization policy is a difficult and labor intense work. Therefore, we 

propose to employ learning mechanisms, similar to learning intrusion 

detection models, to induce prioritization rules. The biggest difference to 

classical alert classification is the desired outcome of incident prioritization. 

Instead of classifying an alert into a specific category (of two or more), the 

outcome is a numeric value. Therefore, the same learning mechanisms 

cannot be applied. As another requirement, the resulting model should be 

compatible with a human readable and modifiable policy model. With 

respect to the model assessment, the quality naturally depicts the most 

important aspect. However, the focus on an understandable policy is also a 

desirable property. Clearly, the distance cannot be considered in an initial 

induction of a policy as there is no reference model. 

 

We developed a Domain Specific Language (DSL) for the proposed policy 

model. Thus, a policy can be specified manually. However, a second option 

is automating the process by learning a prioritization model from labeled 

incident data. One possible candidate for the induction is given by model 

trees. Within the intrusion detection domain, decision trees depict an 

established mechanism to induce understandable models for the task of alert 
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detection and classification. Model trees are a special case of decision trees, 

but instead of classification, they perform calculations within their leaf 

nodes. That way, they are generally suitable to predict numeric values. 

Additionally, their structure can be interpreted in terms of rules and, as such, 

a transformation into the policy model is possible. In fact, even an 

abstraction of knowledge, i.e. learning derived attributes, is possible from 

the split decisions in the tree structure. And to a limited extent, the 

complexity can be configured by the tree size and minimum number of 

instances for leaf nodes. More details on model induction for incident 

prioritization have been the topic of earlier work and can be found within 

(Renners, Heine, & Rodosek, Modeling and learning incident prioritization, 

2017) as well. 

 

Generating Policy Adaptations 
The other advance towards further automation within our approach is given 

by the actual generation of policy adaptations. The process follows a rather 

similar goal as the one for learning, but has to consider the third objective 

function, similarity. Therefore, we propose to target this problem by 

employing learning algorithms, which do not solely rely on the feedback 

data for the model induction. Instead, we assert to take the existing policy as 

a starting point and orientate the learning of adjustments along the model 

assessment. The goal of the adaptation is an improvement of the incorrect 

prioritization with respect to the feedback data, while maintaining a simple 

model, which stays as close as possible to the existing policy. Consequently, 

the adaptation algorithm has to use the multi-objective assessment guide the 

process towards better adaptations, regardless of the applied techniques. 

Although the outcome, a prioritization policy, is equivalent, the adaptation 

can and has to take all objective functions into consideration in order to 

produce suitable results. Thus, the initial algorithms for the policy induction 

cannot be used directly. An isolated learning of two models from similar 

data may yield very different results. This is especially true for a learning 

approach like model trees, where a variation in the higher part of the 

hierarchy has a large influence on the remaining model construction. We 

considered several ideas, including evolutionary algorithms, as they are a 

prime candidate for multi-objective optimization, but the best results so far 

have been achieved by the following greedy approach. The idea is to 

directly use the current policy model and perform changes to the policy 

elements sequentially and greedily. After each individual alteration, the 

change is either maintained or rejected, depending on an improvement with 

respect to the objective functions. To determine possible alterations, we 

mainly exploited the policy structure. As a result, we propose a combination 

of the following two ideas. 
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Changing Expression Values (Ada-Exp): The first strategy focuses on the 

smallest units within the policy model, the expressions. As the expression 

structure in general is too universal to systematically derive changes, we 

focus on a specific type, which compares the incidents attribute values. 

Hence, this approach mainly deals with incorrect specifications of 

expressions used to define lists and ranges of data, e.g. a set of system 

assets, or an address range for network segments. Mainly, this knowledge 

would be used within the derived attributes to encapsulate and re-use the 

information. Consequently, these errors lead to incorrect calculations, 

although the rules are actually logically sound, but the decisions are based 

on wrong reference values. We introduce changes to these value ranges 

based on the properties, i.e. attribute values, of the incorrectly prioritized 

incidents. The algorithm iterates over all attributes of the incidents and for 

each attribute, all relevant expressions within the policy are retrieved. Then, 

for each distinct value of that attribute within the faulty data, the value side 

of each expression is inverted to either include or exclude the attribute 

value. As mentioned, these changes are performed greedily, i.e. the change 

is retained in case of an improvement of the policy or reverted otherwise. 

 

Replacing and Refining Rules (Ada-Rule): The second concept is 

developed to target errors in the rules of the policy themselves. The 

approach therefore adopts the insights gained from studying model trees and 

their rule structure as a candidate for policy learning. Learning a completely 

new policy from a model tree violates the idea of preserving a similar 

model, but the concepts of the approach are still relevant to the adaptation 

use-case. In particular, the same learning mechanism can be applied, but 

only for a specific rule within the policy. To that end, the error of the policy 

is broken down to the rule-level and error-prone rules are replaced by, 

potentially multiple, new rules. Figure 4 depicts a minimal example of the 

process. 
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Figure 4: Exemplary depiction of the rule refinement using model tree 

induction to generate more specific sub-rules. 

 

The incidents rated by the most error prone rule (here: number 2) are used to 

learn a new model tree. For each leaf node of that model tree, a new rule is 

created and added to the adapted policy, retaining the constraints from the 

original rule, but adding further constraints and adopting the calculation 

from the model tree. The constraints from the replaced rule have to be 

maintained, as they were responsible to narrow down the incidents to that 

point. The new sub-rules thus define processing of data actually reaching 

this far down in a more specific manner, including a potential correction of 

the actual calculation. As these changes are performed locally and rather 

small model trees are built, the overall structure of the policy can remain the 

same, which benefits similarity to the original policy. Attempting 

adaptations only in the order of error size thus focuses the changes on the 

most serious issues. 

 

In a future production system, it is certainly desirable and recommended to 

use a combination of these two approaches. Adjustments aim at two 

different modification aspects of the policy model and thus also target 

distinct error types. Such a combination can for example be the sequential 

application of either approach (Ada-Seq) after the other. However, the 

general description of the approach naturally allows to choose or exchange 
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multiple and different strategies. The multi-objective assessment can in 

either case and for all candidates be used to compare and evaluate the 

different adaptations, to the point where a suitable representative is found to 

be used for future prioritization. 

 

4 EVALUATION OF CONCEPTS AND ALGORITHMS 

We implemented our approach for an adaptive and intelligible prioritization 

of network security incidents using the concepts described above and with 

the details stated in the referenced publications. On that basis, a first 

evaluation of the concepts has been performed on a real-world data set of 

QRadar events as well as on synthetic data with reference to the 

prioritization directives documented for the ArcSight system. 

 

Initial Learning 
In (Renners, Heine, & Rodosek, Modeling and learning incident 

prioritization, 2017) we have examined the capabilities of the model tree 

induction for learning prioritization policies. The results have shown that 

model trees can indeed be used to learn policies and that derived attributes 

depict a possibility to reduce and shift the complexity of the resulting model 

without negatively influencing the model's prediction quality. However, we 

have also seen that the complexity in general can be rather high, since model 

trees and linear models are limited in their capabilities to approximate 

prioritization directives. Yet, ultimately learning model trees can be used to 

generate an initial set of prioritization policies. 

 

Adaptation 
The core of the evaluation in this paper is an analysis of the possibilities of 

the adaptation approach under the application of the multi-objective model 

assessment. In a comparative assessment (evaluation part in Figure 5), we 

checked the results of the adaptation algorithms discussed in the previous 

section (namely Ada-Rule, Ada-Exp and Ada-Seq) against the outcome of 

isolated new model tree learning (MT-Policy) and in comparison to the 

predictions from the construction of an artificial neural network (nn). In 

order to perform a realistic assessment, a complex setup procedure has to be 

employed (cf. Preparation in Figure 5 which will be explained below and 

gives a complete overview of the evaluation of the adaptation. 
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Figure 5: Overview of the evaluation setup using subsets of the two different 

datasets, diverse starting policies and various learning approaches. 

 

Different adaptation mechanisms are evaluated and in order to analyze the 

versatility and for a better comparability the evaluation is performed on 

varying starting policies and includes further learning algorithms. 

In particular, the following steps are performed: 

 

1. Acquisition of incident data and separation into Training Incidents 

and Test Incidents. 

2. Manual specification of a policy (Correct) that correctly represents 

and defines the labels for the Feedback and Test Data.  

3. Manual modification of the correct policy to introduce errors in the 

prioritization process and generate the first reference policy 

(Error). 

4. Creation of priorities for the Prioritized Incidents by applying the 

incorrect policy (Error) to the Training Incidents. 

5. Learning of the further reference policies MT-Policy and MT-DA 

from the Prioritized Incidents, which thus also contain errors with 

respect to the Feedback Data. The names are chosen in reference to 

the algorithms, i.e. to learn a policy using model trees and including 

an abstraction of derived attributes. 

6. Application of the different adaptation approaches, depicted as gray 

boxes, using the Feedback Data and each different Reference 

Policy. In particular, adapting rules (Ada-Rule), changing 

expression values within derived attributes (Ada-Exp) and the 
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combined sequential approach (Ada-Seq) were applied. Although 

independent of a reference policy, the performance of regular model 

tree learning (MT-Policy) and an ANN (nn) are included in the 

evaluation. 

7. Performance measurement of the adaptation results on the correctly 

labelled Test Data and in comparison to the reference policy itself 

(original). 

For the adaptation, the whole feedback dataset is used to adapt the policy 

and the test incidents are used to evaluate the performance of the adapted 

model (result). The following figures show results for the adaptation 

evaluation. Figure 6 shows results for the ArcSight dataset starting with the 

error policy, whereas Figure 7 uses the same dataset but starting with the 

MT-DA policy. Finally, Figure 8 shows results starting with the error policy 

on the QRadar dataset. 

 

 
Figure 6: Adaptation result quality for ArcSight data starting with error 

policy. 
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Figure 7: Adaptation result quality for ArcSight data starting with MT-DA 

policy. 

 

 
Figure 8: Adaptation result quality for QRadar data starting with error 

policy. 

 

In all figures, different approaches are aligned along the x-axis for 

comparison: the reference policy (original), standalone stock model tree 

learning (MT-Policy), the three different adaptation approaches (Ada-Exp: 
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changing expression values, Ada-Rule: rule adaptation and Ada-Seq: 

combined adaptation) and finally the results of training an ANN (nn). 

Multiple measurement metrics corresponding to the multiple optimization 

goals are displayed as the bars of the chart indicated by the different colors. 

The Y-value thus describes the results on each of the respective metrics. As 

the measures are within similar value ranges, such a grouped display is 

possible. The similarity of the value ranges arises from the considerations 

for the weighted formula approach, thus using values relative to the original 

policy for the complexity and distance. The main comparison is, however, 

focused on the same metrics between different approaches. As for the 

complexity and distance, the ANN results are not comparable as ANN have 

a fundamentally different model structure. The goal of an ANN is not 

primarily comprehensibility and as such both model complexity and 

distance would result in extremely high measures for an ANN (e.g. 

proportional to the number of neurons). In order to be able to draw 

conclusions on the other approaches and metrics, these values are omitted 

here for ANN. 

 

The results show that all approaches have successfully decreased the error 

of the predictions, which was the main goal of the adaptation and primarily 

weighted at the algorithm configuration. In particular, Figure 6 shows that 

the approaches Ada-Exp and Ada-Seq provided the lowest error metrics 

combined with the best measures for similarity and distance, especially 

when compared to new learning of a policy (MT-Policy). This clearly 

proofs the advantages of an adaptation approach over new model learning. 

In comparison Figure 7 still shows advantages of these two approaches with 

regard to distance and complexity, yet this time with comparable error 

metrics. From Figure 8 one can also conclude similar results for another 

dataset, proving the general validity of the results. Here comparable error 

metrics for all approaches can be found, yet better similarity and distance 

metrics again for Ada-Exp and Ada-Seq. Specifically the advantages of 

Ada-Rule over MT-Policy are much smaller here. This can be attributed to 

some specific properties of this sample dataset with a restricted domain for 

priorities. 

 

In summary, in all experiments one of the adaptation approaches 

outperformed the isolated learning regarding the understandability. Note 

that both factors, complexity and distance, have to be considered. In 

multiple cases, mainly on the ArcSight dataset, the adaptation results also 

outperformed stock model tree learning solely regarding the error-metrics 

on the training and test data. In a combined effort, totalizing the errors and 
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including distance and complexity metrics, an overall assessment of the 

quality further underlines the advantage of the adaptation approach. 

 

Incident Selection 
In a second step, we examined the influence of the incident selection on the 

aforementioned adaptation process. There are primarily two reasons why a 

low impact of the incident selection is desirable. On one hand, in a practical 

application not all incidents might get feedback from a human expert due to 

resource constraints. Thus a good priority computation based on a smaller 

number of incidents as training data will help in this scenario. In addition, 

the smaller the number of the incidents required to achieve a low 

prioritization error, the faster it is possible to adjust the priorities to their 

actual values. Thus a system requiring fewer incidents as training data will 

be more dynamical in the adaptation.  

 

The incident selection is evaluated by providing partial Feedback Data, e.g. 

only 20% instances training incidents. These chunks of the dataset are then 

chosen in two ways. The number of instances is for one chosen in order of 

the original priority and secondly with the application of the incident 

selection and ordered by the adjusted priority. Thus, different instances are 

given as feedback data, although the same instances receive the same 

feedback. This allows to observe the impact of the different, partial 

feedback data on the effectiveness of the adaptation process and accordingly 

an assessment of the advantages of the selection process. 

 
Figure 9: Incident selection impact for ArcSight data starting with error 

policy. 
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Figure 9 shows the results of the impact of the incident selection on the 

mean average error only exemplarily for the ArcSight dataset starting with 

the erroneous policy.  

 

The first observation to note is that the results generally improve with the 

amount of training data. The largest impact of the reduced number of 

training data is on the isolated learning approaches, the model tree learner 

(MT-Policy) and the ANN (nn). Likewise, the incident selection also has 

the biggest effect on these algorithms. For the ANN, applying outlier 

detection to include different incidents in the training data has roughly 

bisected the resulting error on the test data. Although not as distinctive and 

steadily in the effect, the same trend can be recognized for the stock model 

tree learning. One explanation of the phenomenon that the adaptation 

approaches are not as affected is that a lot of information is already 

contained in the reference policy. Although it contains certain errors, it still 

also contains a lot of correct rules and concepts. Therefore, the models that 

were learned in isolation and only on the reduced data are much more biased 

by the limited data, as nothing is used in addition. In contrast, correct 

knowledge encapsulated in the existing model will be carried into the 

adapted model. This is underlined by the fact that some learning results even 

perform worse than the original, error prone policy. This also highlights the 

general idea and advantage of adaptation, as the information from the 

existing model is not lost, but carried towards the new model.  

 

The incident selection also positively influences the remaining adaptation 

approaches. The prediction errors of equivalent experiments generally 

decrease with the application of the clustering approach. Of these 

algorithms, the modification of derived attributes (Ada-Exp) as well as its 

application in the combined approach (Ada-Seq) yielded the best results. 

This can be attributed to the starting policy again, since the manually 

defined policy error has been used, which mainly contains errors in the 

derived attributes. For policies on the basis of model trees, the rule-based 

adaptation (Ada-Rule) performs better than Ada-Exp, but the combined 

approach Ada-Seq with incident selection is again mostly comparable or 

even better than either of the individual adjustments. 

 

Overall Evaluation Results 
In summary, the evaluation shows that the adaptation approaches can 

outperform the isolated learning. Comparable results regarding the 

prediction quality (error) are achieved by the adaptation and the isolated 

model tree learner, where the adaptation algorithms sometimes even 

exceeded the isolated induction. Furthermore, the targeted algorithms better 
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take the complexity and distance into consideration, showing the main 

advantage considering all objective functions. Yet again, training an 

artificial neural network resulted in still better priority predictions, but the 

understandability of the model and transitions for the adjustment are not 

human-comprehensible by any means. Furthermore, the old model may also 

contain relevant information, but is only used in the adaptation algorithms. 

This is also shown by the evaluation of the incident selection. The largest 

impact of the choice of limited training data could be observed for the 

isolated learning approaches. The adaptation algorithms can retain 

knowledge from the old model, thus not solely relying on the limited data. 

Nevertheless, all learning approaches were positively influenced by 

selecting the incidents on the basis of the proposed confidence-based 

calculation in comparison to solely relying on the regular priorities. Thus, 

these results affirm the assertion that a more diverse data selection can 

improve the feedback and adaptation process. Further details on the 

adaptation and specifically the evaluation can be found in (Renners, Heine, 

Kleiner, & Rodosek, Design and Evaluation of an Approach for Feedback-

based Adaptation of Incident Prioritization, 2019), which explicitly focuses 

on this part of our approach. 

 

5 FUTURE RESEARCH DIRECTIONS 

One interesting aspect of a combined analysis is to put the additional effort 

imposed by the feedback process, and especially by the incident selection, in 

perspective to the advantages generated by the continuous adjustment and 

adaptation. While the advantage from an algorithmic and learning 

perspective could be shown, the impact of the increased work 

accompanying this process are not yet analyzed satisfactorily. 

 

Furthermore, specific feedback is already a challenge in itself and one could 

also consider the possibility that the given feedback is not necessarily 

accurate. Thus, two additional areas of research also become relevant in the 

context of this work. The first is the analysis and improvement of the 

sensitivity of the algorithms with the use of error-prone training data. A 

second direction of improvement of the feedback process is given by a 

different type of feedback, and its respective use in learning and adaptation 

approaches. Admittedly, it might be difficult to give precise numeric 

feedback, but it is for example possible to express trends, i.e. too high or too 

low, in combination with fuzzy concepts like a little or a lot. The tendency 

of human reasoning to focus on granules, which are not crisp, has already 

been established in the research community concerned with fuzzy systems, 

e.g. by Zadeh (Zadeh, 1997) and respective application and learning 

methodologies have been proposed (Klir, St. Clair, & Yuan, 1997). An 
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interesting approach would be to examine the applicability of those systems 

in the context of incident prioritization or more importantly in terms of 

learning and adapting a policy. One explicit possibility is the application of 

a transformation between fuzzy and crisp concepts, i.e. fuzzification and 

defuzzification (Leekwijck & Kerre, 1999), to employ the concepts of this 

thesis in conjunction with techniques from the fuzzy domain.  

 

The last major area of future work is a practical integration of this approach 

with existing network security components. Most prominent are SIEM 

systems, because they depict the initial application scenario. Those systems 

provide an ideal environment for an approach such as this, because the 

detection of incidents as well as a lot of information for the prioritization 

can be provided by the encompassing system. However, the challenge is to 

apply a common interface for the data exchange and in particular a common 

understanding of an incident and priority related data.  For example, the 

application of derived attributes to real world concepts could be a point of 

modification. Many systems already maintain data modeling concepts, like 

used in derived attributes, and it appears impractical to redesign this data. 

Instead, points of possible interaction and modification for the learning and 

adaptation components could be defined and used in the processes for an 

adaptive incident prioritization. 

 

6 CONCLUSION 

In this paper, we introduced our approach for an adaptive and intelligible 

prioritization of incidents. Acknowledging the potential for errors in the 

prioritization policy, we propose concepts to increase the degree of 

automation in the model creation and adjustment. Thereby, we target two 

challenges in the SIEM domain. Namely, scarcity of resources, particularly 

for manual tasks, and lackluster prioritization. 

 

Our approach provides new concepts beside the common prioritization and 

adds further processes for the induction of a model as well as continuous 

feedback collection, assessment and adaptation of the prioritization policy. 

Beside a high-level definition of these tasks, we introduce several concepts 

for the realization of the different aspects. Altogether, these aspects can help 

to overcome some of the current downsides in incident prioritization, 

especially by focusing on automation of the policy management. 

Meanwhile, our approach aims to keep the analyst in the loop and considers 

understandability a fundamental requirement, as we believe that the human 

factor plays a major role and is practically irreplaceable at the current state 

of network security. An evaluation of the different parts of the approach 

showed promising results. 
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KEY TERMS 

 

Cyber Security: Protection of computer and network systems from malicious 

attacks. 

Security Information and Event Management (SIEM): Approach and tool for 

cyber security that provides a holistic view on the IT by gathering, 

correlating and analyzing information from different data sources. 

Incident: Single or a series of unwanted or unexpected information security 

events that have a significant probability of compromising business 

operations and threatening information security. 

Prioritization: Process of determining a priority, i.e. importance, of an 

information security incident. 

Adaptation: Process to adjust a system to changed circumstances. 

Machine Learning: Scientific area to employ statistical models in order to 

infer knowledge from existing knowledge, which is applicable to new and 

unseen data. 
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