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GONZALO E. REYES. A Galois connection in definability theory. 
Let K be an infinite cardinal such that <c = KE and let X be a set of power K. Let Cx be the 

(polyadic) algebra of all functions from XK into 2 which have support of power less than K. 
Finally, let A"! be the topological group of all permutations of X with the natural K-topology 
(i.e., the elements of the canonical basis are of the form {w £ X\: •n = / } for some partial func­
tion/having domain of power less than K). We consider on the one hand relational structures 
with domain X having at most K f-ary relations (£ e K) and, on the other, functional polyadic 
subalgebras of Cx which "correspond" to these structures. A polyadic algebra corresponding 
to an homogeneous structure is called a Galois algebra. (A structure 21 is homogeneous if any 
isomorphism between substructures of smaller power can be extended to an automorphism of 
21.) 

THEOREM 1. There is an anti-isomorphism between the lattice of the Galois subalgebras ofC$ 
and the lattice of the subgroups of XI which are closed (in the K-topology). 

Analogues of several theorems of the Galois theory for fields are obtained. Some of these, in 
turn, imply some definability results. A useful tool in the proofs is the following: 

THEOREM 2. Let 21 be a homogeneous relational structure with finitary relations and domain X. 
The topological group of the automorphisms of 21 (with the K-topology) is K-Baire (i.e., 0 is the 
only open set which is the union of K nowhere dense sets). 

For finite X, a result similar to Theorem 1 was obtained by A. Daigneault (see Transactions 
of the American Mathematical Society, vol. 112 (1964), pp. 84-130, where reference to relevant 
work of M. Krasner can be found). 

MAXIMO A. DICKMANN. Uniform extensions of the downward Lowenheim-Skolem theorem. 
We consider a family of generalizations of the concept of elementary extension (or substruc­

ture) of a relational system. 
DEFINITION 1. Let 21, 23 be structures, A a cardinal such that m < A < 21; 21 is a A-uniform 

elementary substructure of 23, in symbols 21 -<A_U 93, if 21 £ 23 and for all X £ |2l|, X < A 
all p e Si(X) and all b e |23|, the following holds: if b realizes p in 23, then there is a e |2l| 
realizing p in 23. _ 

If 21 -<A-U 93 for A = H we call 21 a uniform elementary substructure of 23 (in symbols 
21 <u 23). 

In the preceding definition Sx(X) denotes the "Stone space" determined by the subset -ATof 
|2l|; the rest is standard notation. 

Definition 1 was suggested by recent work by Morley and others on categoricity in power; 
it resembles Tarski's criterion for elementary substructures. The idea is that if the relation 
21 -<*-„ 23 holds, then A-saturatedness is reflected back from 23 to 21. It is clear that 

(i) m <. A < K and 21 -<K-U 23 implies 21 -<*_„ 23, 
(ii) 21 <a.u 23 implies 21 < 23, 
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The reverse implication of (ii) does not hold; this is also true of (i) if A is regular (I have not 
been able to decide the case A singular). 

The following generalization of the downward L6wenheim-Skolem theorem is proven using 
the generalized continuum hypothesis (GCH). 

THEOREM 1 {GCH). Let 93 be any structure, X £ |93|, K any cardinal such that 
max{JP, 5w(93), o>} < K < 93; then there is a structure 21 such that 21 = K, X £ |2l| and 
21-<<,«*)-„ 23. 

It is easy to see that neither the GCH nor the strict inequality max{- • •} < K can be dispensed 
with. In fact, the preceding theorem yields "conditional" existence theorems for saturated and 
A-saturated structures analogous to (but weaker than) the well-known results by Morley and 
Vaught. For the denumerable case the following holds. 

THEOREM 2. Let T be a theory satisfying either one of the following conditions: 
(i) T is totally transcendental, 
(ii) for some a > 0 T has less than 2a nonisomorphic models of power <oa, 
(iii) T has a denumerable saturated model. 

7/93 e Mod(r), X c |93|, andX <, m, then there is a structure 91 such that 21 = a, X £ |9l|, 
and 91 -<„ 93. 

A strong version of Tarski's union theorem holds simultaneously for all "uniform "concepts 
(for convenience we write -<!_,, for -<). 

DEFINITION 2. A class K of (similar) structures is uniformly directed iff for all 21, 93 e K 
there are £ e K and cardinals A, y. > 0 such that 91 <x.u £ and 93 -<„_„ £. If 91,93 e K, we 
define 

A«.e = sup{A | A £ 21 and 91 -<A_U 93} if there is one such cardinal A, 
= 0 otherwise, 

KU = infiAji.o 1 93 e K and there is A S: 1 such that 91 -<A.U 93}. 

THEOREM 3. IfKis a uniformly directed class of structures, then 
%• <K%-u\J* for all%eK. 

We also study the connection between the "uniform" concepts and those of prime elemen­
tary extension, dimension (in the sense of Marsh), and categoricity in power; in particular we 
obtain two elegant characterizations of theories categorical in power o> in terms of -<a,-u and 
a>-saturatedness. 

MAXIMO A. DICKMANN. The upward uniform Lowenheim-Skolem theorem: A generalization of 
a theorem by Morley. 

The notation is the same as in the preceding abstract. It is trivial to realize that the upward 
Lowenheim-Skolem theorem does not hold for the "uniform" concepts introduced before. 
Hence, given a structure 91 and an infinite cardinal A < 21, exactly one of the following situa­
tions is possible: 

(1) There are A-uniform elementary extensions of 91 of arbitrarily high powers. 
(2) There is a cardinal K > 21 such that all A-uniform elementary extensions of 21 are of power 

less than K. (Notice that if A < cf (K) and (2) holds, the downward Lowenheim-Skolem theorem 
of the preceding abstract implies that 91 has A-uniform elementary extensions, or substructures, 
in exactly all powers less than K). If (2) occurs we shall denote by c*(9f) the least such cardinal K 
(called the A-characteristic number of 91); if (1) occurs, we set d(9l) = On. It is easily seen that 

(i) if a, < A <, y. < 27, then cK(9l) < c*(9l); 
(ii) for every K < 3 m i there is 91 such that cA(2l) < K, for all A, w <, A <, 91; 
(iii) if K < 2ai is a successor cardinal, there is 91 such that cA(9l) = * for all A, to < A < 21; 
(iv) if 21 is A-saturated, cA(21) = On. 

(ii) and (iii) are simple consequences of Theorem 2.2 of Morley's Omitting classes of elements. 
The concept of A-uniform elementary substructure relates to the problem of omitting types of 

elements in the following way: 
(v) 91 •<*_„ 93 holds iff 91 S 93 and 93 omits all (partial) types belonging to S^X), for all 

X £ |2l|, X < A, that are already omitted by 91. Thus we define 

https://doi.org/10.2307/2270969 Published online by Cambridge University Press

https://doi.org/10.2307/2270969


ABSTRACTS OF PAPERS 535 

DEFINITION 3. Let T be a first-order theory in a language L (of any cardinality), {E, | i e /} 
be a collection of sets of formulas with one (and always the same) free variable, 21 e Mod(T). 
21 omits {Sj 11 e /} iff 21 omits S, for all /' e /. 

The following generalization of Morley's theorem on omission of classes (Theorem 3.1, 
op. cit.) can be proved in a straightforward way. 

THEOREM 4. Let T be a theory in a first-order language with a)ff symbols and {S( \ie 1} a 
collection of sets of sentences indexed by I without repetitions (so I < 2me); let <ar be <u0 if 
l < "'ctM. 2ai */«>c«« ^ 7 ^ o>e, 22C°« if cug < I < 2ae. If for all a, 2 < a < o>r+l there is a 
model of T of power 2 2%t omitting {S, | / e / } , then in every infinite power there is a model of T 
omitting {£< | / e /} . 

As an immediate corollary we obtain 
THEOREM 5. Let 21 be any structure, A a cardinal such that a> < A < 21, K = max(2l, Sm(21); 

i/c*(2l) > 2(
K

2«)+> then cA(2l) = On. 
A generalization of Theorem 5.4 of Morley's Categoricity in power is also studied using the 

methods of the present abstract; several conjectures that generalize that theorem in several 
possible ways and use the concept of co-uniform elementary extension, are proposed. 

Added in proof (July 1969). By the methods of these abstracts the author obtained in January 
1969 the following result: Let T be an wx-categorical but not u>0-categorical theory in a countable 
language; if all denumerable models of T are homogeneous, then there are w0 isomorphism types of 
denumerable models ofT. (More: the members of the tower described in Morley's Denumerable 
models of V^i-categorical theories axe. pairwise nonisomorphic.) Later the author learned from 
various sources that this result was obtained independently by several people. Most of the results 
in the paper On the number of homogeneous models of a given power by Kiesler and Morley and 
several other related ones can also be obtained by our methods. 

JAMES W. GARSON. A new interpretation of modality. 
It has been common in recent years to interpret modal formulas in the predicate calculus 

by treating propositional expressions as predicates, with the definitions (~A)y = ~(Ay), 
(A = B)y = Ay => By, and most characteristically, (DA)y = Vx(Ryx => Ax). As is well 
known, the various modal systems can be captured in predicate calculus by making the proper 
assumptions about the predicate R. A list of modal systems and the corresponding assumptions 
on R follows. 

OM: lz(Rxz) 
M: .Rxx (Reflexivity) 
S4: Rxx and (Rxy & Ryz) => Rxz (Transitivity) 

Brouwerische: Rxx and Rxy = Ryx (Symmetry) 
S5: Rxx, (Rxy & Ryz) => Rxz, and Rxy => Ryx. 

As an alternative to invoking a predicate R, we propose introducing an operation », and 
letting (HA)y = Vx(A(y » x)). It then turns out that the style of modality captured depends 
on very standard algebraic properties of the operation, as follows. 

OM: No assumptions required 
M: x » e = x (existence of identity) 
S4: x ° e = x and x « (y ° z) — (x ° y) « z (associativity) 

Brouwerische: x» e = x and Sz(x ° z = e) (existence of inverse) 
S5: x ° e = x, x ° (y » z) = (x ° y) ° z, and 3z(x » z = e). 

So S5 is captured by the full theory of groups. 

KAZIMIERZ WINNIE WSKI. Weakened forms of the axiom of choice for finite sets. 
A set theory ZF' differs from ZF by containing a constant 0 for the void set, an axiom 

stating the existence of infinite set of individuals and by restricting the axiom of extensionality 
to sets. 

Let us consider the following sentences: 
[n] For every family of n-element sets there exists a choice function. 
[n]° For every linearly ordered family of n-element sets there exists a choice function. 
[«]* For every well-ordered family of n-element sets there exists a choice function. 
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THEOREM 1. If there is a group G such that order ofG is divisible by a prime number p and if 
G has the property that for every sequence JEi, • • • ,Kr of (not necessarily different) proper sub­
groups of G 

(*) S [G:tfi]#S, 

then non l"Zj» /\mes[m]° -> [kp] for k = 1, 2, • • •. 
THEOREM 2. If there are a group G and a sequence Hu • • •, Ht of proper subgroups ofG such 

that 
(i) n — EJ.jtG: Ht] is positive and divisible by p, 
(ii) for every sequence JSTX» • • •» K, of proper subgroups of G the formula (*) holds, 

then non l-zp. A M J W - * W-
THEOREM 3. If p and q are primes such that p\ = (pq — l)/(p — 1) is prime, then 

non hZB» [n]° -»• [n] for n e (plf p), — (plt />*),. ((a, 6), denotes the additive semigroup generated 
by a and b). 

THEOREM 4. Iffor every prime number p there are infinitely many q's such that (pq — i)l(p — 1) 
is prime, then VnerM i* independent from ZF' u {[«]°: « > 1} wAere T is any finite nonempty 
set of integers >1. 

THEOREM 5. #7or any sequence Klt • • •, K, of proper subgroups of G the formula (*) holds, 
then nonl-z,» Ameslm]" -*• VnsrW. where every element of T is a sum of indices of proper 
subgroups of G. 

THEOREM 6. If p and q are primes such that px = Q>* — l)/0> — 1) is prime, then 
non hZp' Ames[«]° -* VmrW' i w/iere 5 w a s«6sef of(j>i.,p), — (j>i,p"), and T is any finite 
nonempty subset of'(pi,p*),. 

THEOREM 7. M> Mostowski's model (Fundamenta mathematicae, vol. 33 (1945), pp. 137-168) 
which is defined with the help of a group of degree 15 can be used to prove independence of [15] 
from [3], [5] and [13]. 

H. LEBLANC AND R. K. MEYER. Truth-value semantics for the theory of types. 
Take the (simple) theory of types—T, for short—to be axiomatized as in Quine's Set theory 

and its logic, p. 331. Where A is a wff of T and X a variable of T of type t, take {X: A) to be 
defined as on p. 259 of Quine's book, and count {X: A) as an abstract of T of type / + 1. 
Where A is a wff of T, and X and y are (not necessarily distinct) variables of T of the same type 
f, take A[ Y/X] to be the result of replacing every free occurrence of X in A by an occurrence of 
Y if no component of A of the sort (V Y)B contains a free occurrence of X; otherwise, take 
A[Y/X] to be AX[YIX], where A1 is the result of replacing every occurrence of Y in every 
component of A of the sort (V Y)B that contains a free occurrence of X in A by an occurrence 
of the alphabetically earliest variable of T of type t that is foreign to that component of A. 
Where A is a wff of T, X a variable of T of nonzero type /, and {Y: B) an abstract of 7*of 
type t, suppose A[{Y: B}/X] to be similarly accounted for. Where a is a function from the set 
of wffs of Tto {T, 1}, count o as a general truth-value function for Tif 

(a) o(~/4) = T if and only if a(A) = 1, 
(b) a(A s B) = T if and only if a(A) = T or o(B) = T, 
(c) where X is a variable of T of type 0, <x((V.TM) = T if and only if a(A[YIX]) = T for 

every variable Y of T of type 0, 
(d) where X is a variable of 7* of nonzero type r, a(£iX)A) = T if and only if a(A [K/X]) = T 

for every variable and abstract K of T of type /, and 
(e) where X and Y are distinct variables of T of nonzero type /, Z is a variable of T of type 

f - 1, and Z' one of type / + 1, «((V2)(Z E * = Z e Y)) = T if and only if a((VZ0('^ e Z ' = 
(y e zo) = T. 

And take a wff /I of T to be generally valid if a(A) = T for every general truth-value function 
« for T. It is readily shown, using results of Henkin, Beth, and Leblanc, that a wff of Tis prov­
able in T if and only if generally valid. This account of general validity reminiscent of one of 
Schiitte may be found less ad hoc than Henkin's own, and—in that it makes no mention of 
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models—of some philosophical interest. The circumstances under which a wff of T is valid in 
the standard sense (as opposed to generally valid) can likewise be spelled out without mention 
of models. 

T. C. POTTS. The logical description of changes which take time. 
Changes which take time can be described in English by means of the auxiliary verb "come 

to" : thus from the schema "A <f>s" we can obtain the schemas "A is coming to 4>" (continuous 
aspect), "A has come to <f>" (perfective aspect) and "A came to <j>" (past tense). These three 
schemas provide the subject-matter of this paper, but to simplify the problem I shall restrict 
consideration to cases where " ^ " is of the form "be <l>", e.g. "A is coming to be <l>", "come to 
be" then contracts to "become". 

If "is coming to" is represented by a monadic operator "A( ) " , then if "p" stands for 
"A is 4", "A/7" will represent "A is becoming <f>". With this interpretation of "p", the fol­
lowing system is proposed: 

A <-> (o) 05) A A + 

Ace /S a Act A/3 

A/3 A(o A 0) 

provided that "j3" depends on no premises other than "a" and that "a" depends on no 
premises other than " /3" 

AT Act T A nAa 
not AAa 

Problems about combining this system with tense-operators are raised, and a difficulty in the 
way of regarding "is coming t o " as a prepositional operator. Two senses of the schemas "A 
has come to be </>" and "A came to be 4>" are distinguished, and a consequent difficulty about 
their symbolic representation raised. 

S. FAJTLOWICZ. Birkhoff theorem in category of general algebras. 
By a general algebra or, shortly, algebra we mean any sequence (An)nea where A0 is an arbi­

trary, nonempty set, and An (for /i > 1) is a family of operations of n variables on the set A0, 
such that 

(i) the trivial operations e"(*i, • • •, x„) = xt belong to A„, 
(ii) iffu •••,ficsAn,feAk, then the operation 

fill, • • • , A ) ( * l , • • • » *n) = fifxiXu • • • , * « ) , • • • , A ( X i , • • • , *n)) 

belongs to A„. 
Let 91 = {An) 

nea &nd 23 — (£n)n6m be general algebras. A sequence of mappings {h^nemt 

such that hn: An -»• Bn will be called a homomorphism of 21 into 25 if for every fe An, n = 
1, 2, • • •, xlt • • •, xn e A0, the equality 

(*n / ) (*0* l . • • • . *0*n) = f>0f(xlt • • • , Xn) 
holds. 

Thus we have defined a category. It will be denoted by s/. 
In this category there exists the product. 
A class of algebras will be called a variety if it is closed with respect to operations of product, 

homomorphic image, and reduct. 
Let Ti(A. • • •. fk, Xi, • • •, xn) be terms in which/ are the symbols of operations of nt variables. 
We say that in an algebra 21 the equality rx = T2 holds if in this algebra the sentence 

v 7 l S * n l
 - - • VfKeA^VxxeAo'- - VxneAa

TlUl>'' ' >fk' *1> * * ' > *n) = T2(A»""' >fk> Xlt---,xJ 

holds. 
A class of algebras is called equationally defined if it is the class of all algebras satisfying some 

system of equalities. 
In category si holds the analogue of 
BIRKHOFF THEOREM. The class of algebras is equationally defined iff it is a variety. 
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ANGUS MACINTYRE. Complete theories of topological fields with distinguished dense proper 
subfields. 

For notation and background one should consult Keisler's paper {Michigan mathematical 
journal, vol. 2 (1964), pp. 71-81). 

THEOREM 1. (a) If Ax, A2, Bx, B2, are real-closed fields and Bx, B2 are dense, proper sub-
fields of Ax, A3, respectively, then (Ax, Bx) = (A2, B2). 

(b) Suppose p is a prime. If Ax, A2, Blt B2, are p-adically closed fields (i.e. elementarily 
equivalent to the valued field ofp-adic numbers), and Blt B2 are dense, proper subfields ofAlt A2, 
respectively, then (Alt B{) = (A2, B2). 

(c) If A\, A2, Blt B2, are Henselian-valued fields with residue-class fields of characteristic zero, 
and Ax = A2 = Bx = B2, and Bx, B2 are dense, proper subfields of Ax, A2, respectively, then 
(Ax, Bx) = (A2, B2). 

In the proofs we use the method of saturated models. For (b) and (c) we make use of funda­
mental work of Ax and Kochen, and Ersov. (a) was already known (A. ROBINSON, Fundamenta 
mathematicae, vol. 47 (1959), pp. 179-204) but our treatment is much simpler. In particular, no 
use is made of the concept of linear disjointness. 

THEOREM 2. (a) If Ax, A2, Bx, B2 are real-closed fields, and Bx, B2 are dense, proper subfields 
of Ax, A2, respectively, and (Ax, Bx) £ (A2, B2), and Ax and B2 are linearly disjoint over Bx, 
then (Ax, Bx) < (A2, B2). 

(b) Suppose p is a prime. IfAx, A2, Bx, B2 are p-adically closed fields, and Bx, B2 are dense, 
proper subfields of Ax, A2, respectively and (Ax, Bx) £ (A2, B2), and Ax and B2 are linearly 
disjoint over Bx, then (Ax, Bx) < (A2, B2). 

There is an analogue of Theorem 1(c). 2(a) was proved by Robinson (loc. cit.), but our method 
is simpler. 

G. M. WILMERS. Some problems related to the elementary equivalence of constructible 
models of set theory. 

The starting point of this work is the paper by A. MOSTOWSKI, Acta philosophica fennica, 
vol. 18 (1965), pp. 135-144, quoted hereafter as (1). 

If x is a set, let D(x) denote the set of elements definable in <x, «>. In (1) Mostowski defines 
a function f: Ord ->- Ord such that if <F*o, e> is a model of ZF, f(a) is the unique jS such that 
<F*7?, e> and <D(F'o), «> are isomorphic. He then proves that for such a, 

a = /(„) <-> D(F"a) = F"a. 

Further to this we show that f(a) can be characterized as the least jS such that <,F"P, *> = 
<F"a, «r>. 

We define the index of an ordinal a, 1(a), as the ordinal corresponding to the order type of 
the class of all /} such that <F*jS, «> s <F"a, e>, under the natural ordering. Our main result is 
that if A is a strongly definable ordinal (defined in (1)), and there are less than A ordinals /5 < A 
such that <F"f}, e> is a model of ZF, then there exists an a such that (F"a, «> is a model of ZF 
and 1(a) = A. 

MAURICE BOFFA. Sur Vexistence d'ensembles niant le Fundierungsaxiom. 
Notons S le systeme axiomatique de la th6orie des ensembles comprenant les axiomes A, 

B et C de Godel. 
Pour toute relation R posons: xRy o (x,y) e R; xR = {y \ y Rx};AR = {x \ (3y)(x Ry V 

y Rx)}; R est extensionnelle « (ixy)((x e AR Aye AiJ A xR = yR) => x = y); 5 est une 
restriction transitive de R «- 5 <= JR A (Vx)(x e AS => xs = xR); R est un graphe •*> (VJC)A/(JCB). 
Nous dirons qu'un graphe extensionnel R est universel si et seulement si tout graphe exten-
sionnel g est isomorphe a une restriction transitive de R. 

THEOREME 1. Dans S, on peut construire un graphe extensionnel universel U tel que 
(Vx)(xeAU=>Xu$AU). 

POSONS. N o toute classe propre est equipotente a Punivers; In <=> il existe au moins un 
cardinal fortement inaccessible; F-s> la relation d'appartenance est un graphe extensionnel 
universel. 
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THEOREME 2. Dans S + D + E( + In), la permutation de Vunivers transposant x et xu 

(pour tout x 6 At/) determine un modile de Rieger1 du systimell + N + F (+In). Par consequent, 
siS (+E + In) est consistant, alorsZ + N + F ( + In) Vest aussi.2 

POSONS. F* o tout graphe extensionnel G non equipotent a l'univers est isomorphe a une 
restriction transitive de la relation d'appartenance. 

THEOREME 3. Dans S + N + F + In, la classe des ensembles dont lafermeture transitive est 
de puissance < £ (le plus petit cardinal fortement inaccessible) determine un modele supercomplet 
dusystemelL + E + non N + F*. Par consequent, siZ + E + In est consistant, alors'L + E + 
non N + F* Vest aussi. 

YOSHINDO SUZUKI. Orbits of denumerable models of complete theories. 
A topology for the denumerable models of a first-order countable theory was introduced 

and studied by Grzegorczyk, Mostowski and Ryll-Nardzewski. By orbits we mean quotient 
classes of models with respect to isomorphisms. The orbit consisting of the prime models is 
called prime. Suitably generalizing results mentioned above and making use of results of Vaught, 
we can prove the following theorems for complete theories. 

THEOREM 1. Each nonprime orbit is meager. 
THEOREM 2. The prime orbit is a comeager Gyset. 
Some examples from /3-models of analysis and well-founded models for set theory are men­

tioned. 

A. B. SLOMSON. An undecidable two-sorted predicate calculus. 
Let L be the first-order predicate language with two sorts of variables and just one dyadic 

predicate letter whose first place is to be filled by the variables of one sort and whose second 
place is to be filled by the variables of the other sort. In answer to a question of M. H. Lob 
we show that there is no decision procedure for determining whether or not a sentence of L is 
universally valid. 

The method used to obtain this result also yields as a consequence that the modal predicate 
calculus S5* with just one monadic predicate letter is undecidable. This strengthens the result 
of Kripke, Zeitschrift fur mathematische Logik und Grundlagen der Mathematik, vol. 8 (1962), 
pp. 113-116. 

CHARLES F. MILLER, III. On a problem of Graham Higman. 
Higman has shown the existence of a universal finitely presented [f.p.] group U, i.e., a f.p. 

group U which contains an isomorphic copy of every finitely presented group. In particular, 
U contains an isomorphic copy of every f.p. group with solvable word problem [WP], but U 
itself has unsolvable WP of degree 0'. We are led to the following question: Does there exist a 
universal f.p. "solvable WP" group, i.e., a f.p. group 5 with solvable WP which contains an 
isomorphic copy of every f.p. group with solvable WP? We show such a group does not exist. 

For suppose such an S did exist. Let G be a f.p. group with solvable WP. Using the algorithm 
A(S) which solves the WP for S, we can enumerate the set of homomorphisms from G into S. 
Let w be a word of G. If w ^ 1 in G, then for some homomorphism h(w) # 1 in S, which can 
be tested using A(S). Hence, we can enumerate the set of words w # 1 in G. Since the set of 
words w = 1 in G can be enumerated, this solves the WP for G. We thus obtain a partial 
algorithm which, when applied to a f.p. group with solvable WP, solves the WP for that 
group. This contradicts a theorem of Boone and Rogers, and so the desired S could not exist. 

A. WOJCIECHOWSKA. Generalized limit powers. 
1 is any nonempty set and F a filter of subsets of I2. By S(I, F) we denote a structure 

<2' | F , l , n , u , ~ , Mty( < a, where <2Z | F, 1, n, u , ~> is a limit power of a two-element 
Boolean algebra 2. For any set S £ / we denote by S* the characteristic function of S with 
values in 2. Let 21 = (.A, R(yt < j8 be any relational structure. 

1 Cf. Czechoslovak mathematical journal, vol. 7 (1957), p. 344. 
2 P. Hajek (Zeitschrift fiir mathematische Logik und Grundlagen der Mathematik, vol. 11 

(1965), pp. 103-115) a etabli, par une autre methode, la consistance d'une autre version de F. 
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LEMMA. For any flt • • •, fk e A11 F and any formula 9(v1, •••,»») of the language of 91 we 
have 

{f:91N#(/l(0,•••,/*('))}* e2 ' \F . 
For any formula *(Ja, • • •, Xn) of the language of 5(7, F) and formulas #!,•••,#„ of the 

language of 91 whose free variables are vlt • • •, vk, we define a A>ary relation Q on A1 | F putting 

(§) S(J, F) N ®[{«-: 211= *tC/iC), • • •. /*(«'))}*, •••,{«: 91N M / i ( 0 , • • •, A(0)}*]. 

Z will be any set of such relations Q, where O, »,#!,•••, #n and AT are arbitrary. 
THEOREM. TTiere w an effective procedure whereby to each formula T(xi, • • • ,xk) of the 

language of (A' \ F, G>QSZ can be correlated a sequence <$, #i, •• •, #k> that 

<4' | F, G>c s z N IX/i, • • •. A) '#(§) *oW». 

This is a natural refinement of a well-known theorem of Feferman and Vaught. 
Let us formulate, e.g., the following application of our result. 
COROLLARY. If G is a filter of subsets of I2 including F and if 2' | F -< 2' \ G then for any 

structure 21 we have 2l7 | F -< 91' | G. (-< denotes elementary inclusion) 

JAN WASZKIEWICZ AND B. WEGLORZ. Remarks on theories of reduced powers. 
Let T be a complete theory, / a nonempty set and D a filter of subsets of /. Then for any 

model 91 of T the theory Th(9lk) of the reduced power is the same and will be denoted by 7"£ 
By 2 we denote a two-element Boolean algebra. 

THEOREM 1. If T is a countable theory which is K0-categorical then To has the same property 
provided the set of atoms of the Boolean algebra 2'D is finite. 

The supposition that 2'D has finitely many atoms is essential. Easy examples show that no 
result of that kind holds for Nrcategorical theories. 

THEOREM 2. 7/21 is the countable model of an 80-categorical theory T, then each countable 
model ofTp, where F is the filter of all cofinite subsets of at, is isomorphic to 2le, which is a sub­
structure of a direct power o/9t consisting of all continuous functions from the Cantor set c to 91 
endowed with a discrete topology. 

These results can be applied to obtain a simple construction of an N0-universal partial 
ordering (Mostowski, 1938). 

THEOREM 3. <•>), <>c is an V.0-universal partial ordering. 
Proofs and other applications are prepared for publication. 

B. WEGLORZ. On models of theories of reduced powers. 
We use the notation and terminology of H. J. Keisler's Limit ultrapowers, Transactions of the 

American Mathematical Society, vol. 107 (1963), pp. 382-408. 2 denotes a two-element Boolean 
algebra, / and J denote nonempty sets and D a filter of subsets of I. 

THEOREM 1. / / 2'D = 21 \ F then for every structure 91, 91 J, s 9lJ | F. (F is any filter of 
subsets of J2.) 

COROLLARY 1. If 21 is a countable structure (which may have uncountably many relations) 
then Th(2lij) has a countable model. 

THEOREM 2. If F is a filter containing all equivalence relations ~ over I such that I/~ is 
finite then 2lJ> | F < 9li,. 

This result also follows from a theorem of A. Wojciechowska—see her abstract. 
REMARKS. Let now F be the filter of finite partitions of /. Then 
(1) If 2'D is finite and has 2n elements then 21J, | F ~ 2ln. 
(2) If 2'D is infinite then 2l£, | F is a union of a directed system of finite powers of 21. 
COROLLARY 2. (a) / / an Vl-class is closed under finite direct powers then it is closed under 

reduced powers. 
(b) If an V3-class is closed under finite direct products then it is a Horn class. 
Stronger results on V3-classes were obtained by Weinstein, Notices of the American Mathe­

matical Society, vol. 11 (1964), p. 391. 
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GABOR T. HERMAN AND STEPHEN D. ISARD. Computability over arbitrary fields. 
The usual practice in attempts to make precise the concept of a computable function over a 

field F is to require that the elements of F should be in some sense effectively describable, and 
hence that F itself should be countable (see Rabin [1]). From some points of view, this is an 
awkward restriction. For instance, we may wish to consider a function / o n the reals "com­
putable" if an engineer can produce a device whose output wire will carry current whose measure 
is f(x) when its input wire carries current whose measure is x. 

In this paper we propose a definition of computability over arbitrary fields F. We base it on 
the Shepherdson-Sturgis [2] concept of an unlimited register machine. The registers are to 
contain elements of F. If 2 is a set of functions over F, a Z-program for the machine is a sequence 
of instructions which either change the contents of registers by applying functions of 2 to them, 
or cause the program to "jump" if a certain register contains 0. A function is2-computable if 
there is a 2-program which computes it. 

As an example we show that if 2 is the set of real functions < + , —, x , _ 1 , A>, where A is 
the characteristic function of < , the set o f n x n matrices A with real entries such that A1 = I, 
for some/, isE-computable if and only if n = 1. For the complex numbers and a natural exten­
sion of 2 , the corresponding predicate is not computable even if n = 1. This result has signi­
ficance for the problem of state accessibility for infinite linear sequential machines [3]. 

REFERENCES. [1] M. O. RABIN, Computable algebra, general theory and theory of computable 
fields, Transactions of the American Mathematical Society, vol. 87 (1960), pp. 341-360. 

[2] J. C. SHEPHERDSON and H. E. STURGIS, Computability of recursive functions, Journal 
of the Association for Computing Machinery, vol. 10 (1963), pp. 217-255. 

[3] H. GALLAIRE, J. N. GRAY, M. A. HARRISON, and G. T. HERMAN, Infinite linear sequential 
machines, Journal of computer and system sciences, vol. 2 (1968) pp. 381-419. 

ALAN Ross ANDERSON. Completeness and decidability of a fragment of the system E of 
entailment. 

Definitions of positive and negative part are as in L. L. Maksimova, Nikotoryi voprosy 
isiislenid Akkirmana, Doklady Akaddmii Nauk SSSR, vol. 175 (1967), pp. 1222-1224; English 
transl., Soviet mathematics, vol. 8, no. 4 (1967), pp. 997-999. We also define truth-functional 
part (tfp): A is a tfp of A, and if B{B & C, B v C} is a tfp of A, so is {are} B {B and C}. 

LEMMA. Every wff of E has an intensional conjunctive normal form Bx & B2 & • • • & Bm 

each Bt having the form Cx V C2 V • • • V Cn, where each Cj is either (a variable) p, or p, or of 
the form D-*- E or D -*• E. Moreover Cj is a positive {negative} part of at least one of the J5A 

iff it is a positive {negative} part of A. 
By a positive-entailment-free ("pef") formula A of E, we mean a formula containing no 

positive parts of the form D-+ E. Any such formula A may be rewritten equivalently as 
2?! & B2 & • • • & Bm in the lemma above, so provability of A reduces to provability of Bi for 
each i. We then use techniques of Anderson and Belnap (this JOURNAL, vol. 24 (1959), pp. 301-
302), supplemented by a Rule 3: from ^(F) and ^((7) to infer ^(F-*- G), to construct trees in 
an attempt to prove each B^ If the tree-construction terminates in axioms (as in the paper just 
cited), A is provable in E; if on the other hand the tree has a branch which terminates in a 
nonaxiom, all formulas in this bad branch can be falsified in a domain of two (intensional) 
propositions (one of which is true, the other false). It follows that the pef fragment of E is both 
decidable and complete. 

Decision procedures and completeness results are known for several fragments of E (zero-
degree formulas, first-degree entailments, first-degree formulas; see Belnap in this JOURNAL, 
vol. 32 (1967), pp. 1-22). Such interest as the present paper has stems from the fact that it 
gives, for a well-defined fragment of E, the first decidability and completeness results which do 
/io/ depend in any way on the amount of nesting of arrows within arrows in the formulas under 
consideration. 

ALBERT CHAUBARD. Remarques sur la difinissabiliti explicite. 
Soit T une thdorie du calcul des predicats du premier ordre avec dgalite renfermant les 

predicats r0, rt, • • •, rk. On designe par T0 la theorie dont les theoremes sont ceux de T ou 
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r0 n'occure pas. Soient J( la classe des modules de Tet J(0 celle des modeles de T0. Designons 
par F 1'application de Jt vers M0 qui a M = <£/, R0, Ri, • • •, RH> associe F(M) = 
<£/, Rlt •• •, Rky. Les rdsultats interessent la surjectivite de F. 

THEOREMS 1. Si la theorie T0 est complete et si lafonction F ri'est pas surjective il existe un 
modele MQ de T0 tels que 

(i) M0$F(JT). 
(ii) M0 a une extension elementaire M'0, isomorphe a une ultralimite de M0, qui appartient 

aF(JC). 
Une thdorie T est existentiellement close si, lorsque T h 3xfi(x) il existe une constante d'indi-

vidu a de T tel que T V /3(a). 
Une extension 7" de Tobtenue a partir de Ten ajoutant un ensemble U de constantes d'indi-

vidus est une description d'un modele M de T&\ 7" est compatible, complete et existentiellement 
close. 

THEOREME 2. Soil M0 e Jta. Pour que Me F(^f) ilfaut et il suffit qu'il existe une extension 
7" de T <J D(Af0) compatible, complete et existentiellement close sur son langage, telle que 7" 
soit une description d'un modele M de T telle que M0 = F(M). 

Un enonce a est semantiquement achevi dans une th6orie T si 7" est une description d'un 
modele de a. 

TH£OR£ME 3. Une extension compatible, complete T' de Tv D(M0) telle que T£ est une 
description de MQ est existentiellement close si et seulement si les thioremes de 7" en r0 seul sont 
semantiquement achevds dans 7". 

J. BARZDIN. On the complexity of the initial segments of recursively enumerable sets. 
The concept of the complexity of words was introduced by A. Kolmogorov. Let <j>{p) be a 

recursive function (x and <f>(j>) are words over the alphabet {0,1}). Let l(p) be the length of the 
word p. For every word x over the alphabet {0, 1} let us define 

Kt(x) = min /(/>). 

It is known that there exists a recursive function A(x) such that for any recursive function <f>(x) 

KA{x) < K0(x) + C„,, 

where C« is a constant not dependent on x. The complexity K(x) of the word x is defined as 
KA(X) where A{x) is a fixed function of the type given above. 

Let M be a set of natural numbers. The initial segment Mn of the set M is the collection of all 
elements s such that s e M and s < n Let Mn be a word axa2 • • • an, such that at = 1 if i e Mn 

and a( = 0 if i £ Mn. By the complexity K(Mn) of the initial segment Mn we mean the com­
plexity K(Mn). 

It is shown by P. Martin-L6f that for almost all binary sequences or what is the same—for 
almost all sets M of natural numbers there is K(M^) ^ n. 

I consider the complexity of the initial segments of recursively enumerable sets. 
THEOREM 1. For any recursively enumerable set M and for any natural n there holds 

K(Mn) < 2 log2 n + CM, 

where CM is a constant not dependent on n. 
For any recursively enumerable set M there exists an infinite amount of natural n such that 

K(Mn) < Iog2 n + CM, 

where CM is a constant not dependent on n. 
THEOREM 2. There exists a recursively enumerable set M (the set of maximal complexity) such 

that for any natural n 
K(Mn) > log2 n - C, 

where C is a constant not dependent on n. 
Further the complexity of the initial segments of recursively enumerable sets is investigated 

with restrictions on the allowed difficulty of transforming the "program" p into the word x. 
Let us take the number of steps A+(p) of the Turing machine which computes A(p) as the 
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measure of difficulty of such transforming. Let t(x) be a general recursive function (where x is 
a word and t(x) a number). Let us define 

K'(x) = min l(p). 
A(p) = x;A + (.p)xtto 

THEOREM 3. There exists a recursively enumerable set M such that for any general recursive 
function t(x) there holds 

K'(Mn) £ Ctn, 
where Q is a constant not dependent on n. 

This estimate cannot be essentially improved. 
Further the question is investigated which of the sets naturally appearing in the theory of 

algorithms are of maximal complexity. The complexity of the initial segments of some real 
problems (recursively enumerable sets) is also investigated. 

CHARLES F. MILLER, III. Transfers of word and conjugacy problems. 
A technique is given for passing from a finitely presented group H with a word problem [WP] 

of r.e. degree D to a finitely presented group G with solvable WP but conjugacy problem [CP] 
of degree D. This gives a new proof of a theorem of Collins—our proof uses a mild generaliza­
tion of his methods. Conversely, under certain circumstances, a method is given for passing 
from an unsolvable CP to an unsolvable WP. The construction can be modified to establish the 
following 

THEOREM 1. The free product of two free groups with finitely generated amalgamation has 
solvable WP, but may have unsolvable CP. 

THEOREM 2. The automorphism group A of a free group of finite rank > 5 has, for each r.e. 
degree D, a finitely generated subgroup BD such that the membership problem for BD has degree D 
(so-called generalized WP). A is known to be residually finite and to have solvable WP. 

RAIMO TUOMELA. On eliminability and definability of auxiliary concepts in first-order theories. 
The present paper is mainly an outgrowth of some results concerning deductive interpolation 

in the theory of distributive normal forms by Jaakko Hintikka (Distributive normal forms and 
deductive interpolation, Zeitschrift fur mathematische Logik und Grundlagen der Mathematik, 
vol. 10 (1964), pp. 185-191). Consider a first-order theory with A + n as its set of extra-logical 
parameters. Denote its distributive normal form at depth d by r(d)(A + /t) and by r(d)(A + )̂(A) 
the subtheory obtained from it by omitting all the members of p. The depth of a sentence is 
here defined to be the maximal length of sequences of nested quantifiers occurring in it. It can 
be shown by a separation result in the theory of distributive normal forms (a generalization of 
Craig's interpolation theorem) that the elimination of the members of the set fi (interpreted as 
theoretical concepts) does not preserve deductive power with respect to formulas containing 
concepts of A only. This gives rise to measure the possible gains obtained by using auxiliary 
concepts in the following ways: 

(1) gain in deductive power measured by 

lim.. . . conlCr"+e>(A + /x)(A)) - cont(T<d>(A + M)(A)), 

where cont is the usual measure of semantic information; 
(2) gain in simplicity measured by cont((r(d)(A + f)(A))) - cont((r(d»>(A + ^)(A))), d0 < d. 
In the case when the members of p are explicitly definable no gain of the first kind is obtained 

(the subtheory is finitely axiomatizable by 7"<d+e)(A + /i)(A), (d + e) being the maximal depth 
of the definientia. But gain of the second kind is obtained. The greater the maximal depth of 
the definientia is, the greater this gain. 

L. PACHOLSKI. Elementary substructures of direct powers. 
THEOREM 1. If 21 = <«, + , • >, then the substructure of 2lm consisting of all arithmetical 

functions is an elementary substructure of 21'". 
THEOREM 2. If'Si = <<o, /?,>(< m is a structure such that all relations over to defined by elemen­

tary formulas of the language of 21 are recursive then the substructure of 21'" consisting of all 
recursive functions is an elementary substructure of 2lm. 
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THEOREM 3. For any relational structure 91, any infinite set I and any infinite cardinal number 
3H <, \I\ the substructure of the direct power 2lJ consisting of all functions f such that | / ( / ) | < 3R 
is an elementary substructure of 2lJ. 

This result follows also from Theorem 2 of B. W^glorz—see his abstract. 
THEOREM 4. For any St, / and 9K as above the substructure of W consisting of all functions f 

for which there exists an element af e 21 such that \I —f~x(af)\ < 9R is an elementary sub­
structure of9SJ, 

This result follows also from the result of A. Wojciechowska—see her abstract. 

JONATHAN P. SELDIN. General models for type theory based on combinatory logic. 
In [2] and [3], Sanchis showed how systems of type theory can be formulated on the basis of 

combinatory logic using the theory of functionality and how general models can be constructed 
for these theories in terms of which total valuations can be defined. But the results of Sanchis 
hold only for simple (or finite) type theory; they do not apply to transfinite systems such as 
that of Andrews [1]. In this paper, the results of Sanchis are extended to transfinite type 
theory and to still more general systems. 

REFERENCES. [1] PETER B. ANDREWS, A transfinite type theory with type variables, North-
Holland, Amsterdam, 1965. 

[2] Luis E. SANCHIS, Normal combinations and the theory of types, Ph.D. thesis, The Pennsyl­
vania State University, University Park, Pennsylvania, 1963. 

[3] Luis E. SANCHIS, Types in combinatory logic, Notre Dame journal of formal logic, vol. 5 
(1964), pp. 161-180. 

KAREL L. DE BOUVERE. Logical and ontological models. 
1. Let L be a standard language, S the set of all its sentences (of finite length). Let J be a 

theory in L and £ r the set of all extensions of T in L. The algebra 

AT = <£?,&, W , ^ , r , 5 > 
is a Brouwerian algebra (Tarski, 1935). 

2. Let T be a theory as described above with exactly four complete extensions (the incon­
sistent extension is not considered to be complete). All extensions of T are unions of four 
building stones: 7\, T2, f3 and f4. We can exhibit them as vertices of a simplex (in this case a 
tetrahedron). 

3. The notion of a model is used in a different sense by logicians on one hand and natural 
and social scientists on the other hand. The situation is confusing, especially for philosophers. 
The example of 2 may clarify the differences and interrelationships of the notions involved when 
applied to some philosophical considerations. Moreover, the example is apt to serve as a 
"mathematical model" to explain some qualitative properties of some physical worlds built 
from some elementary particles. 
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