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ABSTRACT 
Current research in cyber-security is not focused on human decision-making. 

The primary objective of this study is to address this gap and investigate how 

cognitive processes proposed by Instance-based Learning Theory (IBLT) like 

reliance on recency and frequency, attention to opponent’s actions, and 

cognitive noise are influenced by the effectiveness of vulnerability patching. 

Data involving participants performing as hackers and analysts was collected 

in a lab-based experiment in two patching conditions: effective (N = 50) and 

less-effective (N = 50). In effective (less-effective) patching, computer 

systems were in a non-vulnerable state (i.e., immune to cyber-attacks) 90% 

(50%) of the time after patching. An IBL model accounted for human 

decisions and revealed low (high) reliance on recency and frequency, 

attention to opponent’s actions, and cognitive noise for hacker (analyst) in 

effective patching. Whereas, it revealed opposite results for less-effective 

patching. We highlight the implications of our findings for cyber decision-

making.   
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1 INTRODUCTION 

There has been a spurt in Internet growth recently and Internet is now being 

pervasively used across different socio-economic sectors (Humayed et al., 

2017; Keller & Schaninger, 2019). With Internet’s growth, protecting online 

data from illegal entry has become difficult (Economic Times, 2017). 

Hackers, people who attack computer networks, are finding newer ways of 

exploiting vulnerabilities present on computer systems (TechTarget, 2017). 

To remove vulnerabilities and safeguard against cyber-attacks, security-

analysts, people who protect computer systems, may implement software 

fixes (patches) against vulnerabilities (Florida Tech, 2019). These software 

patches may be effective, and these may help remove vulnerabilities present 

in computer systems (Kissel, 2013). However, these software patches may 

also be less effective as they may partially remove vulnerability or introduce 

newer vulnerabilities in computer systems (Dunagan et al., 2004). Thus, a less 

effective software patch may remove vulnerabilities from only a small part of 

the computer system, or it may create newer vulnerabilities in a larger part of 

the system (Grimes, 2016). As these existing or newly created vulnerabilities 

may impact our subsequent patching decisions, it is important to study the 

influence of the effectiveness of the patching processes on decision-making 

of human analysts and hackers (Florida Tech, 2019).   

 

Prior research has proposed game theory to be a promising tool to study 

human decision-making in cyber-attack situations (Roy et al., 2010). As per 

prior research, the influence of the effectiveness of the patching processes on 

cyber decision-making may be studied using Markov security games (Alpcan 

& Başar, 2006; 2010). In the Markov security game, human players perform 

as hackers and analysts, where hackers may take attack/not-attack actions and 

analysts may take defend (patch)/not-defend (not-patch) actions. As a result 

of both players’ actions, both players may obtain payoffs (outcomes) and the 

interaction between hackers and analysts is recurrent over rounds. As per the 

Markov assumption, analyst’s action in the last round influences the 

vulnerability of the computer system to an attack in the current round. In most 

cases, patching of vulnerabilities may improve the security of a computer 

system (i.e., patching may make the computer system non-vulnerable to 

cyber-attacks); however, in some cases patching may also lead to unresolved 
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vulnerabilities (i.e., patching may be less-effective making the computer 

system vulnerable to attacks).  

 

Preliminary research has analyzed optimal decision-making in Markov 

security games (Xiaolin et al., 2008). According to reference (Xiaolin et al., 

2008), in the absence of patches, cyber-attacks could produce damages that 

become problematic as the attacks spread among computer systems. In 

contrast, damages to computer systems become smaller when analysts are 

able to timely patch vulnerabilities present in computer systems (Xiaolin et 

al., 2008). These findings are in agreement the Markov security games 

dynamics. Using Markov security games, Xiaolin et al. (2008) have derived 

predictions about the Nash equilibria using mathematical simulation 

techniques; however, these authors did not attempt an empirical investigation 

of human actions against Nash predictions.  

 

Building upon Xiaolin et al. (2008)’s limitations, Maqbool et al. (2018) 

investigated the influence of the patching process on the attack-and-defend 

decisions of human hackers and analysts. These authors found that the human 

attack-and-defend proportions deviated significantly from their Nash 

proportions across cases when the patching process was effective and less-

effective. Maqbool et al. (2018) explained their results based upon Instance-

based Learning Theory (IBLT; Gonzalez & Dutt, 2011; 2012; Gonzalez, 

Lerch, & Lebiere, 2003; Dutt & Gonzalez, 2012), a theory of decisions from 

experience. In cognitive literature, models built upon IBLT (referred to as 

“IBL models” hereafter) have successfully accounted for human decisions in 

cyber scenarios (Aggarwal et al., 2018; Arora & Dutt, 2013; Dutt, Ahn, & 

Gonzalez, 2013; Kaur & Dutt, 2013). These IBL models possess cognitive 

limitations about memory and recall (Gonzalez & Dutt, 2010). For example, 

these models assume that while making decisions, people may rely upon 

blending of the most recent and frequent experiences (instances) retrieved 

from memory. Also, these models may assume decision-makers to pay 

attention to opponent’s actions and cognitive noise (Arora & Dutt, 2013). 

Thus, mechanisms like reliance on recency and frequency, attention to 

opponent’s actions, and cognitive noise may influence hacker’s decisions 

against varying effectiveness of patching processes.  

 

Although Maqbool et al. (2018) provided an explanation of their results using 

cognitive assumptions of IBLT, these authors did not explicitly build IBL 

models for hackers and analysts using their experimental data. In this 

research, we overcome this limitation by building cognitive models using 

IBLT, which could provide a cognitive explanation to results obtained by 

Maqbool et al. (2018). Overall, the primary objective of this study is to 
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investigate how cognitive processes proposed by IBLT like reliance on 

recency and frequency, attention to opponent’s actions, and cognitive noise 

are influenced by the effectiveness of patching processes. The IBL models 

use 2-players Markov security games and human data collected in a lab-based 

experiment by Maqbool et al. (2018) to investigate the differences in 

cognitive processes between effective and less-effective patching processes. 

Overall, the application of IBLT to the analyst’s and hacker’s experiential 

decisions in Markov security games is novel and it will enable us to explain 

how these decisions are influenced by the effectiveness of patching process. 

Also, it will enable us to explain how, on account of limitations of memory 

and recall, human decisions deviate from their Nash proportions.  

 

This interdisciplinary research presents theoretical perspectives from 

cognitive science, which currently are relatively rare in cybersecurity 

research. The majority of current research in cybersecurity is not informed by 

theories from cognitive science, nor focused on human decision-making. 

Furthermore, the current research relies on experimental methods that are 

capable of being reproduced and extended by others; whereas, the majority of 

current research in cybersecurity uses methods that are not suitable for 

reproduction or extension. Overall, this research proposes cognitive models 

for hackers and analysts that may be reused and refined as part of future 

research. 

 

In what follows, we first introduce the Markov security game and the Nash 

equilibria for attack and defend (or patch) proportions. Next, we report an 

experiment by Maqbool et al. (2018), where these authors varied the 

effectiveness of the patching process in repeated Markov-security games.  

Furthermore, we report the results of our analyses of the experimental data as 

well as how IBLT could help explain human decisions against varying 

effectiveness of patching processes. More specifically, we create IBL models 

for hackers and analysts on the collected dataset and test the ability of these 

models to account for decisions of human hackers and analysts. We present 

results from our models and discuss the cognitive mechanisms used by human 

participants while performing against varying effectiveness of the patching 

process. 

2 THE MARKOV SECURITY GAME 
The Markov security game (see Figure 1) (Alpcan & Başar, 2010; Xiaolin et 

al., 2008) is a repeated 2 x 2 zero-sum game. Two opponents, hacker and 

analyst, play against each other in this game. The objective for both opponents 

is to maximize individual payoffs by repeatedly making decisions over 
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several rounds (the end-point is unknown to both opponents). The hacker can 

take an attack (a) and a not-attack (na) action; whereas, the analyst can take a 

defend (d) and a not-defend (nd) action. Attack actions correspond to 

attacking a computer system; whereas, defend actions correspond to patching 

vulnerabilities on a computer system. When the game is played between 

human players, one human player is randomly asked to perform as the hacker 

and the other human player is asked to perform as the analyst.  

 

As shown in Figure 1(a), there are two possible states for a given set of actions 

available to hackers and analysts, vulnerable (v) and not-vulnerable (nv). In 

the v state, the probability of hacker to penetrate the computer system is very 

high. On the contrary, in non-vulnerable state, the probability of hacker to 

penetrate the computer system is low. The transition between the v and nv 

states is determined by the analyst’s last decision (d or nd). If the analyst 

chooses to patch the computer system (i.e., initiate a d action) in a round t, 

then this patching action likely increases the computer system’s probability 

of being in the nv state in round t+1. In contrast, if the analyst does not patch 

the computer (i.e., the analyst performs a nd action) in a round t, then the nd 

action increases the computer system’s probability of being in the v state in 

round t+1.  

 

The movement of state v to state nv or from state nv to state v between two 

successive rounds depend on the patching process’ effectiveness. The 

probability of transiting from the state nv to the state v is small (= 0.1) and 

the probability of transiting from state v to state nv is large (= 0.8), if the 

patching process is effective. However, the probability of transiting from state 

nv to state v and from state v to state nv are equal (= 0.5), if the patching is 

less-effective. The following Markov process determines the probability of 

each state in a round t: 

 

Prob (t) = M (.) * Prob (t -1)   (1) 

 

Where, Prob (t) and Prob (t - 1) refer to probabilities of being in states v and 

nv in round t and t – 1, respectively. Similarly, M (.) refers to state-transition 

matrix corresponding to different analyst actions (see Figure 1(a)). The 

probability of being in states v or nv at the start of the game is made equally 

likely (= 0.5): 

Prob (1) = 








5.0

5.0
  (2) 

Where, the values in the first and second rows correspond to the v state and 

the nv state probabilities, respectively.  
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Figure 1. The Markov security game (Maqbool et al., 2018). (a) The M(.) 

matrices showing transitions between non-vulnerable (nv) and vulnerable 
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(v) states for different patching conditions. (b) The payoffs corresponding to 

nv and v states. In each cell, the first payoff is for the hacker and the second 

payoff is for the analyst. 

 

As shown in Figure 1(b), there are separate sets of zero-sum payoffs 

associated with each state v and nv due to opponent’s individual actions. For 

example, in state v, an a - d action results in +5 points for the analyst and a -

5 points for the hacker (the hacker is caught while attacking the computer 

system due to patching). For a - nd action, analysts get -10 points and hackers 

get +10 points. Similarly, Figure 1(b) shows payoffs associated with other 

action combinations. Upon comparing the payoffs in states v and nv, one 

would find larger (smaller) penalties and smaller (larger) benefits for the 

hackers (analysts) in the state v (nv). 

 

Using payoffs in Figure 1(b), one could compute the mixed strategy Nash 

equilibria for the v and nv states, respectively. Let p represent the attack 

proportions and 1 - p represent the not-attack proportions. Similarly, let q 

represent the defend (patch) proportions and 1- q represent the not-defend 

proportions. In the absence of a pure Nash strategy equilibrium, both 

opponents would be indifferent between the payoffs from their actions. Thus, 

we get the following Nash proportions: 

For the state v:   

3*p – 2*(1 - p) = -11*p + 0 and -3*q  + 11*(1 - q) = 2*q + 0  (3) 

 p = 1/8 (= 0.125) and  q = 11/16 (= 0.687) 

For the state nv: 

5*p -1*(1 – p) = -10*p + 0  and -5*q + 10*(1 - q) = 1*q + 0  (4) 

 p = 1/16 (= 0.062) and q = 5/8 (= 0.625) 

These Nash equilibria proportions were compared against human action 

proportions in a lab-based experiment performed by Maqbool et al. (2018). 

3 EXPECTATIONS IN THE MARKOV SECURITY 
GAME 
According to IBLT, people tend to maximize their perceived payoff across 

actions (Gonzalez & Dutt, 2011; 2012; Gonzalez, Lerch, & Lebiere, 2003; 

Lejarraga, Dutt, & Gonzalez, 2012). In IBLT, the perceived payoffs are 

determined by the blended values computed for different actions (Lejarraga, 

Dutt, & Gonzalez, 2012). As opponents performing as hackers and analysts 

would experience different payoffs across the effective and less-effective 

patching conditions, these players would likely possess dissimilar perceived 
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payoffs in both conditions. Thus, based upon IBLT, we expect differences in 

cognitive parameters concerning reliance upon recency and frequency of 

outcomes, attention to opponent’s actions, and cognitive noise across 

different effective and less-effective patching conditions. Furthermore, 

according to IBLT, we expect human decisions to deviate significantly from 

their Nash proportions across different patching conditions. That is because, 

human opponents would possess cognitive limitations on memory and recall 

processes and human beings would tend to rely upon recency and frequency 

of outcomes, attention to opponent’s actions, and cognitive noise to make 

their repeated decisions. The reliance upon recency and frequency processes 

would likely not allow opponents to form optimal Nash expectations for their 

actions. In the next section, we detail an experiment performed by Maqbool 

et al. (2018), which allowed us to test different expectations from IBLT. 

4 EXPERIMENT 
In this section, we report a lab-based experiment performed by Maqbool et 

al. (2018) involving people performing as hackers and analysts in the Markov 

security game (Figure 1). Using data collected in the experiment, we develop 

cognitive models and investigate how the effectiveness of the patching 

process influences the decisions of human players. 

Experimental Design 
Maqbool et al. (2018) randomly assigned 100 participants to one of two 

between-subjects patching conditions: effective (N = 50) and less-effective 

(N = 50). In each condition, 25 participants performed as hackers; whereas, 

25 participants performed as analysts. The game was 50-rounds in length in 

each condition and it involved an interaction between participants performing 

as hackers and analysts in real time. 
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Figure 2. The Graphical User Interface shown to participants acting in the 

roles of hackers(a) and analysts (b) across different patching conditions. 

 

Figure 2 shows the graphical user interface shown to participants performing 

in hacker (A) and analyst (B) roles across both conditions. In a round, 

participants performing as hackers and analysts were shown the actions 

chosen by them and their opponents, current payoffs obtained by them and 

their opponents, and total payoffs obtained by them since the start of the game 

(see Figure 2). Both hacker and analyst roles were also presented with the 



 194 

payoff matrices resulting in different states (v or nv) in each round, and they 

were asked to choose between attack/not-attack and defend/not-defend 

actions. The payoff changed for both players across rounds depending upon 

whether the computer system was in the v state or nv state (the two payoff 

matrices are shown in Figure 1(b)). 

 

For testing our expectations, we reanalyse the data of Maqbool et al. (2018) 

and we compare the proportion of attack and defend actions from human 

players across different conditions and states. Furthermore, we compare 

human action proportions with the corresponding Nash action proportions 

(computed in equations 3 and 4). We use mixed-factorial ANOVAs for testing 

our expectations. Also, we perform t-tests to compare human and Nash 

proportions in different states and conditions. For our analyses, we use an 

alpha level of 0.05 and power level of 0.8 across all statistical comparisons. 

Participants 
In data collected by Maqbool et al. (2018), seventy-nine percent of 

participants were males. Ages ranged from 18 years to 30 years (Mean = 21.2 

years and standard deviation = 1.92 years). Participants were from different 

education levels: 74% undergraduates and 26% graduates. All participants 

were from Science, Technology, Engineering, and Mathematics (STEM) 

backgrounds. Discipline-wise the demographics were the following: 42% 

pursing degrees in computer-science and engineering, 18% pursing degrees 

in mechanical engineering, 38% pursing degrees in electrical engineering, 

and 2% pursing degrees in basic sciences. Participants were asked to 

maximize their payoffs and were compensated a flat participation fee of INR 

30 (~ USD 0.5). In addition, participants could get up to INR 20 based on 

their performance. For calculating the performance incentive, a participant’s 

final score was converted to real money in the following ratio: 55 points = 

INR 1.0. No participant took more than 20 minutes to finish the study. 

Procedure 
Maqbool et al. (2018) recruited their participants through an email 

advertisement, where participation was completely voluntary. Participants 

gave their written consent before starting their study and the study was 

approved by the ethics committee at the Indian Institute of Technology 

Mandi. Participants were given instructions about the goal in the task (to 

maximize their total payoff) and they were instructed about the game’s 

working. As part of the instructions, payoff matrices as well as actions 

possible were explained to participants. Questions in the instructions, if any, 

were answered before participants could begin their study. Participants 
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possessed complete information about their own and their opponent’s actions 

and payoffs in all conditions (the payoff matrices were given to both players). 

In a round, both participants decided their actions simultaneously and then 

received feedback about each other’s actions and payoffs. After feedback, 

participants were asked to make the next round’s decision. Once the study 

ended, participants were thanked and given their participation fee. 

 

5 RESULTS 

Proportion of attack and defend actions across 
conditions 
In our reanalysis of Maqbool et al. (2018) data, we first calculated the attack-

and-defend proportions in each patching condition (see Figure 3). As shown 

in Figure 3, for the hacker, there was no significant differences in the attack 

proportions between less-effective condition and the effective condition (0.31 

~ 0.36; F(1, 49) = 0.32, p = .57, ɳp² = .007 ). Furthermore, for the analyst, 

there was again no significant difference in the defend (patching) proportions 

between the effective condition and the less-effective condition (0.67 ~ 0.69; 

F(1, 49) = 0.13, p = .71, ɳp² = .003). Thus, overall, the proportion of action 

was similar in effective and less-effective conditions. 

 

Figure 3. Proportion of attack and defend actions across the two conditions. 

Proportion of attack and defend actions across 
states 
By reanalyzing Maqbool et al. (2018)’s data, we compared the human 

proportion of attack-and-defend actions with the respective Nash proportions 

in the two states, v and nv (see Figure 4). For hackers, the attack proportions 

were significantly different from their Nash proportions across both the v and 
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nv states (state v: t(49) = 10.34, p < .05, r = .82; state nv: t(49) = 7.563, p < 

.05, r = .73). For analysts, the defend proportions were not significantly 

different from their Nash proportions in the v state (t(49) = -0.481, p = .63, r 

= .068); however, the defend proportions were significantly different from 

their Nash proportion in the nv state (t(49) = 3.040, p < .05, r = .40). Thus, 

overall, these results agree with our expectations from IBLT. 

 

 
Figure 4. Proportion of attack and defend actions across the states. 

Proportion of attack and defend actions across 
patching conditions and states 
In our reanalysis of Maqbool et al. (2018), we next evaluated how the 

proportion of attack-and-defend actions differed from their Nash proportions 

across the two patching conditions and the two network states. Figure 5 shows 

the proportion of attack-and-defend actions across the patching conditions 

and states with respect to the Nash proportions. For hackers, the proportion 

of attack actions were significantly different from their Nash proportions 

across all conditions and states (effective and state v: t(49) = 12.43, p < .05, r 

= .87; effective and state nv: t(49) = 14.56, p < .05, r = .90); less-effective and 

state v: t(49) = 12.40, p < .05, r = .87; and, less-effective and state nv: t(49) = 

12.12, p < .05, r = .86). Thus, these results for hackers agree with our 

expectations from IBLT. For analysts, the defend proportions were not 

significantly different from their Nash proportions in the v state across both 

effective and less-effective conditions (effective: t(49) = -1.95, p = .06, r = 

.26; less-effective: t(49) = -1.34, p = .18, r = .18). However, the defend 

proportions were significantly different from their Nash proportions in the nv 

state across both effective and less-effective conditions (effective: t(49) = 

3.76, p < .05, r = .28; less-effective: t(49) = 5.53, p < .05, r = .61). Overall, 

these results partially agree with our expectations in the nv state.   
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Figure 5. Proportion of attack/defend actions across the patching conditions 

and network states. 

6 IBLT MODEL 
We developed a model based upon IBLT that was built to explain human 

behavior the Markov security game. An instance, i.e., smallest unit of 

experience, in the IBL model consists of three parts: a situation in a task (a 

set of attributes that define the decision situation), a decision in a task, and an 

outcome resulting from making that decision in that situation (Gonzalez & 

Dutt, 2011; 2012). Different parts of an instance are built through a general 

decision process: creating a situation from attributes in the task, a decision 

and expectation of an outcome when making a judgment and updating the 

outcome in the feedback stage when the actual outcome is known. In the IBL 

model, instances collect over time in memory, are retrieved from memory, 

and are used repeatedly to make decisions. This availability is measured by a 

statistical mechanism called activation, originally implemented in the ACT-

R cognitive architecture (Anderson & Lebiere, 1998). We develop our model 

for two-player security games by simply allowing two single-person models 

to interact with each other in the game, repeatedly.  

In the IBL model, each instance consists of a label that identifies a decision 

option presented to each player (i.e., to Attack or Not Attack for the hacker 

and Defend or Not Defend for the analyst) and the outcome obtained (e.g., 10 

points). As the situation remains the same for each binary decision, the 

structure of an instance is simply (alternative, outcome) (e.g., Defend, 10) for 

both players. In each round t of the game, the process of selection of decision 

options in the model starts with calculation of the blended value of the 

options. Next, the decision option with the highest blended value is selected. 

The blended value of an option depends on outcomes occurring in the option 

and the probability of retrieval of instances from memory corresponding to 
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those outcomes (Equation 5 below). Furthermore, the probability of retrieval 

of instances from memory is a function of their activation in memory, 

governed by the recency and frequency of instance retrievals from memory 

(Equations 7 and 8 below). 

In the IBL model, the selected option is one with the highest blended value V 

(Gonzalez & Dutt, 2011). The blended value of option j is defined as: 

Vj =  ∑ pixi

n

i=1

                                                                 [5] 

where x𝑖 is the value of the observed relative outcome in the outcome slot of 

an instance i corresponding to the option j and pi is the probability of that 

instance's retrieval from memory (for the security game, the value of j is either 

to Defend (patch) or Not-defend (not-patch) for analysts and Attack or Not-

Attack for the hacker. Similarly, sx𝑖 are the relative outcomes for the decision-

maker, hacker or analyst, depending upon the decision choices in Fig. 1). 

Thus, x𝑖 is defined as per the following equation: 

x𝑖 =  𝑂𝑝𝐻 +   𝑤 ∗ 𝑂𝑝𝐴                                                              [6] 

Where, 𝑂𝑝𝐻 and 𝑂𝑝𝐴 are outcomes from the payoff matrix of the hacker and 

analyst players (see Figure 1(b)) and w is the cognitive attention parameter 

that measures the attention to opponent’s actions. The blended value of an 

option is the sum of all observed outcomes x𝑖 in the corresponding instances 

in memory, weighted by their probability of retrieval. In any trial t, the 

probability of retrieval of instance i from memory is a function of that 

instance's activation relative to the activation of all other instances 

corresponding to that option, given by: 

Pi,t =
e

Ai,t
τ⁄

∑ e
Aj,t

τ⁄
j

                                                                    [7] 

where τ is random noise defined as 𝑠 ∗  √2, and s is a free noise parameter 

(see below for its description). Noise in equation 7 captures the imprecision 

of recalling instances from memory. 

The activation of each instance in memory depends upon the activation 

mechanism originally proposed in the ACT-R architecture (Anderson & 

Lebiere, 1998). A simplified version of the activation mechanism that relied 

on recency and frequency of use of instances in memory was sufficient to 

capture human choice behavior in several binary-choice tasks (Lejarraga, 

Dutt, & Gonzalez, 2012) and has been used in the IBL model reported in this 

paper. For each trial t, activation Ai,t of instance i is: 
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Ai,t = ln ( ∑ (t − ti)
−d

ti∈{1,…,t−1}

)      +    s .  ln (
1 − γ

i,t

γ
i,t

)                          [8] 

where, d is a free decay parameter, t is the current round, and ti  is the previous 

round where the instance i was created or its activation was reinforced due to 

an outcome in the task. The summation will include a number of terms that 

coincides with the number of times that an outcome has been observed in 

previous rounds and that the corresponding instance i’s activation has been 

reinforced in memory. Therefore, the activation of an instance corresponding 

to an observed outcome increases with the frequency of observation (i.e., by 

increasing the number of terms in the summation) and with the recency of 

those observations (i.e., by small differences in ti ∈{1,…, t-1} of outcomes 

that correspond to that instance in memory). The decay parameter d has a 

default value of 0.5 in ACT-R and it affects the activation of the instance 

directly, as it captures the rate of forgetting. The higher the value of the d 

parameter, the more is the reliance on recency, and the faster is the decay of 

memory. 

The γ
i,t

 term is a random draw from a uniform distribution bounded between 

0 and 1, and the s .  ln (
1−γi,t

γi,t

) term represents Gaussian noise important for 

capturing the variability of human behavior.  The higher the s value, the more 

variability there will be in the retrieval of information from memory. 

7 IMPLEMENTATION AND EXECUTION OF THE 
IBL MODEL IN THE SECURITY GAME 
We implemented the model in two settings: (1) calibrated model, where the 

values of the free parameters were obtained by calibration using a genetic 

algorithm; (2) ACT-R model, where the ACT-R default values for the free 

parameters were used in the model. Two identical IBL model agents 

performed as a pair of participants for 50 rounds in the Markov security game 

in different conditions, just as human participants performed in the two 

conditions. Agents in both the model settings used blending and activation 

mechanisms independently with a separate set of parameters, where decisions 

made by both agents in a trial determined each version’s outcomes across the 

two settings. 

 
Each agent had three free parameters: w attention to opponent’s actions, noise 

s, and decay d. We calibrated the model’s parameters using human data in 

both less-effective and effective conditions. In these calibrations, we 

minimized the sum of mean square distances (MSDs) on attack and defend 

actions between model and human data. A genetic algorithm (GA) program 
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was used to optimize values of the w, d and s parameters for both the model 

participants. The w, d, and s parameters were varied between 0 and 1, between 

0.0 and 10.0, and between 0.0 and 10.0, respectively, in the GA program. 

These ranges ensured that the optimization was able to capture the optimal 

parameter values with high confidence. The GA had a crossover rate of 80% 

and a mutation rate of 1%. To check the performance of the calibrated model, 

we compared its performance with the ACT-R model. In the ACT-R model, 

the parameters were kept at their default values: w = 0.0, d = 0.5, and s = 0.25. 

8 MODEL RESULTS 

Proportion of attack and defend actions across 
conditions 
We first calculated the proportion of attack-and-defend actions in each 

patching condition for the calibrated and ACT-R models and compared these 

proportions with the corresponding human proportions (see Figure 8). The 

MSDs from the calibrated model and ACT-R models were 0.0039 and 0.0089, 

respectively, across both hacker and analyst players. As shown in Figure 8, 

overall, the calibrated model fitted the human data better compared to the 

ACT-R model for both the hacker and analyst participants 

 
Figure 6. Proportion of attack and defend (Model and Human) actions 

across the two patching conditions. The Model-Hacker and Model-Analyst 

refer to the calibrated model for both players. 

Proportion of attack and defend actions across 
states 
Next, we calculated the proportion of attack-and-defend actions across 

different v and nv states from the calibrated and ACT-R models and compared 

these proportions with the corresponding human action proportions (see 
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Figure 9). The MSDs from the calibrated model and ACT-R models were 

0.0092 and 0.0149, respectively, across both hacker and analyst players. 

Overall, the calibrated model fitted the human data better compared to the 

ACT-R model for both the hacker and analyst in both v and nv states, 

respectively. 

 

 
Figure 7. Proportion of attack/defend actions across the states. The Model-

Hacker and Model-Analyst refer to the calibrated model for both players. 

 

Proportion of attack and defend actions across 
patching conditions and states  
Furthermore, we also analyzed the proportion of attack-and-defend actions 

from the calibrated and ACT-R models across the two patching conditions 

and the two network states and compared these proportions with the 

corresponding human proportions. Figure 10 shows the proportion of attack-

and-defend actions across the patching conditions and states for both models 

and human participants. The MSDs from the calibrated model and ACT-R 

models were 0.0535 and 0.0741, respectively, across both hacker and analyst 

players for the effective condition. Furthermore, the MSDs from the 

calibrated model and ACT-R models were 0.0051 and 0.0058, respectively, 

across both hacker and analyst players for the less-effective condition. 

Overall, the calibrated model fitted human data better compared to the ACT-

R model across both patching conditions and states. 
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Figure 8. Proportion of attack/defend actions across the patching conditions 

and network states. The Model-Hacker and Model-Analyst refer to the 

calibrated model for both players. 

Calibrated parameters of the model  

Table 1 shows the values of the calibrated parameters and overall MSDs from 

the calibrated model in the two patching conditions. As shown in Table 1, the 

MSDs obtained for both model players across the two conditions were very 

low. As per our expectation from IBLT, the parameters showed contrasting 

values across the effective and less-effective conditions. In fact, the model 

revealed low (high) reliance on recency and frequency, attention to 

opponent’s actions, and cognitive noise for hacker (analyst) in effective 

condition. Whereas, it revealed opposite results for less-effective condition: 

high (low) reliance on recency and frequency, attention to opponent’s actions, 

and cognitive noise for hacker (analyst). 
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Table 1. IBL model with calibrated parameters and MSD values across the 

two patching conditions. 

 
Note. The subscript ‘A’ is for analyst and subscript ‘H’ is for hacker. 

 

 

9 DISCUSSION AND CONCLUSIONS 

Due to the rapid increase in cyber-attacks, there is an urgent need to patch 

vulnerabilities present in computer systems (Humayed et al., 2017). However, 

the vulnerability patching process may not be foolproof (Grimes, 2016). In 

some cases, the patching may be effective, and it may make the computer 

systems less-vulnerable to cyber-attacks; however, in other cases, patching 

may be less-effective and it may leave computer systems vulnerable to cyber-

attacks. In this research, using data from a lab-based experiment conducted 

by Maqbool et al. (2018), we investigated the influence of effectiveness of 

the patching processes on cyber decision-making. Our results revealed that 

the proportion of attack and defend actions were similar when patching 

processes were effective and less-effective. Furthermore, a majority of time, 

both players deviated significantly from their optimal Nash proportions in 

different conditions and states. We explain these results based upon 

expectations from models built using Instance-based Learning Theory (IBLT; 

Gonzalez & Dutt, 2011; 2012; Gonzalez, Lerch, & Lebiere, 2003; Lejarraga, 

Dutt, & Gonzalez, 2012).  

 

First, we found that the proportion of attack and defend actions were similar 

across the two patching conditions. A likely reason for this finding could be 

the similarity in payoff magnitudes and valances across the two patching 

conditions. As mentioned above, according to IBLT, people maximize their 

perceived payoff across actions (Lejarraga, Dutt, & Gonzalez, 2012). As 

participants performing as hackers and analysts faced similar payoffs across 

different patching conditions, they likely possessed similar perceived payoffs 

in both conditions.  

 

Second, we found that the proportion of attack and defend actions deviated 

significantly from their Nash proportions. Again, this expectation can be 
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explained based upon IBLT. According to IBLT, human participants possess 

cognitive limitations on memory and recall processes and human beings tend 

to rely upon recency and frequency of outcomes to make their repeated 

decisions (Lejarraga, Dutt, & Gonzalez, 2012). It seemed that the reliance 

upon recency and frequency processes in our experiment did not allow 

participants to form optimal Nash expectations for their actions causing them 

to deviate significantly from the Nash proportions in several conditions and 

states. 

 

Our results also revealed that analyst players did not deviate from their Nash 

proportions in the vulnerable state although we expected them to deviate from 

these Nash proportions. One likely reason for this result is that the Nash 

proportions were simply higher in the vulnerable state compared to those in 

the non-vulnerable state. As analysts continued to exhibit high patching 

proportions across both states, their action proportions seem to agree with the 

Nash proportions in the vulnerable state. 

 

Also, we found that the calibrated IBL model better accounted for human 

decisions across both patching conditions compared to the ACT-R model. 

One likely reason for it is that the default ACT-R parameters seem to not 

allow the model to capture human data. However, a recalibration of these 

parameters drastically helped the model to improve its own results.     

 

We observed a lower value of d parameter for the hacker in the effective 

patching condition compared to the less-effective patching condition. This d 

parameter’s value indicates that when the patching mechanism is effective 

and the computer system is in nv state most of the time, then hackers tend to 

ignore recent experiences (due to a small d value). Whereas, when the 

patching mechanism is less-effective and computer system state transitions 

are equally likely between the v and nv state, hackers tend to rely heavily on 

recent experiences to attack the system. In contrast, we observed a 

significantly higher d value for the analyst in effective patching condition 

compared to the less-effective patching condition. This result indicates that 

when the patching mechanism is effective and the computer system is in nv 

state most of the time, the analysts tend to rely on recent experiences. 

Whereas, when the patching process is less-effective and the computer system 

state transitions are equally likely between the v and nv state, analysts tend to 

ignore recent experiences and continue to patch the system. 

 

Similarly, we observed a higher value of the w parameter for the hacker in 

less-effective patching condition compared to the effective patching 

condition. This result means that participants in the hacker’s role tended to 
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focus more on the opponent’s (analyst’s) last actions for an unreliable 

patching process. However, we also observed a higher value of the w 

parameter for participants in the analyst’s role in effective patching condition 

compared to the less-effective patching condition. Thus, analysts tended to 

rely upon opponent’s (hacker’s) last actions to take advantage of the effective 

patching process. 

 

Furthermore, we observed a higher value of the s parameter for the hacker in 

less-effective patching condition compared to the effective patching 

condition. Thus, an unreliable patching process caused hackers to show 

greater variability in their actions. However, we also observed a higher value 

of the s parameter for the analyst in effective patching condition compared to 

the less-effective patching condition. Thus, a reliable patching process also 

caused analysts to show exploration in their patching actions perhaps because 

they tend to trust the patching process.   

 

In this research, we performed a lab-based experiment involving simple 

Markov security games. Although there are differences between lab-based 

environments and real-world environments, our results may have important 

implications for the real world. First, based upon our results, we expect that 

analysts would continue to excessively patch computer systems in the real-

world irrespective of the optimality and the effectiveness of these patching 

decisions. Second, it seems that hackers, while attacking networks, do not 

seem to worry about whether computer systems are patched effectively or not. 

However, hackers do worry about the vulnerability of computer systems to 

their attacks. Thus, this perception of vulnerability is likely to influence 

hacker’s cyber-attack decisions. In the real-world, it may be important to 

showcase computer networks as less vulnerable to cyber-attacks. One could 

do so via a number of methods including social networks, newspapers, 

reports, and multimedia. Furthermore, models based upon IBLT could be 

used to account for cyber decisions. For example, the hacker models could be 

used to simulate hacker decision against patches and vulnerabilities. 

Similarly, analyst models can be used against different kinds of cyber-attacks 

by automating the patching processes. This research may also help in 

assessing the cognitive factors associated with the patching processes.  

 

There are likely to be a number of limitations of this research. First, data was 

collected using participants who possessed STEM backgrounds and computer 

science degrees. However, such participants may still be different from 

hackers in the real world. Second, this paper assumed a simple scenario where 

a hacker repeatedly chose to either attack or refrain from attacking a single 

system based on their perception of its potential vulnerability. In the 
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meantime, the analyst chose to patch the system or otherwise. Thus, the 

design of the experiment in this paper was simplistic, and it may not 

completely fit certain automated modus operandi of hackers. For example, in 

opportunistic/light touch attacks, a hacker may attempt to exploit a 

vulnerability against a population of systems. These attacks may be large 

scale and they may not involve human judgments exercised on a system-by-

system basis. Similarly, in targeted attacks, there may be many vulnerabilities 

tested against a single system. For example, in targeted attacks, for a given 

system of interest, the hacker may sequentially test an extensive library of 

known exploits. Again, targeted attacks may be triggered using automated 

processes rather than one with human judgement at each step, and such 

attacks may not fit the modus operandi of hackers assumed in the design. 

Here, the proposed analyst’s model may help understand their decision-

making and cognitive processes against such automated attacks. Overall, this 

paper’s experimental design may not completely capture the above mentioned 

automated situations and such situations may be tested as part of future 

research.  

10   FUTURE RESEARCH DIRECTIONS 
There are a number of research directions that one could undertake as part of 

future research. Our results revealed that the perception of vulnerability 

influenced hacker’s decisions and there could be several ways in which this 

perception could be shaped. For example, one could involve deception in 

computer networks via honeypots, where these honeypots are easily 

attackable systems. Second, one could involve intrusion-detection systems 

(IDSs) and provide the knowledge of their existence and accuracy to hackers. 

For example, if hackers are told that IDSs are not present or they are told that 

IDSs are present but these are less accurate, then this information is likely to 

influence the hacker’s perception of network’s vulnerability to her attacks. 

Again, in this case, the IDSs may be effective in making hackers attack certain 

systems (e.g., honeypots) over others and causing them to get caught while 

waging such attacks. In the real-world, hackers and analysts may not possess 

information about opponent’s actions. Thus, it would be interesting to 

investigate how the availability and unavailability of information about 

opponent’s actions among hackers and analysts impacts their respective 

decisions. In addition to these ideas, we would also like to investigate the role 

of other cognitive mechanisms like similarity, spreading activation, and 

cognitive inertia in our models.  

 

Furthermore, this paper assumed the analyst to have a free hand in attempting 

to optimize the application of patches, which may not be the case in practice. 
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For example, in the real-world, most patching may be governed by an 

operational policy (e.g., Common Vulnerability Scoring System) where 

analysts may apply patches addressing vulnerabilities of a given severity in a 

given time scale. Thus, critical patches may be applied within days, whereas 

non-critical patches may be applied in an extended time frame. Thus, future 

research may experiment with scenarios where analysts may decide between 

critical and less-critical patches and the effectiveness of the patching may 

work across both kinds of patches. 

 

Some of these ideas form the immediate next steps for us to undertake as part 

of our ongoing research program in game theory and cyber-security.   

11 ACKNOWLEDGEMENTS 
This research was supported by the Department of Science and Technology, 

Government of India award (“A Game Theoretic Approach involving 

Experimentation and Computational Modeling using Deception in Cybersecurity,” 

Award number: IITM/DST-ICPS/VD/251) to Varun Dutt. Also, we are grateful to 

the Indian Institute of Technology Mandi, for providing the necessary computational 

resources for this project. 

 

12 REFERENCES 
Aggarwal P., Moisan F., Gonzalez C., & Dutt, V. (2018). Understanding Cyber 

Situational Awareness in a Cyber Security Game involving 
Recommendations. International Journal on Cyber Situational Awareness, 
3(1), 11-38. 

Alpcan, T., & Başar, T. (2006, July). An intrusion detection game with limited 
observations. In 12th Int. Symp. on Dynamic Games and Applications, 
Sophia Antipolis, France (Vol. 26). 

Alpcan, T., & Başar, T. (2010). Network security: A decision and game-theoretic 
approach. Cambridge University Press. 

Anderson, J. R., & Lebiere, C. J. (1998). Hybrid modeling of cognition: Review of the 
atomic components of thought. 

Arora, A., & Dutt, V. (2013). Cyber Security: Evaluating the Effects of Attack Strategy 
and Base Rate through Instance Based Learning. In 12th International 
Conference on Cognitive Modeling. Ottawa, Canada. 

Dunagan, J., Roussev, R., Daniels, B., Johnson, A., Verbowski, C., & Wang, Y. M. 
(2004, May). Towards a self-managing software patching process using 
black-box persistent-state manifests. In International Conference on 
Autonomic Computing, 2004. Proceedings. (pp. 106-113). IEEE. 

Dutt, V., Ahn, Y. S., & Gonzalez, C. (2013). Cyber situation awareness: modeling 
detection of cyber attacks with instance-based learning theory. Human 
Factors, 55(3), 605-618. 

Florida Tech. (2019). Cybersecurity Analyst Career Guide. Retrieved from 
https://www.floridatechonline.com/blog/information- 
technology/cybersecurity-analyst-career-guide/ 

Gonzalez, C., & Dutt, V. (2010). Instance-based learning  



 208 

models of training. In Proceedings of the human factors and ergonomics 
society annual meeting (Vol. 54, No. 27, pp. 2319-2323). Sage CA: Los 
Angeles, CA: SAGE Publications. 

Gonzalez, C., & Dutt, V. (2011). Instance-based learning: Integrating sampling and 
repeated decisions from experience. Psychological review, 118(4), 523. 

Gonzalez, C., & Dutt, V. (2012). Refuting data aggregation arguments and how the 
IBL model stands criticism: A reply to Hills and Hertwig (2012). 

Gonzalez, C., Lerch, J. F., & Lebiere, C. (2003). Instance‐based learning in dynamic 
decision making. Cognitive Science, 27(4), 591-635. 

Grimes, R. A. (2016, January 26). Why patching is still a problem -- and how to fix it. 
Retrieved from CSO - India: 
https://www.csoonline.com/article/3025807/why-patching-is-still-a-problem-
and-how-to-fix-it.html 

Humayed, A., Lin, J., Li, F., & Luo, B. (2017). Cyber-physical systems security—A 
survey. IEEE Internet of Things Journal, 4(6), 1802-1831. 

Lejarraga, T., Dutt, V., & Gonzalez, C. (2012). Instance‐based learning: A general 
model of repeated binary choice. Journal of Behavioral Decision 
Making, 25(2), 143-153. 

Kaur, A., & Dutt, V. (2013). Cyber situation awareness: modeling the effects of 
similarity and scenarios on cyber attack detection. In 12th International 
Conference on Cognitive Modeling. Ottawa, Canada (Vol. 250). 

Keller, S., & Schaninger, B. (2019, July). A better way to lead large-scale change. 
Retrieved from https://www.mckinsey.com/business-
functions/organization/our-insights/a-better-way-to-lead-large-scale-change 

Kissel, R. L. (2013, June 5). Glossary of Key Information Security Terms. Retrieved 
from https://www.nist.gov/publications/glossary-key-information-security-
terms-1 

Maqbool, Z., Pammi, V. C., & Dutt, V. (2018, June). Cyber security: Influence of 
patching vulnerabilities on the decision-making of hackers and analysts. In 
2018 International Conference On Cyber Situational Awareness, Data 
Analytics And Assessment (Cyber SA) (pp. 1-8). IEEE. 

Roy, S., Ellis, C., Shiva, S., Dasgupta, D., Shandilya, V., & Wu, Q. (2010, January). 
A survey of game theory as applied to network security. In 2010 43rd 
Hawaii International Conference on System Sciences (pp. 1-10). IEEE. 

TechTarget. (2017). Information security threats.  Retrieved from 
http://searchsecurity.techtarget.com/definition/hacker 

Economic Times (2017, October 30). Internet security 101: Six ways hackers can 
attack you and how to stay safe. New Delhi: The Economic Times. 

Xiaolin, C., Xiaobin, T., Yong, Z., & Hongsheng, X. (2008, December). A markov 
game theory-based risk assessment model for network information system. 
In 2008 International Conference on Computer Science and Software 
Engineering (Vol. 3, pp. 1057-1061). IEEE. 

 
 

 
 

 

  



 209 

KEY TERMS 

 

Security Analyst: A person who is in-charge of enforcing cybersecurity in 

a company or organization. 

Hacker: A person who tries to attack computer systems by waging different 

kinds of cyber-attacks. 

Patch: A software solution that fixes vulnerabilities present on computer 

systems.  

Markov security game: A game between a hacker and an analyst, where 

the analyst’s last action determines to vulnerability of the network. 

Cognitive model: A computational algorithm that accounts for decisions of 

human participants using cognitive assumptions and parameters.  
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