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THE JOURNAL OF SYMBOLIC LOGIC 
Volume 40, Number 1, March 1975 

ON CHARACTERIZING SPECTOR CLASSES 

LEO A. HARRINGTON AND ALEXANDER S. KECHRIS1 

We study in this paper characterizations of various interesting classes of relations 
arising in recursion theory. We first determine which Spector classes on the structure 
of arithmetic arise from recursion in normal type 2 objects, giving a partial answer 
to a problem raised by Moschovakis [8], where the notion of Spector class was first 
essentially introduced. Our result here was independently discovered by S. G. 
Simpson (see [3]). We conclude our study of Spector classes by examining two 
simple relations between them and a natural hierarchy to which they give rise. 

The second part of our paper is concerned with finding structural characteriza- 
tions of classes of relations on the reals in the spirit of Moschovakis [7]. Our main 
result provides a single abstract characterization for the class of fIl relations on the 
reals and the 2-envelope of 3E, the first one being valid if projective determinacy is 
true, the second if V = L is true. 

?1. On Spector classes. 
IA. Characterizing the 1-envelope of a type 2 object. A Spector class ' on the 

structure of arithmetic is a collection of relations on w which contains all the re- 
cursive relations, is closed under the positive propositional connectives, existential 
and universal number quantification and recursive substitution, is parametrized 
(i.e. contains a complete relation) and has the pre-well-ordering property. An equiv- 
alent definition can be given in terms of computation theories as defined in Mos- 
chovakis [8]: A Spector class r is just the collection of semirecursive relations of a 
Spector theory ( on w. A systematic study of Spector classes is given in Chapter 9 
of Moschovakis [6]. 

Recursion theory is full of examples of Spector classes. The classical example is 
H1. Then we have El and assuming projective determinacy El ,I~n+ for all n 
(assuming V = L all the Z' with n > 1 are Spector classes). The theory of objects of 
finite higher type is another basic source of Spector classes: If F is a normal finite 
type object, then -the 1 -envelope of F, i.e. the class of semirecursive in F relations on 
W, is a Spector class (a type n object F is called normal if nE is recursive in F, where 
nE is equality of type n - I objects). 

After some reflection one realizes that although all the above examples (and many 
others we did not mention here) have a lot in common (and this is revealed by the 
general theory of Spector classes), they also have many significant structural 
differences. It thus becomes one of the most interesting and important problems of 
abstract recursion theory to find structural properties which characterize various 
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20 L. A. HARRINGTON AND A. S. KECHRIS 

significant subcollections of Spector classes. We characterize in this paper those 
Spector classes which are 1-envelopes of type 2 normal objects. The next step in this 
direction is clearly the characterization of 1-envelopes of higher than type 2 normal 
objects. Moschovakis [7] has shown that 1-envelopes of normal objects of type 
> 2 are never 1-envelopes of normal type 2 objects. Harrington [2] proved that the 
1-envelope of a normal object of type > 3 is also the 1-envelope of a type 3 object 
and he gave a characterization of the collection of 1-envelopes of normal type 3 
objects. It seems nevertheless that there is still room for improvement here. 

The key to our result is the idea of using properties of the companion admissible 
structure of a Spector class r to characterize r itself, a possibility which already 
has been foreseen in the last paragraph of Moschovakis [8]. The notion of the 
companion of r is defined in Moschovakis [6]. We summarize below its basic 
properties. 

DEFINITION. Let r be a Spector class on w. A companion for r is a structure 
X = <M, e, R> such that 

(a) M is a transitive set, R c M and M is admissible with respect to R. 
(b) M is projectible into w (i.e. there is a A1(4) map of a subset of w onto M) 

and resolvable (i.e. there is a A1(.Ik) map r: Ord n M - M such that M = U4 r(e)). 
(c) The relations on w which are Z.(4) are exactly those in r. 
The companion theorem of Moschovakis [6] states that each Spector class r has 

a companion X' which moreover is " unique" in the sense that if '1 = <M1, e, R1> 
is any other companion then M = M1 and E1(& ) = E 1). We shall denote by 
&r = <Mr, e, R> "the" companion of r. 

DEFINITION. A Spector class r is called Mahlo if &r is Mahlo, i.e., for any 
x E Mr and any A c Mr, A E A1(,&r), there is an N E Mr, N transitive, x E N such 
that <N, e, A n N> is admissible. 

A Spector class r is called inaccessible iff Or is inaccessible, i.e. for all x E Mr, 
there is a transitive N E Mr such that x E N and <N, e> is admissible. 

We are now ready to prove the promised characterization of the I-envelope of a 
type 2 normal object. The two results below are independently due to S. G. Simpson 
(see [3]). 

THEOREM 1. Given a Spector class F, the following are equivalent: 
(a) r is the 1-envelope of a normal type 2 object. 
(b) r is not Mahlo. 
THEOREM 2. Given a Spector class F, the following are equivalent: 
(a) F is the 1-envelope of the superjump of a normal type 2 object. 
(b) F is inaccessible but not Mahlo. 
(c) I' is the I -envelope of a type 2 object F with E1 (the Tugue object) recursive in F. 
PROOF. Let F c %x be a normal type 2 object. Let -/(F) = #en(F). It is well 

known that /(F) has the nice characterization as the first admissible structure 
relative to F. That is, for each ordinal a, define L4F] by 

LJ[F] = HF = hereditarily finite sets, 
Lu+l[F] = {x c L,[F]: x is 1st order definable with parameters 

over the structure <L,[F], E, F n LA[F]>} 
LA [F] = U < ALa [F]. 
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ON CHARACTERIZING SPECTOR CLASSES 21 

Let /4(F) denote the structure <L,[F], e, F n LA[F]>. An ordinal will be called 
F-admissible if 4,(F) is an admissible structure; a will be called F-inaccessible if 
or is F-admissible and the limit of F-admissibles. We denote by WI the least nonre- 
cursive in F ordinal. Then X(F) = i4,,F(F) and w' is the 1st F-admissible > w. 
Also if S(F) = superjump of F, X(S(F)) = /tS(F(F) and w (F) is just the 1st F- 
inaccessible. This makes clear that (a) > (b) in both Theorems 1 and 2. 

To demonstrate the other implication we shall need a few more facts about the 
,&,(F)'s. For ordinals a, "low" in the X(F) hierarchy (for our purposes oa < cl(F) 

is low enough), there is a new real in La + 1 [F], that is, An (T (La + l [F] - La[F]) #- 0. 
Let I4(F) be the 1 st (in the sense of the natural well-ordering of La + 1[F]) member of 
this set. 

The above will allow us to define normal type 2 objects F, with certain desirable 
properties, by induction; note that L1[F] in no way depends on F and, given L[F], 
La+ 1(F) is completely determined given F n La[F]. 

Now, let r be a Spector class. Using the resolvability of XYr1 it is easy to see that 
4r has the form <L[A], e, A> for some ordinal i- and some A c i-. For a, < i, let 
& denote the structure <LA[A], e, A r0 a>. Assuming r is not Mahlo, we may choose 

A so that for all a, < i-, 4 is not admissible. It should now be fairly easy to find a 
normal type 2 object F such that 1en(F) = r. Just let F = 2E v G, where G is 
(inductively) characterized by: for a E 0cw, a E G iff ]a,(a = Ia(F) = Iq(2E V G) and 
a< c F =co (2EVG) and Wi 1 A). 

To show that this F has the desired properties: the map, oa -w- 4(F), oa < -, is 
A1 over J(f = X1. Thus r is F-admissible and so T- > wXF. By the definition of G. 
A rn w)F is A1 over A'F(F), and thus AF is admissible. So co = T and k = 

if r is also inaccessible, then we can similarly find a normal type 2 object F such 
that r = 1en(S(F)). Let F = 2E v G, where G is (inductively) characterized by: 
for a E 0c, a E G iff 3ao(a = Ia(F) = I,(2E v G), and , < CO(F) = CO S(2EvG) and r is 
the 6th F-admissible ordinal, and 6 E A). 

As before, the map a --4(F), a < a-, is A1 over Xr = Ad, For any ar < a, since 
1 is inaccessible, there is 8, a < 8 < a, such that L,5(4a(F)) is admissible, and so, 
by the innocuous definition of G, there is an F-admissible ordinal > a and <?. 
Thus T- is F-inaccessible and so T- > WS(F). Since the F-admissible ordinals <c S(F) 

have order type co (F), A ra CDS(F) is A1 over 1,S(F)(F), and therefore, as before, 
WS(F) = i and Xfsc(F)(F) = I 

The above two constructions yield that (b) - (a) in Theorems 1 and 2. To 
complete the proof of Theorem 2, notice that for any normal type 2 object F: El = 

S(2E) < S(F), and thus (a) => (c); if E1 < F then for all a E co wr Lcl[F] the 
hyperjump of a. E LFF[F], and thus 1en(F) is inaccessible. So (c) => (b). D 

[It may be interesting to note that the proof of a result of Moschovakis (in [7]) 
can be filtered through Theorem 1. Moschovakis has proven: for a 2-pointclass 
(see ?2) F with certain closure properties (the most important of which is that 
HIl c- r F f), the class of relations on w in r is not the 1-envelope of any normal 
type 2 object. A 2-pointclass r, with the properties Moschovakis assumes, has been 
shown (see [4]) to have a very strong reflection property, and even the mildest 
reflection property implies Mahlo-ness.] 

1B. A hierarchy of Spector classes. Moschovakis [8] defined a partial pre- 
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22 L. A. HARRINGTON AND A. S. KECHRIS 

ordering 0 < H between computation theories which gives rise to the important 
equivalence relation 0 - H )0 < H & H < 0. For any computation theory 0 
denote by rF the class of semirecursive in 0) relations. We have already mentioned 
that a Spector class r is equal to re for some Spector theory 0. But a moment's 
reflection reveals that 0 < H re F' rH. This leads us to define a natural partial 
ordering among Spector classes, namely 

r < rF r c: rF. 

We shall also consider another kind of relation among Spector classes which we 
shall call strong inclusion, i.e., 

r -< r, rF C Al 

where, for any Spector class r, F denotes the class of negations of relations in r 

and A = rn P. Note that r F r Frg r, but rc rFkr F-< F(e.g., r= FIl1 
r' = ILI(a), where a E 'co is such that co, = co, but a is not Al). 

Let us note now some simple facts concerning the two relations defined above: 
(A) If X = collection of all Spector classes, then <N. <> has a least element 

namely I. Moreover, for each r E i, {Fr: r -< r'} has a <-least element namely 
Ill1(A), where A cc w is a complete r set. Both of these facts are immediate conse- 
quences of a result of Moschovakis [7]. We denote by jr the <-least member of 
{Fr: r -< rF' and call it the jump of r. It is now easy to see that the companion of 
jF is just the next admissible structure of the companion of r. 

(B) To every Spector class r there is attached a natural ordinal which we denote 
by 3r. By definition 

8r = sup{l: 6 is the length of a pre-well-ordering in A}. 

It is easy then to see that 

8r = o(Mr) = least ordinal not in Mr. 

The so-called "Spector criterion" goes through, namely 

r < rF => (8r < r, Fir < rF). 

Using the partial ordering on X and the jump operation we can now define as 
usual a natural hierarchy of Spector classes as follows: 

ro = fIl, F+1 =jrF, 
rA = < -least upper bound of {Fr}, <A, if it exists. 

Let AO be the least ordinal for which this hierarchy stops, i.e. < -l.u.b. {rF:, <Ao does 

not exist. Let also {aj} <,, be the increasing enumeration of all the countable 
admissibles. 

THEOREM. (a) The natural hierarchy of Spector classes stops at the least non- 

projectible ordinal. 
(b) For each 6 < AO = least nonprojectible, 1r, = <Lard e> 
PROOF. It is quite simple to see, using the companion theorem of Moschovakis 

[6] which we summarized above, that AO ? least nonprojectible and for 6 < A0, 

fr4 = <Lac, e>. To prove that AO = least nonprojectible = def 7f0, it is enough to 
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ON CHARACTERIZING SPECTOR CLASSES 23 

show that rFO does not exist. If it did then for every real a. c Oco such that w 0 = 

we would have rFO cl() = Y()L=,,[(a], e>). But then by Theorem 3.4 of 
Sacks [9, p. 297] we must have rF0 = Y1(KL.O, e>) thus 7f0 is projectible, a 
contradiction. E1 

Using the results of ?1A we can also see that if po is the least Mahlo ordinal then 

{jr: cj consists of 1-envelopes of normal type 2 objects but rF0 is of course not the 
1-envelope of a normal type 2 object. On the other hand rF0 is the 1-envelope of the 
superjump, where 1-envelope is interpreted here in the modified sense introduced 
by Harrington [2]. Thus in a sense the superjump appears as the "least" non-type 
2 object. 

?2. Structural properties of 2-pointclasses. Let R = Ow be the set of reals and 
consider the product spaces a = X1 x X2 x ... x Xk, where Xi = w or M. We 
call subsets of these product spaces pointsets and we think of them interchangeably 
as relations, writing sometimes A(x) instead of x E A, when A c T. A 2-pointclass 
(according to the terminology of Moschovakis [7]) is a collection of pointsets. We 
call a 2-pointclass r weakly Spector if it contains all recursive relations (in all 
product spaces), is closed under the positive propositional connectives, number 
quantification (this means for example that if R(x, n) e r then ]nR(x, n) e r) and 
universal quantification over M, is co-parametrized (i.e., for any T there is a 
G c T x co such that G e r and {Gn: n e co}, where Gn = {x: G(x, n)}, coincides 
with the subsets of T which belong to r) and has the pre-well-ordering property. 
Among weakly Spector classes we can again define < r F r c r' andr -< rF 

r c: A'. Clearly fll is the < -least weakly Spector class. Jumps can be defined as 
before but we have not been able to prove they always exist. In fact it seems plau- 
sible that under assumptions like the axiom of determinacy one should be able to 
find r's with no jump. Nevertheless assuming V = L everything works smoothly. 

THEOREM. V = L = for any weakly Spector 2-pointclass r, ]Fexists. 
PROOF. Let r be a weakly Spector 2-pointclass. Let A c R be a complete set 

in r. We prove that 
ir= 2en(3E, A), 

where for a higher type object F. 2en(F) is the 2-pointclass of all semirecursive in F 
relations. That 2en(3E, A) is a weakly Spector 2-pointclass strongly containing r is 
well known. Assume now that r -< rF. We have to prove 2en(3E, A) c rF. By 
Moschovakis' characterization in [7] we have only to prove that if g: M x T-- w 

is a partial function whose graph is in rF then the relation 

R(x) Vac[g(o, x) is defined] & ]cc[g(aq, x) = 0] 

is in rF. But Q(o, x) - g(o, x) is defined - 3n(g(o, x) = n) is in r' and thus so is 
Vac(g(cc, x) is defined). But assuming Vac(g(cc, x) is defined), we have that 

P(a) - g(ac, x) = 0 ]n(g(c, x) = n) 

is in A(x) = r(x) rn r(x), where r(x) = {P c T: For some R e r, y e P 

(x, y) e R}. Thus if P =# 0 its least element in the canonical well-ordering of L is a 
real in A(x). Thus ]a(g(a, x) = 0) o ]c la A(x)(g(ac x) = 0), and by a standard 
pre-well-ordering theorem (see [1, p. 711 (X)]) this last relation is in r. D 
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24 L. A. HARRINGTON AND A. S. KECHRIS 

COROLLARY (OF THE PROOF). V = L > jII1 = 2en(3E). 
Although there may be some weakly Spector 2-pointclasses with no jumps we can 

still prove under various determinacy hypotheses that many interesting weakly 
Spector 2-pointclasses have jumps. We give below an important example which ties 
up nicely (though a bit unexpectedly) with our previous result. 

THEOREM. Projective determinacy (PD) > for each odd n, jFL = II + 

PROOF. Assume projective determinacy and take n = 1 for simplicity. Clearly 
Ill -< Ill and FL' is a weakly Spector 2-pointclass (see Martin [5], Moschovakis 
[1]). Let r be such that fIl <r. Then El r so fil C r. If A El, A c 2 then 

x E A H ]aB(x, a) la ]c Al(x)B(x, a), 

where the last equivalence follows from the basis theorem. But acc A A(x) => c E A(x). 
So 

xeA la ]c-A(x)B(x, a), 

thus A E r. Since El c r, clearly Il1 c r. D 
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