
Intl. Journal on Cyber Situational Awareness, Vol. 3, No. 1, 2018

Copyright © 2018+ C-MRiC.ORG

Threat Detection and

Analysis in the Internet of

Things using Deep Packet

Inspection

Christopher D. McDermott, William Haynes, Andrei V. Petrovksi

School of Computing Science and Digital Media, Robert Gordon

University, UK

ABSTRACT

The Internet of Things (IoT) has quickly transitioned from a promising

future paradigm to a pervasive everyday reality. Many consumer IoT

devices often lack adequate security and are increasingly being leveraged to

perform DDoS attacks. To improve situational awareness of such attacks

amongst consumers, this paper presents two solutions to the detection of

botnet activity within consumer IoT devices and networks. First, a detection

model is built using Term Frequency-Inverse Document Frequency (tf-idf)

and analyses network traffic for semantic structure, highlighting semantic

similarities between the captured data and that of a known attack dataset. A

similarity score is used to determine if mirai attack vectors could be

detected in the captured network traffic. Secondly a novel application of

Deep Learning is used to develop a detection model based on a

Bidirectional Long Short Term Memory based Recurrent Neural Network

(BLSTM-RNN). The model is evaluated for accuracy and loss when

detecting four attack vectors used by the mirai botnet. The paper

demonstrates that both approaches return good results and offer promise for

future research in this area. A labelled dataset was generated as part of this

research and has been made available to the research community.

 2

Keyword: Situational Awareness, IoT, Term Frequency-Inverse Document

Frequency, tf-idf, Long Short Term Memory Recurrent Neural Network,

Botnet, Intrusion Detection, Mirai, DDoS.

1 INTRODUCTION

The Internet of Things (IoT) is expected to usher in an era of increased

connectivity, with an estimated 50 billion devices expected to be connected

to the Internet by 2020 (Aazam, St-Hilaire, Lung, Lambadaris, & Huh,

2018). At its core, the aim of the IoT is to connect previously unconnected

devices to the Internet (Atzori, Iera, & Morabito, 2010), thus creating smart

devices capable of collecting, storing and sharing data, without requiring

human interaction (Mosenia & Jha, 2017) (McDermott & Petrovski, 2017).

Many of these IoT devices are aimed at consumers, who value low cost and

ease of deployment over security. These market forces have resulted in IoT

manufacturers omitting critical security features, and producing swathes of

insecure Internet connected devices, such as IP cameras and Digital Video

Recorder (DVR) boxes. Such vulnerabilities and exploits are often derived

and epitomised by inherent computational limitations, use of default

credentials and insecure protocols. The rapid proliferation of insecure IoT

devices and the ease by which attackers can locate them using online

services, such as shodan, provides an ever expanding pool of attack

resources. By comprising and leveraging multitudes of these vulnerable IoT

devices, attackers can now perform large scale attacks such as spamming,

phishing and Distributed Denial of Service (DDoS), against resources on the

Internet (Moganedi & Mtsweni, 2017). The rise in IoT based DDoS attacks,

witnessed in recent years, will likely continue until IoT manufacturers

accept responsibility and incorporate security mechanisms into their

devices. Until such a time, the IoT has the potential to become the new

playground for future cyber attacks and therefore presents a number of

challenges. Since an increasing number of DDoS attacks seek to leverage

consumer level IoT devices, the issues highlighted previously, coupled with

a lack of technical knowledge or awareness of inherent vulnerabilities, by

owners of these devices, presents one such problem. This challenge is

further compounded by a lack of convenient user interface on many

consumer IoT devices, making detection and awareness of attacks in home

networks practically impossible for consumers.

To substantiate this issue, a sand boxed botnet environment was created for

preliminary research. An IoT IP Camera was successfully infected and

leveraged to perform a sequence of DDoS attacks against a selected target.

 3

During the infection process and attacks, the camera did not display any

adverse symptoms of infection and continued to function as expected.

Remote access to the device was still possible, and performance did not

appear to be degraded. Live video streaming continued to be as

responsiveness as prior to the attacks, therefore without any clear signs of an

infection it was confirmed that, detection or awareness or botnet activity

would prove very difficult within consumer networks.

Current methods of botnet detection, as discussed in Section 2.2, largely rely

on signature or flow based anomaly intrusion detection. However, the

impact and spread of IoT botnets presented in Section 2.1 would suggest

these methods are currently not used or are ineffective in preventing botnet

activity within the IoT. This could be due to simple code mutations

rendering attack signatures obsolete or a lack of protocol support (NetFlow,

Sflow) within consumer networks and equipment.

This paper presents two solutions to the detection of botnet activity within

consumer IoT devices and networks. Detection was performed at the packet

level, and focused on text recognition within features, normally discarded by

other flow based detection methods. The first utilised a Term Frequency-

Inverse Document Frequency (tf-idf) detection model to measure and

provide a similarity score between real time network traffic and a dataset

with known mirai attack vectors included. The second method utilised a

novel detection model based on a Deep Bidirectional Long Short Term

Memory based Recurrent Neural Network (BLSTM-RNN), in conjunction

with Word Embedding, for text recognition and conversion. Thus, the main

contributions of this paper are:

1. A labelled dataset encompassing botnet activity and DDoS attacks

available at https://tinyurl.com/CMcD-Datasets;
2. A detection model which utilises Term Frequency-Inverse Document

Frequency to provide a similarity score for traffic behavioral analysis;

3. A detection model which utilises a Deep Bidirectional Long Short Term

Memory based Recurrent Neural Network (BLSTM-RNN) to extract

intelligence from textual features, normally discarded by other flow

based detection methods.

2 RELATED WORK

For our related works, we shall consider the topics of botnets in the IoT,

botnet detection methods, and situational awareness of botnet activity by

non-expert users (NEU).

https://tinyurl.com/CMcD-Datasets

 4

Although botnet activity and detection has been well researched, the

existing literature generally focuses on traditional network botnets, rather

than specifically focusing on botnets that target the IoT. Conference papers

and peer reviewed articles presented below therefore either directly target

IoT botnets or could easily be applied to this research area.

2.1 Botnets in the Internet of Things

Some of the most extensive and destructive cyber-attacks deployed on the

Internet have been Distributed Denial of Service (DDoS) attacks. Some of

the largest DDoS attacks ever recorded occurred in the second half of 2016,

fuelled in full or part by the Internet of Things (Akamai, 2017). During this

time, attacks of over 100Gbps were up by 140%, with three attacks reaching

over 300 Gbps. The severity of the attacks continued in 2017, evidenced in

Verisign’s annual DDoS Trends report which reported that 82% of recorded

DDoS attacks in quarter 4 of 2017 also now employed a multi-vector attack

strategy (Verisign, 2017). IoT Botnets are becoming increasingly more

sophisticated in their effectiveness and ability to exploit basic security

vulnerabilities, and obfuscate their activity (Kolias, Kambourakis, Stavrou,

& Voas, 2017). They present MalwareMustDie as an example which uses

iptables rules to protect its infected devices, whilst Hajime utilises fully

distributed communications and makes use of the BitTorrent protocol for

peer discovery. BrickerBot was also presented which leverages SSH default

credentials to perform a permanent denial-of-service (PDoS) attack.

One of the most prominent examples of a DDoS attack emanating from the

IoT in recent times, is presented in (Jerkins, 2017) (Sinanovic & Mrdovic,

2017). Mirai is a piece of malware that attempts to find and infect IoT

devices to establish and propagate a network of robots (botnet) consisting of

the infected IoT devices (bots). An attacker (botmaster) then uses a

command and control (C&C) server to remotely control the bots, forcing

them to participate in DDoS attacks against targets on the Internet. On

September 20 2016 the Mirai botnet was used to perform an unprecedented

620 Gbps DDoS attack on security journalist Brian Krebs website

krebsonsecurity.com (Brian Krebs, n.d.). Shortly after it was also

responsible for a series of additional DDoS attacks peaking at over 1.2 Tbps

against French hosting company OVH and DNS provider DYN, who

estimated that up to 100 000 infected IoT devices (bots) were involved in

the attack. The severity of the DYN attack was sufficient to cause major

disruption on the Internet, and render several high profile websites such as

GitHub, Twitter, Reddit, Netflix, inaccessible.

 5

2.2 Botnet Detection Methods

As previously stated much of the existing literature on botnet detection

generally focuses on traditional network botnets, rather than IoT botnets.

An increasingly popular approach has been the use of Machine Learning

Algorithms (MLA) for network traffic analysis and classification. The

assumption being that botnets create distinguishable traffic patterns, that can

be used to accurately detect botnet activity (Stevanovic & Pedersen, 2014).

In many cases traffic analysis was performed at the network level, analysing

flows of traffic conversations, rather than at the individual packet level. In

doing so, the authors in (Bilge, Balzarotti, Robertson, Kirda, & Kruegel,

2012) used a Support Vector Machine, C4.5 decision tree and Random

forest classifier to classify malicious and non-malicious in a NetFlow

dataset, and harness true positive detection rates above 70%. (Zhao et al.,

2013) use Decision trees with the Reduced Error Pruning Algorithm

(REPTree) and again demonstrated good performance with true positive

detection rates above 90%. It should be noted however, that the use of IP

addresses as a prominent feature could result in an unbalanced dataset, and

effect detection results. (Kirubavathi & Anitha, 2016) consider smaller

packet correlation as a way of improving detection accuracy, by extracting

additional features, namely packet ratio, initial packet length, and bot

response time, and modelling the behaviour of network flows. Flows were

classified using Boosted decision tree (AdaBoostM1+J48), Naive Bayesian

(NB), and Support Vector Machine (SVM) algorithms, and the detection

system tested against three separate datasets. The authors suggest the

advantage of the proposed system is its lightweight nature, however this was

not substantiated through comparison with alternative detection methods.

(Stevanovic & Pedersen, 2014) compare eight MLAs for classifying botnet

traffic, and also compare two scenarios for traffic analysis. In the first

scenario flows are monitored in their entirety from start to end, whereas in

the second scenario, traffic flows are only observed for a specific time

interval and maximum number of packets. They successfully demonstrated

that detection rates could be maintained whilst reducing sample sizes to only

10 packets and 60 seconds of monitored flow traffic. (Stevanovic &

Pedersen, 2015) extend their work and propose three methods of traffic

analysis for botnet detection, utilising a Random Forest classifier on 40

different bot samples, classifying TCP, UDP and DNS communications

separately. Classification accuracy for all protocols was above 90%,

although balanced classification required a time of window length of 3600

seconds and 1000 packets, which could result in a lower detection rate for

attacks with smaller sample metrics. (Yu, Sekar, Seshan, Agarwal, & Xu,

2015) propose IoTSec, which utilises a Software Defined Networking

 6

(SDN) approach to enforcing security policies for IoT devices. Whilst the

proposal of a crowd-sourced repository of learned attack signatures, could

be useful in detecting botnet activity, it relies on NEUs providing this

information, which would prove challenging.

The main drawback for many of these approaches is that they analyse traffic

flows rather than individual packets, which results in only representative

samples of the total traffic, being considered. In addition, with regard to the

problem highlighted in Section 1, it is unlikely that consumer routers would

have the ability to capture traffic flows using protocols such as NetFlow or

sFlow, therefore many of the approaches may not be easily transferable to

IoT botnet detection.

2.3 Situational Awareness of threats in the IoT

Situational Awareness (SA) can be defined as “the state of being aware of

circumstances that exist around us, especially those that are particularly

relevant to us and which we are interested about” (Onwubiko & Owens,

2012). Applied in a cyber context the author further presents an adapted

situational awareness model comprised of four levels where perception,

deals with evidence gathering of situations in the network. Comprehension

refers to the analysis of evidence to deduce threat level, type and associated

risk. Projection deals with predictive measures to address future incidents,

and resolution deals with controls to repair, recover and resolve network

situations (Onwubiko, 2009).

(Evesti, Kanstren, & Frantti, 2017) suggest cyber SA is often recognised as

important, but the ability to systematically evaluate and work on it is often

limited. They propose a taxonomy to aid decision makers in structuring and

reasoning about cyber security awareness in their context. Three essential

elements are presented as necessary to achieve cyber situational awareness.

Data gathering, from firewalls, anti-virus or vulnerability scanners;

Analysis, through anomaly detection, parsing logs, or metrics; and

Visualisation, consisting of statistical, historical and real-time presentation

of data. (P. A. Legg, 2016) presents the need for greater online awareness

and protection for NEUs. The author undertook a study to establish the

views of NEUs on personal cyber security and suggests a lack of technical

knowledge and ability to explore network communication, results in little or

no awareness of security issues. In response to this a security visualisation

framework is proposed to support NEUs to engage with network traffic

analysis in order to better support their perception and comprehension of

cyber security concerns. The work is extended in (P. Legg, 2016) where the

visualisation tool is further developed and used to assess participant ability

 7

across two case studies involving malware identification and home network

monitoring. Participant feedback was positive, although the results were

limited since only a single radial visual representation was used, leaving

room for future research in the area.

Despite research in this area it is clear from our preliminary research and

information presented in Section 2, that it is still difficult for NEUs to be

situationally aware of their network environment and accurately detect and

respond to threats posed by IoT botnets.

3 DEEP PACKET DETECTION METHODS

As stated in Section 1 many existing detection models are limited in their

application to IoT botnet detection in consumer networks, since analysis is

often performed on traffic flows rather than individual network packets. In

addition, they often rely on flow based protocols such as NetFlow or sFlow

to analyse network traffic. The two models presented in this section address

these limitations by performing deep packet inspection, and focusing on text

recognition within features, normally discarded by other flow based

detection methods. In particular text within the info feature of captured

packets (see Table 1). Method one presents a model based on Term

Frequency-Inverse Document Frequency (tf-idf), and Method two presents a

model based on a Deep Bidirectional Long Short Term Memory based

Recurrent Neural Network (BLSTM-RNN).

Packet Info Feature

Normal 81 - 50451 [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0 MSS=1460

SACK_PERM=1 WS=2 Mirai 62002 - 23 [SYN] Seq=0 Win=57378 Len=0 [ETHERNET FRAME CHECK

SEQUENCE INCORRECT] UDP 55741 - 65170 Len=512

DNS Standard query 0x0c9 A nnt1heibflkk.report.McDPhD.org

ACK 56057 > 49714 [ACK] Seq=1 Ack=1 Win=29597 Len=512

Table 1. Attack Packet Structure

3.1 Data Sources

To evaluate our detection models, we required a dataset which contained a

mixture of IoT botnet communication, multiple attack vectors and normal

IoT device traffic. There are currently no public datasets that fulfilled all

three criteria, therefore an experimental set-up was implemented as shown

in Figure 1.

 8

Figure 1. Mirai Botnet Experimental Setup

The mirai botnet malware contains ten available attack vectors, which

infected IoT devices can utilise to engage in DDoS attacks against targets.

For the purpose of our experiments, four attack vectors were chosen,

including User Datagram Protocol (UDP) flood, Acknowledgement (ACK)

flood, Domain Name System (DNS) flood, and Synchronize (SYN) flood

attacks, used by mirai. Command and control messages between the C&C

server and the infected IoT IP camera (bot) were also captured, as was

normal traffic generated by the camera.

To capture packets and generate the necessary attack dataset the tshark

command line tool and associated input parameters were used. Algorithm 1

shows the process of packet capture, parsing, and storage in a location

accessible by the models described in Sections 3.2 and 3.3. The necessary

data was captured in a series of five separate captures, which could later be

concatenated into a single attack dataset. The first capture (normal.pcap)

consisted of normal IoT device traffic, for a duration of 2 hours and

included normal device communication on the network, and also two remote

connections to the camera to view the video feed, each of which lasted 5

minutes. Mobaxterm was used to create a secure shell (ssh) into the C&C

server, before executing command screen ./cnc from within the

mirai/release directory, to start the MYSQL database. A second remote

session was used to telnet and log into the C&C server, ready to issue attack

commands to the infected IoT IP camera. A third remote session was used to

ssh into the Scan/Loader server, before executing the ./loader command

from within the mirai/release directory, to scan the network for available

 9

IoT devices to infect. The initial scanning process and device infection was

captured in the second capture (mirai.pcap) which also included the infected

camera scanning on ports 23 and 2323 for new devices to infect.

The third capture (udp.pcap) consisted of a single (udp) flood attack,

whereby the C&C server issued the attack command, and the infected IoT

device flooded its target with bursts of (udp) packets for a total period of 60

seconds. The fourth capture (dns.pcap) consisted of a single (dns) flood

attack, whereby the C&C server issued the attack command, and the

infected IoT device flooded its target with bursts of (dns) packets for a total

period of 60 seconds. The fifth capture (ack.pcap) consisted of a single (ack)

flood attack, whereby the C&C server issued the attack command, and the

infected IoT device flooded its target with bursts of (ack) packets for a total

period of 60 seconds.

To perform live traffic analysis in the future, Algorithm 1 can be used to

continuously capture and parse data for use with the detection models

presented in Sections 3.2 and 3.3. Due to the complexity of training and

classification processes, the data pipeline is configured to block future

processes (getLastFileNumber, parseToCsv) from starting until the previous

process has completed (captureNetworkTraffic). The controlled live input

traffic can then be analysed for semantic structure and pattern matched with

behaviour found in the attack dataset, thus indicating the detection of

known attack vectors used by the mirai IoT botnet.

3.1.1 Pre-processing and Feature Selection

During the capture and generation of the dataset described in Section 3.1,

files were converted from pcap to csv format (see algorithm 1). Tshark has

the ability to capture a vast array of features and protocols, however since

one of the proposed detection models utilises machine learning to generate a

predictive model, the list was reduced to ensure precision and avoid

overfitting the model. Additionally, restricting the number of features

reduces the complexity of the model, thus requiring less time and

computational power to execute.

Since the two detection models will be applied to consumer IoT devices and

networks, the standard seven features used by tshark was selected to

maximise coverage and potential adoption. Features frame.number,

frame.time, ip.src, ip.dst, ip.proto, frame.len and col.info were therefore

selected.

 10

Algorithm 1 PACKET capture and parsing

1. procedure parseTshark(saveName, tsharkOut)

2. directory save parsed files

3. fileNamePrefix store parsed file

4. pcapSuffix store pcap file

5. csvSuffix store csv file

6. tsharkOut open tsharkOut in write mode

7. repeat

8. /*captureNetworkTraffic*/

9. saveName Join-Path(directory,

fileNamePrefix, pcapSuffix)

10. invoke-process tshark capture network

traffic

11. until output to saveName

12. repeat

13. /*getLastFileNumber*/

14. for f in directory.list() do

15. if f matches fileNamePrefix then

16. cutValue f.find(‘.’)

17. if f has no number then

18. f.append everything after

fileNamePrefix

19. end if

20. end if

21. if not directory then

22. returnValue 0

23. else

24. for x in length f.append() do

25. returnValue max length

26. end for

27. end if

28. end for

29. until return last file

30. repeat

31. /*parseToCsv*/

32. fileNumber get last file

33. invoke-process tsharkcall

34. until output to tsharkOut

35. tsharkOut.close()

36. Return parsed tshark output

Features frame.number and frame.time allow each packet in the dataset to be

identified by order or timestamp. Features ip.src and ip.dst provide flow

information which could be useful for identifying patterns of traffic flowing

through the network. Features ip.proto and frame.len can be used for

 11

pattern matching and classification of packets as normal or anomalous.

Finally, the two detection models presented in this paper will assess whether

text recognition can be applied to the information provided in the col.info

feature for botnet detection. The remaining captured features were filtered

out during the conversion process, and csv files stored for later use by the

models described in Sections 3.2 and 3.3.

In order to train and validate the BLSTM-RNN detection model in Section

3.3, ground-truth labels norm, mirai, udp, dns, ack were assigned to the

captured attack dataset, ready to be ingested into the detection model.

To evaluate the td-idf detection model described in Section 3.2 a second

input dataset was required. This was generated using Algorithm 1 to

capture, parse, and store live network traffic as a series of parsed reference

files. For consistency the same five captures were generated, namely norm,

mirai (syn), udp, dns, and ack.

3.2 Method One: Term Frequency-Inverse Document

Frequency (td-idf)

This section presents the use of Term Frequency-Inverse Document

Frequency (tf-idf) as a method of IoT botnet detection. The captured attack

dataset containing known attack vectors from the mirai malware, was

compared against the input dataset generated from live network traffic.

Plain-text documents were analysed for semantic structure to highlight

semantically similar documents between the attack dataset and input

dataset. A similarity score was generated and used to determine if mirai

attack vectors could be detected in the captured live data streams (see

algorithm 2).

The gensim Python Library was used to tokenise the attack dataset and

provide a similarity score between live network traffic (input dataset) and

the attack dataset (captured in Section 3.1). Each document in the attack

dataset was converted from string format and tokenised into a list of tokens

using the word_tokenise function from nltk.tokenise library in the Natural

Language Tool Kit (NLTK). A dictionary was then created mapping every

tokenised word to an integer. A corpus was created from the dictionary,

which listed the number of times each tokenised word occurred in the

document. Each document then became a list of tuples where the first

number in each tuple was the integer of the tokenised word, and the second

number was how many times it appeared in the document. Since the corpus

was effectively a tuple it is important to note word order was lost, therefore

time series analysis was no longer possible. A Term frequency-inverse

 12

document frequency (tf-idf) model was then generated from the corpus,

showing the number of documents and tokens. Term Frequency showed

how often the word appeared in the document, and Inverse Document

Frequency scaled the value by how rare the word was in the corpus.

Commonly appearing tokens, but which have little value, were therefore not

valued too highly in the similarity measure.

Algorithm 2 tf-idf IoT Botnet Detection

1. procedure similarityComparison(tsharkOut,

similarityOut)

2. captureDirectory output location

3. i.add_watch watch capture directory

4. repeat

5. /*createSimilarity*/

6. for f in directory.list() do

7. if f endswith csv then

8. rawDocuments open last tsharkOut in

write mode

9. genDocs for w in word_tokenise(text)

10. for text in rawDocuments

11. dictionary map words to integer

dictionary(genDocs)

12. corpus word frequency

dictionary.docs2bow(genDocs)

13. tf-idf create tf-idf model

tfidfmodel(corpus)

14. for i in corpus do

15. s += len(i)

16. end for

17. sims generate word rarity similarity(tf-

idf[corpus])

18. reader read csv input file

19. query_doc generate query doc and

convert to tf-idf

20. for row in reader do

21. for x in range do

22. query_doc += word_tokenise(row[x])

23. end for

24. end for

25. query_doc_bow generate query corpus

26. query_doc_tf-idf generate td-idf model

27. sims[query_doc_tf-idf] array of

document similarities

28. sizeOfDoc 0

 13

29. for pair in query_doc_tf-idf do

30. sizeOfDoc += 1

31. end for

32. end if

33. end for

34. until output to similarityOut

35. rawDocuments.close()

36. Return overall document similiarity

In order to determine if mirai attack vectors can be detected in the live

network traffic, data streams were captured as described in Section 3.1 and

stored as an input dataset, in a defined directory. The tokenisation process

previously described was repeated on the input dataset to create a series of

tokenised query documents, where again a dictionary was created mapping

every tokenised word to an integer, and a corpus generated from the

dictionary. A tf-idf model was again generated from the corpus, showing the

number of documents and tokens in the input dataset.

The tokenised documents within each dataset were compared and analysed

to highlight semantically similar documents between the attack dataset and

input dataset. Each match between the datasets, returned a score value, and

were summed to generate an overall similarity score between the two

datasets. Thus, IoT Botnet detection is achieved by recognising pattern

behaviour in live network traffic which matches known attack vectors found

in the mirai malware.

3.3 Method Two: Bidirectional Long Short Term Memory

Recurrent Neural Network (BLSTM-RNN)

The developed model for method two uses a novel application of a Deep

Bidirectional Long Short Term Memory based Recurrent Neural Network

(BLSTM-RNN), in conjunction with Word Embedding, to convert string

data found in captured packets, into a format usable by the BLSTM-RNN.

The dataset used in our experiments was generated from the experimental

set-up described in Section 3.1. It consists of Mirai botnet traffic such as

Scan, Infect, Control and Attack traffic as described in Section 3.1 and

normal IoT IP Camera traffic generated in our experimental set-up. The

dataset included features No., Time, Source, Destination, Protocol, Length,

and overall payload information in the Info feature. Some features such as

No. and Time did not provide much scope for data analysis so were later

removed.

 14

Majority of the captured information resided in the info feature, as shown in

Table 1 therefore a model was required which could read and understand the

text presented in this feature.

Artificial Neural Network(ANN) and more complex versions of Recurrent

Neural Networks(RNN) such as Long Short Term Memory (LSTM) only

work with numerical values. However (Ray, Rajeswar, & Chaud, 2015)

demonstrated that a Deep Bidirectional Long Short Term Memory based

RNN (BLSTM-RNN) can be used which provides promising results for text

recognition. (Wang, Qian, Soong, He, & Zhao, 2015) further demonstrated

this potential when a BLSTM-RNN was used in conjunction with Word

Embedding, in such a way phrases and vocabulary were mapped to vectors

or real numbers and proved to be an effective method for modelling and

predicting sequential text.

Artificial Neural Network(ANN) and more complex versions of Recurrent

Neural Networks(RNN) such as Long Short Term Memory (LSTM) only

work with numerical values. However (Ray, Rajeswar, & Chaud, 2015)

demonstrated that a Deep Bidirectional Long Short Term Memory based

RNN (BLSTM-RNN) can be used which provides promising results for text

recognition.

Algorithm 3 BLSTM IoT Botnet Detection

1. procedure dataProcessing(attack dataset)

2. path attack dataset location

3. allFiles open pattern matched csv files in

write mode

4. frame define two dimensional labelled

data structure

5. unitToDrop 25%

6. repeat

7. /*create concatenated dataset*/

8. for i in allFiles do

9. df read files

10. list_ append(df) read files

11. end for

12. until files concatenated into dataset

13. dataset concatenated (list_)

14. repeat

15. /*integer encode dataset*/

16. for d in dataset.values do

17. encoded_docs tokenise words

18. dict create dictionary of

 15

encoded_docs

19. array map indices of dict

20. if array length != 25 then

21. invoke-process pad array == 25

22. end if

23. end for

24. until data tokenised and integer encoded

25. padded_docs array of tokenised and

padded text

26. dataset.dropna split dataset based on

unitToDrop

27. repeat

28. /*train and evaluate model*/

29. model.compile (loss == mae,

optimizer == adam)

30. for i in epochs do

31. reshape Training and Test to 3

dimension

32. model.evaluate Accuracy and Loss

33. end for

34. until trainingDataset and testDataset are

reshaped

35. Return Loss, ValLoss, Acc, ValAcc

(Wang, Qian, Soong, He, & Zhao, 2015) further demonstrated this potential

when a BLSTM-RNN was used in conjunction with Word Embedding, in

such a way phrases and vocabulary were mapped to vectors or real numbers

and proved to be an effective method for modelling and predicting

sequential text.

Motivated by this potential, this section presents a detection algorithm and

model, which is applied to botnet detection in the IoT. Since the information

provided in the Info feature of the dataset follows a sequence, we

implemented our approach by first converting each letter into a tokenized

and integer encoded format. A dictionary of all tokenized words and their

index within the Info feature was created and text replaced with its

corresponding index number. In order to understand each attack type, it was

important to maintain the sequence order of the indices, therefore an array

of the indices was created.

Since attacks are often closely coupled to the protocol used and the length of

the captured packet, the Protocol and Length features also required to be

included in the array. Word Embedding was again used to convert and

create a dictionary of all tokenized protocols and their index. These were

 16

then added, along with the Length feature, which was already an integer, to

the array. Labels identifying each type of captured packets were mapped

from string to integer ('norm': 0,'mirai':1,'udp': 2, 'dns':3, 'ack':4,'normal':5),

and also injected into the array. To simplify this process, we used the Keras

library with a wrapper API around Theano and Tensorflow. The Keras

one_hot function was used to convert strings into indices, form a 2-

dimension list and create a dictionary at the same time.

Finally, since deep neural networks require arrays to be of equal length, we

needed to find the maximum length of a sentence within the Info feature and

pad all the arrays with 0 to be equal to the maximum length of 25.

After processing the dataset, it was split into training and test datasets and

reshaped into 3 dimensions, the format required for LSTM layer (see

algorithm algorithm 3.)

4 RESULTS

To test the tf-idf detection model data captures generated in Section 3.1 were

presented to the model. Similarity scores were recorded, and a heat map

generated as shown in Figure 2, where lighter cells represent a low

similarity score, whilst darker cells represent a stronger similarity match

between captures. Data in the first five columns represent a series of data

captures from the input dataset, which include associated attack vectors.

When compared against captures containing the same attack vector in the

attack dataset a small amount of differentiation is evident. Although small,

the differentiation highlights a few trends which are indicative of behavioral

analysis occurring. Similarity scores highlighted in bold show each capture

in the input dataset receives the highest similarity score when compared

against a capture with the corresponding attack vector in the attack dataset.

This suggests that attack vectors in the live data streams are being accurately

matched with known attack vectors in the attack dataset, which is very

promising. It is also worth noting that capture i3 (normal) received the

highest total similarity score across all captures in the attack dataset. This is

further confirmation of behavioral analysis taking place, since normal

packets would be present in all five captures, again showing they are

correctly being matched between the datasets.

 17

Figure 2. Similarity Score Heat Map

To validate the accuracy of the model, the five captures in the input dataset

were duplicated and presented back to the model for cross reference

validation. Similarity scores highlighted bold in columns six to ten clearly

show that when two identical captures are compared against each other, the

highest similarity score is returned.

A final observation is that the ack attack vector returned the highest

similarity score consistently across all tests. This is possibly due to how the

(tf-idf) model calculates the frequency and value of words in the corpus.

Term Frequency is used to show how often the word appeared in the

document, and Inverse Document Frequency scaled the value by how rare

the word was in the corpus. Commonly appearing tokens, but which have

little value, are valued lower in the similarity measure. In the case of ack

packets the attack vector generated a larger number of packets when

performing the attack, therefore appearing more frequently in the captures.

In addition, as shown in Table 1, ack and normal packets contain similar

string value items such as Ack, Win and Len. Although some items such as

Win and Len are also shared with other packet types, only ack and normal

packets contain the ack string value. Since normal packets appear in every

capture and therefore most frequently in the overall corpus, when matched

with ack packets, ack is likely given a higher IDF value. This likely

accounts for why these packet types and capture files return the highest

similarity scores.

To test the BLSTM-RNN detection model a series of four experiments were

performed. For Experiment 1 each attack type was split between train and

validate, presented to the model and trained over a total of 20 iterations. The

mean accuracy and loss metrics for each attack were measured and are

presented in Table 2.

 18

As can be seen from the results, the model returned high accuracy and

prediction for mirai, udp, and dns attack types. However, returned less

favourable results for ack attacks, despite this attack having the highest

number of samples. This was possibly due to the nature and complexity of

information in the info feature, as seen in Table 3, where the sequence

numbers in each ack packet changed.

Despite this, a pattern can however be seen on rows one and two, where

sequence numbers (59693-41058, 41058-59693) of contiguous packets were

clearly linked, and packet size and Length were consistent. Unfortunately,

some packets appeared out of sync as can been in rows three and four, and

possibly resulted in the detection model not recognising this pattern,

contributing to the lower detection rate, and significantly higher loss metric.

By contrast, although the mirai captured packets in Table 1 appear to be

equally complex, the information in the info feature, remained largely the

same, possibly aiding better detection.

Since multi-vector DDoS attacks were highlighted as being a growing issue

in Section 2.1, Experiment 2 consisted of norm, mirai, udp, dns, and ack

captures being concatenated to form a multi-vector attack scenario. Results

on row 5 of Table 2 show the negative impact of the ack attack on the

overall detection accuracy and particularly loss metrics. To validate this

observation, Experiment 3 consisted of norm, mirai, udp, and dns captures

being concatenated to form a multi-vector attack scenario, minus the ack

attack. Results on row 6 of Table 2 demonstrate that once the ack attack is

removed, overall detection accuracy and prediction of the model improves.

Packet Train Validate Mean

Accuracy

Mean

Loss

Mirai 387060 208418 99.998992 0.000809

UDP 391002 210540 98.582144 0.125630

ACK 411384 221515 93.765198 0.858700

DNS 391622 210874 98.488289 0.116453

Multi-Vector (with ACK) 419887 226094 91.951002 0.841303

Multi-Vector (without ACK) 395564 212996 97.521033 0.115293

Multi-Vector (with three ACK) 468534 252289 92.243513 0.161890

Table 2. BLSTM-RNN Detection Accuracy and Loss

Packet Info Feature

ACK 59693 - 41058 [ACK] Seq=1 Ack=1 Win=29597 Len=512

ACK 41058 - 59693 [ACK] Seq=1 Ack=1 Win=29597 Len=0

ACK 28029 - 45060 [ACK] Seq=1 Ack=1 Win=29597 Len=512

ACK 56493 - 64047 [ACK] Seq=1 Ack=1 Win=29597 Len=512

Table 3. ACK Packet Structure and Sequencing

 19

 (a) BLSTM Accuracy (b) BLSTM Loss

Figure 3. BLSTM-RNN Accuracy and Loss

A final validation of this observation was conducted in Experiment 4 which

consisted of three ack attacks performed during the same time frame,

increasing the total sample size of ack attacks, in order to observe the

variation in accuracy and prediction. Row 7 of Table 2 demonstrations an

increase in sample size, improves the overall validation accuracy slightly to

92%, with a significantly better loss metric, when compared to Experiment

2. This suggests the model could better predict attack traffic, when

presented with a larger sample size, since the sequencing pattern of ack

packets shown in Table 3, may now be detected by the model.

5 CONCLUSION

This paper presents two solutions to the detection of botnet activity within

consumer IoT devices and networks. Detection was performed at the packet

level, and focused on text recognition within features, normally discarded by

other flow based detection methods.

The Term Frequency-Inverse Document Frequency (tf-idf) detection model

demonstrated the effectiveness of using text recognition for detecting attack

vectors associated with IoT botnets. The results presented in Figure 2 are

encouraging and demonstrate how a similarity score could be used for

traffic behavioral analysis. The paper also presents a second detection

method based on a Deep Bidirectional Long Short Term Memory based

Recurrent Neural Network (BLSTM-RNN), in conjunction with Word

Embedding, for text recognition and conversion. The bidirectional nature of

the model utilised contextual information from both past and future and

demonstrated strong accuracy and loss metrics for our captured datasets.

Both models demonstrated that by focusing detection at the packet level and

using text recognition on features often discarded by specification or flow

 20

based detection methods, botnet detection in consumer IoT environments

could be improved.

5.1 Limitations

Although results presented in this paper are very encouraging and provide a

platform for further research in the area, some limitations are evident.

Overall study design was limited by a lack of suitable public datasets in this

research area. A new dataset was generated during this research; however,

the detection methods have only been tested against a single malware type

(mirai) and camera model. Further research is required to test how well the

models translate to other types of malware found in the IoT.

6 FUTURE WORK

Several avenues for future research have been identified. Firstly, this

research could be expanded to demonstrate the ability of our developed

models to detect new mutated variants of the mirai botnet. The models

could also be tested against other types of malware not found within the

mirai family. Interestingly this paper found the ack attack vector metrics to

be less favourable in the BLSTM-RNN model but returned the highest

similarity scores in the tf-idf model. A future research direction could be to

explore if the two models could be combined to develop a detection engine

capable of detecting a wider range of attack vectors associated with IoT

botnets.

Finally having successfully demonstrated a solution to the detection

problem presented in Section 1, we will also further investigate ways to

improve situational awareness of botnet activity within the IoT. By helping

consumers become aware when their device is infected, we hope to raise

awareness of the inherent vulnerabilities, and aid them to make better

choices in the future, with regard to procurement, and operation of such

devices.

7 REFERENCES
Aazam, M., St-Hilaire, M., Lung, C.-H., Lambadaris, I., & Huh, E.-N. (2018). IoT

Resource Estimation Challenges andModeling in Fog. In A. M. Rahmani (Ed.),
Fog Computing in the Internet of Things: Intelligence at the Edge (pp. 17–31).
Springer International Publishing AG.

Akamai. (2017). Threat Advisory: Internet of Things and the Rise of 300 Gbps DDoS
Attacks | Akamai. Retrieved from
https://www.akamai.com/us/en/multimedia/documents/social/q4-state-of-the-

 21

internet-security-spotlight-iot-rise-of-300-gbp-ddos-attacks.pdf
Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey.

Computer Networks, 54(15), 2787–2805.
https://doi.org/10.1016/j.comnet.2010.05.010

Bilge, L., Balzarotti, D., Robertson, W., Kirda, E., & Kruegel, C. (2012).
DISCLOSURE : Detecting Botnet Command and Control Servers Through
Large-Scale NetFlow Analysis. In 28th Annual Computer Security Applications
Conference (pp. 129–138).

Brian Krebs. (n.d.). KrebsOnSecurity Hit With Record DDoS. Retrieved January 10,
2018, from https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-
record-ddos/

Evesti, A., Kanstren, T., & Frantti, T. (2017). Cybersecurity Situational Awareness
Taxonomy. In International Conference On Cyber Situational Awareness, Data
Analytics And Assessment, Cyber SA 2017 (pp. 1–8).
https://doi.org/10.1109/CyberSA.2017.8073386

Jerkins, J. A. (2017). Motivating a market or regulatory solution to IoT insecurity with
the Mirai botnet code. In IEEE 7th Annual Computing and Communication
Workshop and Conference (CCWC) (pp. 1–5).
https://doi.org/10.1109/CCWC.2017.7868464

Kirubavathi, G., & Anitha, R. (2016). Botnet detection via mining of traffic flow
characteristics. Computers and Electrical Engineering, 50, 91–101.
https://doi.org/10.1016/j.compeleceng.2016.01.012

Kolias, C., Kambourakis, G., Stavrou, A., & Voas, J. (2017). DDoS in the IoT: Mirai
and other Botnets. Computer, 50(7), 80–84.
https://doi.org/10.1109/MC.2017.201

Legg, P. (2016). Visual Analytics for Non-Expert Users in Cyber Situation
Awareness. International Journal on Cyber Situational Awareness, 1(1), 54–
73. https://doi.org/10.22619/IJCSA.2016.100103

Legg, P. A. (2016). Enhancing cyber situation awareness for Non-Expert Users
using visual analytics. International Conference on Cyber Situational
Awareness, Data Analytics and Assessment, CyberSA 2016, (Figure 1), 1–8.
https://doi.org/10.1109/CyberSA.2016.7503278

McDermott, C. D., & Petrovski, A. V. (2017). Investigation Of Computational
Intelligence Techniques for Intrusion Detection in Wireles Sensor Networks.
International Journal of Computer Networks & Communications (IJCNC), 9(4),
45–56. https://doi.org/10.5121/ijcnc.2017.9404

Moganedi, S., & Mtsweni, J. (2017). Beyond the Convenience of the Internet of
Things : Security and Privacy Concerns. In IST-Africa Week Conference (pp.
1–10).

Mosenia, A., & Jha, N. K. (2017). A Comprehensive Study of Security of Internet-of-
Things. IEEE Transactions on Emerging Topics in Computing, 5(4), 586–602.

Onwubiko, C. (2009). Functional Requirements of Situational Awareness in
Computer Network Security. 2009 IEEE International Conference on
Intelligence and Security Informatics, 209–213.
https://doi.org/10.1109/ISI.2009.5137305

Onwubiko, C., & Owens, T. (2012). Review of Situational Awareness for Computer
Network Defense. In Situational Awareness in Computer Network Defense:
Principles, Methods and Applications.

Ray, A., Rajeswar, S., & Chaud, S. (2015). Text Recognition using Deep BLSTM
Networks. In Eighth International Conference on Advances in Pattern
Recognition (ICAPR). https://doi.org/10.1109/ICAPR.2015.7050699

 22

Sinanovic, H., & Mrdovic, S. (2017). Analysis of Mirai malicious software. 25th
International Conference on Software, Telecommunications and Computer
Networks (SoftCOM), 1–5. https://doi.org/10.23919/SOFTCOM.2017.8115504

Stevanovic, M., & Pedersen, J. M. (2014). An efficient flow-based botnet detection
using supervised machine learning. In 2014 International Conference on
Computing, Networking and Communications (ICNC) (pp. 797–801).

Stevanovic, M., & Pedersen, J. M. (2015). An analysis of network traffic classification
for botnet detection. In 2015 International Conference on Cyber Situational
Awareness, Data Analytics and Assessment (CyberSA) (pp. 1–8).
https://doi.org/10.1109/CyberSA.2015.7361120

Verisign. (2017). DISTRIBUTED DENIAL OF SERVICE TRENDS REPORT (Vol. 4).
Wang, P., Qian, Y., Soong, F. K., He, L., & Zhao, H. (2015). A unified Tagging

Solution: Bidirectional LSTM Recurrent Neural Network with Word Embedding.
arXiv E-Prints.

Yu, T., Sekar, V., Seshan, S., Agarwal, Y., & Xu, C. (2015). Handling a trillion (
unfixable) flaws on a billion devices : Rethinking network security for the
Internet-of-Things. In Proceedings of the 14th ACM Workshop on Hot Topics
in Networks (p. 5:1--5:7).

Zhao, D., Traore, I., Sayed, B., Lu, W., Saad, S., Ghorbani, A., & Garant, D. (2013).
Botnet detection based on traffic behavior analysis and flow intervals.
Computers & Security, 39, 2–16. https://doi.org/10.1016/j.cose.2013.04.007

KEY TERMS

Situational Awareness - End-user perception of issues relating to

cybersecurity within their environment.

Internet of Things (IoT) - Extensive network of connected ’things’ , capable

of sensing the surrounding environment and interacting with other devices,

to aid real-time monitoring and decision making

Term Frequency-Inverse Document Frequency (tf-idf) – Information

retrieval technique used to measure the importance of a word or term to a

document.

Long Short Term Memory Recurrent Neural Network – Type of Machine

Learning well suited to classifying, processing and making predictions

based on time series data.

BIOGRAPHICAL NOTES

Christopher D. McDermott is a Lecturer in the School of Computing

Science and Digital Media at Robert Gordon University, Scotland.

Following a successful period in industry he is now a PhD candidate and a

 23

member of the Security and Privacy research group. His current research

interests include, but are not limited to, Network Security, Cyber Situational

Awareness, IoT Security, Intrusion Detection, Information Security and

Privacy, and Blockchain technologies.

William Haynes works for National Grid having successfully completed his

BSc (Hons) Computer Science at Robert Gordon University. His current

research interests include, but are not limited to, Penetration Testing, Cyber

Security, IoT Security.

Andrei Petrovski is a Reader in Computational Systems in the School of

Computing Science and Digital Media at Robert Gordon University,

Scotland. He completed his MSc in Electrical Engineering at Samara State

University in Russia, and his PhD in computing at Robert Gordon

University. His research interests include computational modelling,

optimisation and decision support, practical applications of computer-

assisted measurements, fault diagnosis and predictive control.

REFERENCE

Reference to this paper should be made as follows: McDermott, C. D.,

Haynes, W. & Petrovski, A. V. (2018). Threat Detection and Analysis in the

Internet of Things using Deep Packet Inspection. International Journal on

Cyber Situational Awareness, Vol. 3, No. 1, pp. 61-83.

