
Intl. Journal on Cyber Situational Awareness, Vol. 3, No. 1, 2018 

Copyright © 2018+ C-MRiC.ORG 

Threat Detection and 

Analysis in the Internet of 

Things using Deep Packet 

Inspection 

 
Christopher D. McDermott, William Haynes, Andrei V. Petrovksi 

 

School of Computing Science and Digital Media, Robert Gordon 

University, UK 

 

 

ABSTRACT 
 

The Internet of Things (IoT) has quickly transitioned from a promising 

future paradigm to a pervasive everyday reality. Many consumer IoT 

devices often lack adequate security and are increasingly being leveraged to 

perform DDoS attacks. To improve situational awareness of such attacks 

amongst consumers, this paper presents two solutions to the detection of 

botnet activity within consumer IoT devices and networks. First, a detection 

model is built using Term Frequency-Inverse Document Frequency (tf-idf) 

and analyses network traffic for semantic structure, highlighting semantic 

similarities between the captured data and that of a known attack dataset. A 

similarity score is used to determine if mirai attack vectors could be 

detected in the captured network traffic. Secondly a novel application of 

Deep Learning is used to develop a detection model based on a 

Bidirectional Long Short Term Memory based Recurrent Neural Network 

(BLSTM-RNN). The model is evaluated for accuracy and loss when 

detecting four attack vectors used by the mirai botnet. The paper 

demonstrates that both approaches return good results and offer promise for 

future research in this area. A labelled dataset was generated as part of this 

research and has been made available to the research community. 
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1 INTRODUCTION 

The Internet of Things (IoT) is expected to usher in an era of increased 

connectivity, with an estimated 50 billion devices expected to be connected 

to the Internet by 2020 (Aazam, St-Hilaire, Lung, Lambadaris, & Huh, 

2018). At its core, the aim of the IoT is to connect previously unconnected 

devices to the Internet (Atzori, Iera, & Morabito, 2010), thus creating smart 

devices capable of collecting, storing and sharing data, without requiring 

human interaction (Mosenia & Jha, 2017) (McDermott & Petrovski, 2017). 

Many of these IoT devices are aimed at consumers, who value low cost and 

ease of deployment over security. These market forces have resulted in IoT 

manufacturers omitting critical security features, and producing swathes of 

insecure Internet connected devices, such as IP cameras and Digital Video 

Recorder (DVR) boxes. Such vulnerabilities and exploits are often derived 

and epitomised by inherent computational limitations, use of default 

credentials and insecure protocols. The rapid proliferation of insecure IoT 

devices and the ease by which attackers can locate them using online 

services, such as shodan, provides an ever expanding pool of attack 

resources. By comprising and leveraging multitudes of these vulnerable IoT 

devices, attackers can now perform large scale attacks such as spamming, 

phishing and Distributed Denial of Service (DDoS), against resources on the 

Internet (Moganedi & Mtsweni, 2017). The rise in IoT based DDoS attacks, 

witnessed in recent years, will likely continue until IoT manufacturers 

accept responsibility and incorporate security mechanisms into their 

devices. Until such a time, the IoT has the potential to become the new 

playground for future cyber attacks and therefore presents a number of 

challenges.  Since an increasing number of DDoS attacks seek to leverage 

consumer level IoT devices, the issues highlighted previously, coupled with 

a lack of technical knowledge or awareness of inherent vulnerabilities, by 

owners of these devices, presents one such problem. This challenge is 

further compounded by a lack of convenient user interface on many 

consumer IoT devices, making detection and awareness of attacks in home 

networks practically impossible for consumers.  

 

To substantiate this issue, a sand boxed botnet environment was created for 

preliminary research. An IoT IP Camera was successfully infected and 

leveraged to perform a sequence of DDoS attacks against a selected target. 
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During the infection process and attacks, the camera did not display any 

adverse symptoms of infection and continued to function as expected. 

Remote access to the device was still possible, and performance did not 

appear to be degraded. Live video streaming continued to be as 

responsiveness as prior to the attacks, therefore without any clear signs of an 

infection it was confirmed that, detection or awareness or botnet activity 

would prove very difficult within consumer networks. 

 

Current methods of botnet detection, as discussed in Section 2.2, largely rely 

on signature or flow based anomaly intrusion detection. However, the 

impact and spread of IoT botnets presented in Section 2.1 would suggest 

these methods are currently not used or are ineffective in preventing botnet 

activity within the IoT. This could be due to simple code mutations 

rendering attack signatures obsolete or a lack of protocol support (NetFlow, 

Sflow) within consumer networks and equipment. 

 

This paper presents two solutions to the detection of botnet activity within 

consumer IoT devices and networks. Detection was performed at the packet 

level, and focused on text recognition within features, normally discarded by 

other flow based detection methods. The first utilised a Term Frequency-

Inverse Document Frequency (tf-idf) detection model to measure and 

provide a similarity score between real time network traffic and a dataset 

with known mirai attack vectors included. The second method utilised a 

novel detection model based on a Deep Bidirectional Long Short Term 

Memory based Recurrent Neural Network (BLSTM-RNN), in conjunction 

with Word Embedding, for text recognition and conversion. Thus, the main 

contributions of this paper are: 

 

1. A labelled dataset encompassing botnet activity and DDoS attacks 

available at https://tinyurl.com/CMcD-Datasets; 
2. A detection model which utilises Term Frequency-Inverse Document 

Frequency to provide a similarity score for traffic behavioral analysis; 

3. A detection model which utilises a Deep Bidirectional Long Short Term 

Memory based Recurrent Neural Network (BLSTM-RNN) to extract 

intelligence from textual features, normally discarded by other flow 

based detection methods.  

 

2 RELATED WORK 

For our related works, we shall consider the topics of botnets in the IoT, 

botnet detection methods, and situational awareness of botnet activity by 

non-expert users (NEU). 

https://tinyurl.com/CMcD-Datasets
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Although botnet activity and detection has been well researched, the 

existing literature generally focuses on traditional network botnets, rather 

than specifically focusing on botnets that target the IoT. Conference papers 

and peer reviewed articles presented below therefore either directly target 

IoT botnets or could easily be applied to this research area. 

 

2.1  Botnets in the Internet of Things 

Some of the most extensive and destructive cyber-attacks deployed on the 

Internet have been Distributed Denial of Service (DDoS) attacks. Some of 

the largest DDoS attacks ever recorded occurred in the second half of 2016, 

fuelled in full or part by the Internet of Things (Akamai, 2017). During this 

time, attacks of over 100Gbps were up by 140%, with three attacks reaching 

over 300 Gbps. The severity of the attacks continued in 2017, evidenced in 

Verisign’s annual DDoS Trends report which reported that 82% of recorded 

DDoS attacks in quarter 4 of 2017 also now employed a multi-vector attack 

strategy (Verisign, 2017). IoT Botnets are becoming increasingly more 

sophisticated in their effectiveness and ability to exploit basic security 

vulnerabilities, and obfuscate their activity (Kolias, Kambourakis, Stavrou, 

& Voas, 2017). They present MalwareMustDie as an example which uses 

iptables rules to protect its infected devices, whilst Hajime utilises fully 

distributed communications and makes use of the BitTorrent protocol for 

peer discovery. BrickerBot was also presented which leverages SSH default 

credentials to perform a permanent denial-of-service (PDoS) attack.  

 

One of the most prominent examples of a DDoS attack emanating from the 

IoT in recent times, is presented in (Jerkins, 2017) (Sinanovic & Mrdovic, 

2017). Mirai is a piece of malware that attempts to find and infect IoT 

devices to establish and propagate a network of robots (botnet) consisting of 

the infected IoT devices (bots). An attacker (botmaster) then uses a 

command and control (C&C) server to remotely control the bots, forcing 

them to participate in DDoS attacks against targets on the Internet. On 

September 20 2016 the Mirai botnet was used to perform an unprecedented 

620 Gbps DDoS attack on security journalist Brian Krebs website 

krebsonsecurity.com (Brian Krebs, n.d.). Shortly after it was also 

responsible for a series of additional DDoS attacks peaking at over 1.2 Tbps 

against French hosting company OVH and DNS provider DYN, who 

estimated that up to 100 000 infected IoT devices (bots) were involved in 

the attack. The severity of the DYN attack was sufficient to cause major 

disruption on the Internet, and render several high profile websites such as 

GitHub, Twitter, Reddit, Netflix, inaccessible. 
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2.2  Botnet Detection Methods 

As previously stated much of the existing literature on botnet detection 

generally focuses on traditional network botnets, rather than IoT botnets. 

An increasingly popular approach has been the use of Machine Learning 

Algorithms (MLA) for network traffic analysis and classification. The 

assumption being that botnets create distinguishable traffic patterns, that can 

be used to accurately detect botnet activity (Stevanovic & Pedersen, 2014). 

In many cases traffic analysis was performed at the network level, analysing 

flows of traffic conversations, rather than at the individual packet level. In 

doing so, the authors in (Bilge, Balzarotti, Robertson, Kirda, & Kruegel, 

2012) used a Support Vector Machine, C4.5 decision tree and Random 

forest classifier to classify malicious and non-malicious in a NetFlow 

dataset, and harness true positive detection rates above 70%.  (Zhao et al., 

2013) use Decision trees with the Reduced Error Pruning Algorithm 

(REPTree) and again demonstrated good performance with true positive 

detection rates above 90%. It should be noted however, that the use of IP 

addresses as a prominent feature could result in an unbalanced dataset, and 

effect detection results. (Kirubavathi & Anitha, 2016) consider smaller 

packet correlation as a way of improving detection accuracy, by extracting 

additional features, namely packet ratio, initial packet length, and bot 

response time, and modelling the behaviour of network flows. Flows were 

classified using Boosted decision tree (AdaBoostM1+J48), Naive Bayesian 

(NB), and Support Vector Machine (SVM) algorithms, and the detection 

system tested against three separate datasets. The authors suggest the 

advantage of the proposed system is its lightweight nature, however this was 

not substantiated through comparison with alternative detection methods.  

 

(Stevanovic & Pedersen, 2014) compare eight MLAs for classifying botnet 

traffic, and also compare two scenarios for traffic analysis. In the first 

scenario flows are monitored in their entirety from start to end, whereas in 

the second scenario, traffic flows are only observed for a specific time 

interval and maximum number of packets. They successfully demonstrated 

that detection rates could be maintained whilst reducing sample sizes to only 

10 packets and 60 seconds of monitored flow traffic. (Stevanovic & 

Pedersen, 2015)  extend their work and propose three methods of traffic 

analysis for botnet detection, utilising a Random Forest classifier on 40 

different bot samples, classifying TCP, UDP and DNS communications 

separately. Classification accuracy for all protocols was above 90%, 

although balanced classification required a time of window length of 3600 

seconds and 1000 packets, which could result in a lower detection rate for 

attacks with smaller sample metrics. (Yu, Sekar, Seshan, Agarwal, & Xu, 

2015) propose IoTSec, which utilises a Software Defined Networking 
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(SDN) approach to enforcing security policies for IoT devices. Whilst the 

proposal of a crowd-sourced repository of learned attack signatures, could 

be useful in detecting botnet activity, it relies on NEUs providing this 

information, which would prove challenging. 

 

The main drawback for many of these approaches is that they analyse traffic 

flows rather than individual packets, which results in only representative 

samples of the total traffic, being considered. In addition, with regard to the 

problem highlighted in Section 1, it is unlikely that consumer routers would 

have the ability to capture traffic flows using protocols such as NetFlow or 

sFlow, therefore many of the approaches may not be easily transferable to 

IoT botnet detection. 

 

2.3  Situational Awareness of threats in the IoT 

Situational Awareness (SA) can be defined as “the state of being aware of 

circumstances that exist around us, especially those that are particularly 

relevant to us and which we are interested about” (Onwubiko & Owens, 

2012). Applied in a cyber context the author further presents an adapted 

situational awareness model comprised of four levels where perception, 

deals with evidence gathering of situations in the network. Comprehension 

refers to the analysis of evidence to deduce threat level, type and associated 

risk. Projection deals with predictive measures to address future incidents, 

and resolution deals with controls to repair, recover and resolve network 

situations (Onwubiko, 2009).  

 

(Evesti, Kanstren, & Frantti, 2017) suggest cyber SA is often recognised as 

important, but the ability to systematically evaluate and work on it is often 

limited. They propose a taxonomy to aid decision makers in structuring and 

reasoning about cyber security awareness in their context. Three essential 

elements are presented as necessary to achieve cyber situational awareness. 

Data gathering, from firewalls, anti-virus or vulnerability scanners; 

Analysis, through anomaly detection, parsing logs, or metrics; and 

Visualisation, consisting of statistical, historical and real-time presentation 

of data.  (P. A. Legg, 2016) presents the need for greater online awareness 

and protection for NEUs. The author undertook a study to establish the 

views of NEUs on personal cyber security and suggests a lack of technical 

knowledge and ability to explore network communication, results in little or 

no awareness of security issues. In response to this a security visualisation 

framework is proposed to support NEUs to engage with network traffic 

analysis in order to better support their perception and comprehension of 

cyber security concerns. The work is extended in (P. Legg, 2016) where the 

visualisation tool is further developed and used to assess participant ability 
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across two case studies involving malware identification and home network 

monitoring. Participant feedback was positive, although the results were 

limited since only a single radial visual representation was used, leaving 

room for future research in the area. 

 

Despite research in this area it is clear from our preliminary research and 

information presented in Section 2, that it is still difficult for NEUs to be 

situationally aware of their network environment and accurately detect and 

respond to threats posed by IoT botnets. 

 

 

3 DEEP PACKET DETECTION METHODS 

As stated in Section 1 many existing detection models are limited in their 

application to IoT botnet detection in consumer networks, since analysis is 

often performed on traffic flows rather than individual network packets. In 

addition, they often rely on flow based protocols such as NetFlow or sFlow 

to analyse network traffic. The two models presented in this section address 

these limitations by performing deep packet inspection, and focusing on text 

recognition within features, normally discarded by other flow based 

detection methods. In particular text within the info feature of captured 

packets (see Table 1). Method one presents a model based on Term 

Frequency-Inverse Document Frequency (tf-idf), and Method two presents a 

model based on a Deep Bidirectional Long Short Term Memory based 

Recurrent Neural Network (BLSTM-RNN). 

 
Packet Info Feature 

Normal 81 - 50451 [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0 MSS=1460 

SACK\_PERM=1 WS=2 Mirai 62002 - 23 [SYN] Seq=0 Win=57378 Len=0 [ETHERNET FRAME CHECK 

SEQUENCE INCORRECT] UDP 55741 - 65170 Len=512 

DNS Standard query 0x0c9 A nnt1heibflkk.report.McDPhD.org 

ACK 56057 > 49714 [ACK] Seq=1 Ack=1 Win=29597 Len=512 

 

Table 1. Attack Packet Structure 

 

3.1  Data Sources 

To evaluate our detection models, we required a dataset which contained a 

mixture of IoT botnet communication, multiple attack vectors and normal 

IoT device traffic. There are currently no public datasets that fulfilled all 

three criteria, therefore an experimental set-up was implemented as shown 

in Figure 1. 
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Figure 1. Mirai Botnet Experimental Setup 

 

The mirai botnet malware contains ten available attack vectors, which 

infected IoT devices can utilise to engage in DDoS attacks against targets. 

For the purpose of our experiments, four attack vectors were chosen, 

including User Datagram Protocol (UDP) flood, Acknowledgement (ACK) 

flood, Domain Name System (DNS) flood, and Synchronize (SYN) flood 

attacks, used by mirai. Command and control messages between the C&C 

server and the infected IoT IP camera (bot) were also captured, as was 

normal traffic generated by the camera.   

 

To capture packets and generate the necessary attack dataset the tshark 

command line tool and associated input parameters were used. Algorithm 1 

shows the process of packet capture, parsing, and storage in a location 

accessible by the models described in Sections 3.2 and 3.3. The necessary 

data was captured in a series of five separate captures, which could later be 

concatenated into a single attack dataset. The first capture (normal.pcap) 

consisted of normal IoT device traffic, for a duration of 2 hours and 

included normal device communication on the network, and also two remote 

connections to the camera to view the video feed, each of which lasted 5 

minutes.  Mobaxterm was used to create a secure shell (ssh) into the C&C 

server, before executing command screen ./cnc from within the 

mirai/release directory,  to start the MYSQL database. A second remote 

session was used to telnet and log into the  C&C server, ready to issue attack 

commands to the infected IoT IP camera. A third remote session was used to 

ssh into the Scan/Loader server, before executing the ./loader command 

from within the mirai/release directory, to scan the network for available 
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IoT devices to infect.  The initial scanning process and device infection was 

captured in the second capture (mirai.pcap) which also included the infected 

camera scanning on ports 23 and 2323 for new devices to infect. 

 

The third capture (udp.pcap) consisted of a single  (udp) flood attack, 

whereby the C&C server issued the attack command, and the infected IoT 

device flooded its target with bursts of (udp) packets for a total period of 60 

seconds. The fourth capture (dns.pcap) consisted of a single (dns) flood 

attack, whereby the C&C server issued the attack command, and the 

infected IoT device flooded its target with bursts of (dns) packets for a total 

period of 60 seconds. The fifth capture (ack.pcap) consisted of a single (ack) 

flood attack, whereby the C&C server issued the attack command, and the 

infected IoT device flooded its target with bursts of (ack) packets for a total 

period of 60 seconds. 

 

To perform live traffic analysis in the future, Algorithm 1 can be used to 

continuously capture and parse data for use with the detection models 

presented in Sections 3.2 and 3.3. Due to the complexity of training and 

classification processes, the data pipeline is configured to block future 

processes (getLastFileNumber, parseToCsv) from starting until the previous 

process has completed (captureNetworkTraffic). The controlled live input 

traffic can then be analysed for semantic structure and pattern matched with 

behaviour found in the attack dataset, thus indicating the detection of 

known attack vectors used by the mirai IoT botnet. 

 

 

3.1.1  Pre-processing and Feature Selection  

During the capture and generation of the dataset described in Section 3.1, 

files were converted from pcap to csv format (see algorithm 1). Tshark has 

the ability to capture a vast array of features and protocols, however since 

one of the proposed detection models utilises machine learning to generate a 

predictive model, the list was reduced to ensure precision and avoid 

overfitting the model. Additionally, restricting the number of features 

reduces the complexity of the model, thus requiring less time and 

computational power to execute.  

 

Since the two detection models will be applied to consumer IoT devices and 

networks, the standard seven features used by tshark was selected to 

maximise coverage and potential adoption.  Features frame.number, 

frame.time, ip.src, ip.dst, ip.proto, frame.len and col.info were therefore 

selected.  
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Algorithm 1 PACKET capture and parsing 

1. procedure parseTshark(saveName, tsharkOut) 

2. directory  save parsed files 

3. fileNamePrefix  store parsed file 

4. pcapSuffix  store pcap file 

5. csvSuffix  store csv file 

6. tsharkOut  open tsharkOut in write mode 

7. repeat 

8.     /*captureNetworkTraffic*/ 

9.     saveName  Join-Path(directory, 

fileNamePrefix, pcapSuffix) 

10.     invoke-process  tshark capture network 

traffic 

11. until output to saveName 

12. repeat 

13.     /*getLastFileNumber*/ 

14.     for f  in directory.list() do 

15.         if f matches fileNamePrefix then 

16.             cutValue  f.find(‘.’) 

17.             if f has no number then 

18.                 f.append  everything after 

fileNamePrefix 

19.             end if 

20.         end if 

21.         if not directory then 

22.             returnValue  0 

23.         else 

24.             for x  in length f.append() do 

25.                 returnValue  max length 

26.             end for  

27.         end if 

28.     end for  

29. until return last file 

30. repeat 

31.     /*parseToCsv*/ 

32.     fileNumber  get last file 

33.     invoke-process  tsharkcall 

34. until output to tsharkOut 

35. tsharkOut.close() 

36. Return parsed tshark output 

 

Features frame.number and frame.time allow each packet in the dataset to be 

identified by order or timestamp. Features ip.src and ip.dst provide flow 

information which could be useful for identifying patterns of traffic flowing 

through the network.  Features ip.proto and frame.len can be used for 
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pattern matching and classification of packets as normal or anomalous. 

Finally, the two detection models presented in this paper will assess whether 

text recognition can be applied to the information provided in the col.info 

feature for botnet detection. The remaining captured features were filtered 

out during the conversion process, and csv files stored for later use by the 

models described in Sections 3.2 and 3.3. 

 

In order to train and validate the BLSTM-RNN detection model in Section 

3.3, ground-truth labels norm, mirai, udp, dns, ack were assigned to the 

captured attack dataset, ready to be ingested into the detection model. 

To evaluate the td-idf detection model described in Section 3.2 a second 

input dataset was required. This was generated using Algorithm 1 to 

capture, parse, and store live network traffic as a series of parsed reference 

files. For consistency the same five captures were generated, namely norm, 

mirai (syn), udp, dns, and ack.  

 

3.2  Method One: Term Frequency-Inverse Document 

Frequency (td-idf) 

This section presents the use of Term Frequency-Inverse Document 

Frequency (tf-idf) as a method of IoT botnet detection. The captured attack 

dataset containing known attack vectors from the mirai malware, was 

compared against the input dataset generated from live network traffic. 

Plain-text documents were analysed for semantic structure to highlight 

semantically similar documents between the attack dataset and input 

dataset. A similarity score was generated and used to determine if mirai 

attack vectors could be detected in the captured live data streams (see 

algorithm 2). 

 

The gensim Python Library was used to tokenise the attack dataset and 

provide a similarity score between live network traffic (input dataset) and 

the attack dataset (captured in Section 3.1). Each document in the attack 

dataset was converted from string format and tokenised into a list of tokens 

using the word_tokenise function from nltk.tokenise library in the Natural 

Language Tool Kit (NLTK). A dictionary was then created mapping every 

tokenised word to an integer. A corpus was created from the dictionary, 

which listed the number of times each tokenised word occurred in the 

document. Each document then became a list of tuples where the first 

number in each tuple was the integer of the tokenised word, and the second 

number was how many times it appeared in the document. Since the corpus 

was effectively a tuple it is important to note word order was lost, therefore 

time series analysis was no longer possible. A Term frequency-inverse 
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document frequency (tf-idf) model was then generated from the corpus, 

showing the number of documents and tokens. Term Frequency showed 

how often the word appeared in the document, and Inverse Document 

Frequency scaled the value by how rare the word was in the corpus. 

Commonly appearing tokens, but which have little value, were therefore not 

valued too highly in the similarity measure. 

 
Algorithm 2 tf-idf IoT Botnet Detection 

1. procedure similarityComparison(tsharkOut, 

similarityOut) 

2. captureDirectory  output location 

3. i.add_watch  watch capture directory 

4. repeat 

5.      /*createSimilarity*/ 

6.     for f  in directory.list() do 

7.         if f endswith csv then 

8.             rawDocuments  open last tsharkOut in 

write mode 

9.             genDocs  for w in word_tokenise(text) 

10.             for text in rawDocuments 

11.             dictionary  map words to integer 

dictionary(genDocs) 

12.             corpus  word frequency 

dictionary.docs2bow(genDocs) 

13.             tf-idf  create tf-idf model 

tfidfmodel(corpus) 

14.             for i  in corpus do 

15.                 s += len(i) 

16.             end for  

17.             sims  generate word rarity similarity(tf-

idf[corpus]) 

18.             reader  read csv input file 

19.             query_doc  generate query doc and 

convert to tf-idf 

20.             for row  in reader do 

21.                 for x  in range do 

22.                     query_doc += word_tokenise(row[x]) 

23.                 end for  

24.             end for 

25.             query_doc_bow  generate query corpus 

26.             query_doc_tf-idf  generate td-idf model 

27.             sims[query_doc_tf-idf]  array of 

document similarities 

28.             sizeOfDoc  0 
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29.             for pair  in query_doc_tf-idf do 

30.                 sizeOfDoc += 1 

31.             end for 

32.         end if             

33.     end for 

34. until output to similarityOut 

35. rawDocuments.close() 

36. Return overall document similiarity 

 

In order to determine if mirai attack vectors can be detected in the live 

network traffic, data streams were captured as described in Section 3.1 and 

stored as an input dataset, in a defined directory. The tokenisation process 

previously described was repeated on the input dataset to create a series of 

tokenised query documents, where again a dictionary was created mapping 

every tokenised word to an integer, and a corpus generated from the 

dictionary. A tf-idf model was again generated from the corpus, showing the 

number of documents and tokens in the input dataset. 

 

The tokenised documents within each dataset were compared and analysed 

to highlight semantically similar documents between the attack dataset and 

input dataset. Each match between the datasets, returned a score value, and 

were summed to generate an overall similarity score between the two 

datasets. Thus, IoT Botnet detection is achieved by recognising pattern 

behaviour in live network traffic which matches known attack vectors found 

in the mirai malware. 

 

3.3  Method Two: Bidirectional Long Short Term Memory 

Recurrent Neural Network (BLSTM-RNN) 

The developed model for method two uses a novel application of a Deep 

Bidirectional Long Short Term Memory based Recurrent Neural Network 

(BLSTM-RNN), in conjunction with Word Embedding, to convert string 

data found in captured packets, into a format usable by the BLSTM-RNN. 

 

The dataset used in our experiments was generated from the experimental 

set-up described in Section 3.1. It consists of Mirai botnet traffic such as 

Scan, Infect, Control and Attack traffic as described in Section 3.1 and 

normal IoT IP Camera traffic generated in our experimental set-up. The 

dataset included features No., Time, Source, Destination, Protocol, Length, 

and overall payload information in the Info feature. Some features such as 

No. and Time did not provide much scope for data analysis so were later 

removed.  
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Majority of the captured information resided in the info feature,  as shown in 

Table 1 therefore a model was required which could read and understand the 

text presented in this feature. 

 

Artificial Neural Network(ANN) and more complex versions of Recurrent 

Neural Networks(RNN) such as Long Short Term Memory (LSTM) only 

work with numerical values. However (Ray, Rajeswar, & Chaud, 2015) 

demonstrated that a Deep Bidirectional Long Short Term Memory based 

RNN (BLSTM-RNN) can be used which provides promising results for text 

recognition.   (Wang, Qian, Soong, He, & Zhao, 2015) further demonstrated 

this potential when a BLSTM-RNN was used in conjunction with Word 

Embedding, in such a way phrases and vocabulary were mapped to vectors 

or real numbers and proved to be an effective method for modelling and 

predicting sequential text. 

 

Artificial Neural Network(ANN) and more complex versions of Recurrent 

Neural Networks(RNN) such as Long Short Term Memory (LSTM) only 

work with numerical values. However (Ray, Rajeswar, & Chaud, 2015) 

demonstrated that a Deep Bidirectional Long Short Term Memory based 

RNN (BLSTM-RNN) can be used which provides promising results for text 

recognition.    

 
Algorithm 3 BLSTM IoT Botnet Detection 

1. procedure dataProcessing(attack dataset) 

2. path  attack dataset location 

3. allFiles  open pattern matched csv files in 

write mode 

4. frame  define two dimensional labelled 

data structure 

5. unitToDrop  25% 

6. repeat 

7.     /*create concatenated dataset*/ 

8.     for i  in allFiles do 

9.         df  read files 

10.         list_  append(df) read files 

11.     end for 

12. until files concatenated into dataset 

13. dataset  concatenated (list_) 

14. repeat 

15.     /*integer encode dataset*/ 

16.     for d  in dataset.values do 

17.         encoded_docs  tokenise words 

18.         dict  create dictionary of 
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encoded_docs 

19.         array  map indices of dict 

20.         if array length != 25 then 

21.             invoke-process  pad array == 25 

22.         end if 

23.     end for 

24. until data tokenised and integer encoded 

25. padded_docs  array of tokenised and 

padded text 

26. dataset.dropna  split dataset based on 

unitToDrop 

27. repeat 

28.     /*train and evaluate model*/ 

29.     model.compile  (loss == mae, 

optimizer == adam) 

30.     for i  in epochs do 

31.         reshape  Training and Test to 3 

dimension 

32.         model.evaluate  Accuracy and Loss 

33.     end for 

34. until trainingDataset and testDataset are 

reshaped 

35. Return Loss, ValLoss, Acc, ValAcc 

 

(Wang, Qian, Soong, He, & Zhao, 2015) further demonstrated this potential 

when a BLSTM-RNN was used in conjunction with Word Embedding, in 

such a way phrases and vocabulary were mapped to vectors or real numbers 

and proved to be an effective method for modelling and predicting 

sequential text. 

 

Motivated by this potential, this section presents a detection algorithm and 

model, which is applied to botnet detection in the IoT. Since the information 

provided in the Info feature of the dataset follows a sequence, we 

implemented our approach by first converting each letter into a tokenized 

and integer encoded format. A dictionary of all tokenized words and their 

index within the Info feature was created and text replaced with its 

corresponding index number. In order to understand each attack type, it was 

important to maintain the sequence order of the indices, therefore an array 

of the indices was created.   

 

Since attacks are often closely coupled to the protocol used and the length of 

the captured packet, the Protocol and Length features also required to be 

included in the array. Word Embedding was again used to convert and 

create a dictionary of all tokenized protocols and their index. These were 
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then added, along with the Length feature, which was already an integer, to 

the array. Labels identifying each type of captured packets were mapped 

from string to integer ('norm': 0,'mirai':1,'udp': 2, 'dns':3, 'ack':4,'normal':5), 

and also injected into the array. To simplify this process, we used the Keras 

library with a wrapper API around Theano and Tensorflow. The Keras 

one_hot function was used to convert strings into indices, form a 2-

dimension list and create a dictionary at the same time.  

 

Finally, since deep neural networks require arrays to be of equal length, we 

needed to find the maximum length of a sentence within the Info feature and 

pad all the arrays with 0 to be equal to the maximum length of 25. 

After processing the dataset, it was split into training and test datasets and 

reshaped into 3 dimensions, the format required for LSTM layer (see 

algorithm algorithm 3.) 

 

 

4 RESULTS 

To test the tf-idf detection model data captures generated in Section 3.1 were 

presented to the model. Similarity scores were recorded, and a heat map 

generated as shown in Figure 2, where lighter cells represent a low 

similarity score, whilst darker cells represent a stronger similarity match 

between captures. Data in the first five columns represent a series of data 

captures from the input dataset, which include associated attack vectors. 

When compared against captures containing the same attack vector in the 

attack dataset a small amount of differentiation is evident. Although small, 

the differentiation highlights a few trends which are indicative of behavioral 

analysis occurring. Similarity scores highlighted in bold show each capture 

in the input dataset receives the highest similarity score when compared 

against a capture with the corresponding attack vector in the attack dataset. 

This suggests that attack vectors in the live data streams are being accurately 

matched with known attack vectors in the attack dataset, which is very 

promising. It is also worth noting that capture i3 (normal) received the 

highest total similarity score across all captures in the attack dataset. This is 

further confirmation of behavioral analysis taking place, since normal 

packets would be present in all five captures, again showing they are 

correctly being matched between the datasets. 
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Figure 2. Similarity Score Heat Map 

 

To validate the accuracy of the model, the five captures in the input dataset 

were duplicated and presented back to the model for cross reference 

validation. Similarity scores highlighted bold in columns six to ten clearly 

show that when two identical captures are compared against each other, the 

highest similarity score is returned.  

A final observation is that the ack attack vector returned the highest 

similarity score consistently across all tests. This is possibly due to how the 

(tf-idf) model calculates the frequency and value of words in the corpus. 

Term Frequency is used to show how often the word appeared in the 

document, and Inverse Document Frequency scaled the value by how rare 

the word was in the corpus. Commonly appearing tokens, but which have 

little value, are valued lower in the similarity measure. In the case of ack 

packets the attack vector generated a larger number of packets when 

performing the attack, therefore appearing more frequently in the captures. 

In addition, as shown in Table 1,  ack and normal packets contain similar 

string value items such as Ack, Win and Len. Although some items such as 

Win and Len are also shared with other packet types, only ack and normal 

packets contain the ack string value. Since normal packets appear in every 

capture and therefore most frequently in the overall corpus, when matched 

with ack packets, ack is likely given a higher IDF value. This likely 

accounts for why these packet types and capture files return the highest 

similarity scores.  

To test the BLSTM-RNN detection model a series of four experiments were 

performed. For Experiment 1 each attack type was split between train and 

validate, presented to the model and trained over a total of 20 iterations. The 

mean accuracy and loss metrics for each attack were measured and are 

presented in Table 2. 
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As can be seen from the results, the model returned high accuracy and 

prediction for mirai, udp, and dns attack types. However, returned less 

favourable results for ack attacks, despite this attack having the highest 

number of samples. This was possibly due to the nature and complexity of 

information in the info feature, as seen in Table 3, where the sequence 

numbers in each ack packet changed.  

Despite this, a pattern can however be seen on rows one and two, where  

sequence numbers (59693-41058, 41058-59693) of contiguous packets were 

clearly linked, and packet size and Length were consistent. Unfortunately, 

some packets appeared out of sync as can been in rows three and four, and 

possibly resulted in the detection model not recognising this pattern, 

contributing to the lower detection rate, and significantly higher loss metric.  

By contrast, although the mirai captured packets in Table 1 appear to be 

equally complex, the information in the info feature, remained largely the 

same, possibly aiding better detection.  

Since multi-vector DDoS attacks were highlighted as being a growing issue 

in Section 2.1, Experiment 2 consisted of norm, mirai, udp, dns, and ack 

captures being concatenated to form a multi-vector attack scenario. Results 

on row 5 of Table 2 show the negative impact of the ack attack on the 

overall detection accuracy and particularly loss metrics. To validate this 

observation, Experiment 3 consisted of norm, mirai, udp, and dns captures 

being concatenated to form a multi-vector attack scenario, minus the ack 

attack.  Results on row 6 of Table 2 demonstrate that once the ack attack is 

removed, overall detection accuracy and prediction of the model improves.  

Packet Train Validate Mean 

Accuracy 

Mean   

Loss 

Mirai 387060 208418 99.998992 0.000809 

UDP 391002 210540 98.582144 0.125630 

ACK 411384 221515 93.765198 0.858700 

DNS 391622 210874 98.488289 0.116453 

Multi-Vector (with ACK) 419887 226094 91.951002 0.841303 

Multi-Vector (without ACK) 395564 212996 97.521033 0.115293 

Multi-Vector (with three ACK) 468534 252289 92.243513 0.161890 

Table 2. BLSTM-RNN Detection Accuracy and Loss 

 

Packet Info Feature 

ACK 59693 - 41058 [ACK] Seq=1 Ack=1 Win=29597 Len=512 

ACK 41058 - 59693 [ACK] Seq=1 Ack=1 Win=29597 Len=0 

ACK 28029 - 45060 [ACK] Seq=1 Ack=1 Win=29597 Len=512 

ACK 56493 - 64047 [ACK] Seq=1 Ack=1 Win=29597 Len=512 

Table 3. ACK Packet Structure and Sequencing 
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      (a) BLSTM Accuracy         (b) BLSTM Loss  

Figure 3. BLSTM-RNN Accuracy and Loss 

A final validation of this observation was conducted in Experiment 4 which 

consisted of three ack attacks performed during the same time frame, 

increasing the total sample size of ack attacks, in order to observe the 

variation in accuracy and prediction. Row 7 of Table 2 demonstrations an 

increase in sample size, improves the overall validation accuracy slightly to 

92%, with a significantly better loss metric, when compared to Experiment 

2. This suggests the model could better predict attack traffic, when 

presented with a larger sample size, since the sequencing pattern of ack 

packets shown in Table 3, may now be detected by the model. 

 

5 CONCLUSION 

This paper presents two solutions to the detection of botnet activity within 

consumer IoT devices and networks. Detection was performed at the packet 

level, and focused on text recognition within features, normally discarded by 

other flow based detection methods.  

 

The Term Frequency-Inverse Document Frequency (tf-idf) detection model 

demonstrated the effectiveness of using text recognition for detecting attack 

vectors associated with IoT botnets. The results presented in Figure 2 are 

encouraging and demonstrate how a similarity score could be used for 

traffic behavioral analysis. The paper also presents a second detection 

method based on a Deep Bidirectional Long Short Term Memory based 

Recurrent Neural Network (BLSTM-RNN), in conjunction with Word 

Embedding, for text recognition and conversion. The bidirectional nature of 

the model utilised contextual information from both past and future and 

demonstrated strong accuracy and loss metrics for our captured datasets.  

Both models demonstrated that by focusing detection at the packet level and 

using text recognition on features often discarded by specification or flow 
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based detection methods,  botnet detection in consumer IoT environments 

could be improved. 

 

5.1  Limitations 

Although results presented in this paper are very encouraging and provide a 

platform for further research in the area, some limitations are evident. 

Overall study design was limited by a lack of suitable public datasets in this 

research area. A new dataset was generated during this research; however, 

the detection methods have only been tested against a single malware type 

(mirai) and camera model. Further research is required to test how well the 

models translate to other types of malware found in the IoT. 

 

 

6 FUTURE WORK 

Several avenues for future research have been identified. Firstly, this 

research could be expanded to demonstrate the ability of our developed 

models to detect new mutated variants of the mirai botnet. The models 

could also be tested against other types of malware not found within the 

mirai family.  Interestingly this paper found the ack attack vector metrics to 

be less favourable in the BLSTM-RNN model but returned the highest 

similarity scores in the tf-idf model. A future research direction could be to 

explore if the two models could be combined to develop a detection engine 

capable of detecting a wider range of attack vectors associated with IoT 

botnets. 

 

Finally having successfully demonstrated a solution to the detection 

problem presented in Section 1, we will also further investigate ways to 

improve situational awareness of botnet activity within the IoT. By helping 

consumers become aware when their device is infected, we hope to raise 

awareness of the inherent vulnerabilities, and aid them to make better 

choices in the future, with regard to procurement, and operation of such 

devices. 
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KEY TERMS 

 

Situational Awareness - End-user perception of issues relating to 

cybersecurity within their environment.   

 

Internet of Things (IoT) -  Extensive network of connected ’things’ , capable 

of sensing the surrounding environment and interacting with other devices, 

to aid real-time monitoring and decision making 

 

Term Frequency-Inverse Document Frequency (tf-idf) – Information 

retrieval technique used to measure the importance of a word or term to a 

document. 

 

Long Short Term Memory Recurrent Neural Network – Type of Machine 

Learning well suited to classifying, processing and making predictions 

based on time series data. 
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