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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 43, Number 4, Dec. 1978 

THE PERFECT SET THEOREM 
AND DEFINABLE WELLORDERINGS OF THE CONTINUUM 

ALEXANDER S. KECHRIS1 

Abstract. Let r be a collection of relations on the reals and let M be a set of reals. 
We call M a perfect set basis for r if every set in r with parameters from M which is 
not totally included in M contains a perfect subset with code in M. A simple elemen- 
tary proof is given of the following result (assuming mild regularity conditions on r 
and M): If M is a perfect set basis for r, the field of every wellordering in r is contained 
in M. An immediate corollary is Mansfield's Theorem that the existence of a 12 

wellordering of the reals implies that every real is constructible. Other applications and 
extensions of the main result are also given. 

?1. Preliminaries. Let co = {0, 1, 2, ... } be the set of natural numbers and 
q = cl) the set of all functions from c) to c) or (for simplicity) reals. We study 
subsets of the product spaces a = X1 x X2 x ... x Xk, where Xi is co or S. We 

call such subsets pointsets. Sometimes we think of them as relations and we write 

interchangeably x E A A (x). A pointclass is a class of pointsets, usually in all 

product spaces. We shall be concerned primarily in this paper with the analytical 

pointclasses In', 171,, AI and their corresponding projective pointclasses 2l, HI, J4. 
For information about them we refer to [8], [11] and [12]. For a pointclass r, 
Determinacy (r) abbreviates the statement: Every set of reals in r is determined. 

Projective determinacy is the hypothesis that every projective set is determined. 
For information about games, determinacy, etc., the reader can consult [1], [8] 

and [9]. 
We shall make considerable use of perfect sets of reals in the following. To avoid 

unnecessary repetition we assume that a perfect set is always nonempty. If P c q 
is perfect then a code of P is a real coding in any reasonable fashion the tree 

associated with P i.e. the set of all finite sequences from c) which are initial segments 
of elements of P. We shall also talk frequently about continuous functions map- 
ping closed subsets of R into S. Any such function can be completely described by 

a countable amount of information (e. g. its values at a reasonable countable dense 

subset of its domain), which in turn can be coded by a real called a code of the given 
continuous function. 

Sometimes it will be convenient to work with the subspace 20 of q consisting 
of all binary reals. In this case, it is well known that for every perfect set P c 20 
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THE PERFECT SET THEOREM 631 

there is a canonical homeomorphism h: P -- 20. Moreover a code of h can be 
recursively obtained from a code of P. 

?2. The main result. A classical theorem of G6del asserts that if every real is 
constructible (i.e. V = L holds for reals) then there is a 127 wellordering of S. 
Recently, Mansfield [6] proved the converse of this theorem. In attempting, as it is 
fashionable these days, to find an appropriate generalization of Mansfield's 
Theorem to higher levels of the analytical hierarchy from Projective Determinacy 
(see Corollary 2 below), we have discovered a general result which immediately 
implies Mansfield's Theorem and all its desired generalizations and which has a 
surprisingly simple proof. Our result is best explained by introducing some ter- 
minology first. 

Let M c q be a set of reals. We say that M is Al-closed if for all a,(.. a, E M, 
if i is A1 in a,1 * a,, then i belongs to M. If r is a pointclass and M a Al-closed 
set of reals, we call M a perfect set basis for r if for all P(a, i *-A) in T and all 
parameters a,1 .a, from M, if A = {la: P(a, a,1 .. a)} contains a real not in M 
then it contains a perfect subset with code in M. In this terminology, the Perfect 
Set Theorem of Solovay [13] and Mansfield [5] asserts that the set of constructible 
reals is a perfect set basis for 121. Finally, let us call a pointclass T reasonable if 
it contains all Al pointsets and is closed under A, v and substitutions by Al func- 
tions (i.e. iff: X C is al and P c C is in T, then Q(x) < P(f(x)) is also in F). 
Obviously all the analytical pointclasses I1, H,1, z1 are reasonable. We can now 
state our main result. 

THEOREM. Let r be a reasonable pointclass and let M be a perfect set basis for r. 
If < is a wellordering of a set of reals and < e r, then the field of < (i.e. the set 
{a: a < a}) is contained in M. 

PROOF. Without loss of generality we can assume that the field of < is contained 
in 20 so that we can work below with this space instead of _. So let < be a well- 
ordering in r with field A c 20 and strict part <, where a < i3 a < f3 & 
a :A i. Assuming A - M # 0, we shall easily obtain a contradiction after proving 
the following 

LEMMA. If P c 20 is a perfect set with code in M and f: P -? A is 1-1 and 
continuous with code in M, then there is Q c P perfect with code in M and g: Q A 
also 1-1 and continuous with code in M, such that for all a E Q, g (a) < f (a). 

PROOF OF LEMMA. Let a0 be the least (in the sense of <) member of A - M. For 
each real a ei2w put a (n) = 1 - a (n). Let h: P -? 20 be the canonical homeo- 
morphism and consider h-1 (ao), h-1(Q). These reals are distinct and not in M so 
that the same is true for f(h-(ao)), f(h-1(i0)). Since they both belong to A one of 
them must be bigger (in the sense of <) than a0. Say a0 < f (h-l (ao)). Consider 
then the set B = {a: a e P & h (a) < f (a)}. It is in r with parameters from M 
and contains h-1(ao) ? M, so it contains a perfect subset Q with code in M. To 
finish the proof of the lemma put g(a) = h -(a), for a e Q. 

Let now P0 ' 20 be a perfect subset of A with code in M and let fo = identity 
on P0. By repeated use of the lemma we can construct a decreasing sequence of 
perfect sets P0 ' P1, P2 ' ... and a sequence of functions fn: Pn -? A such that 
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632 A. S. KECHRIS 

for all a E Pn+l, gf+l (a) < fn (a). Since fn Pn # 0 this gives us immediately a 
contradiction. I 

?3. Some corollaries and applications. As an immediate consequence of the 
preceding theorem we can now obtain. 

COROLLARY 1 (MANSFIELD [61). The field of a 27 wellordering of reals is contained 
in L. In particular, if there is a 21 wellordering of A, then V = L holds for reals. 

More generally, one can see that if < is a wellordering which is K-Souslin with 
tree T, then the field of < is contained in every inaccessible admissible set M 
containing T. (An admissible set M is inaccessible if for all x E M there is an 
admissible set N such that x E N E M. For the rest of the terminology and some 
facts about K-Souslin pointsets see [2], [3], [7] and [8].) 

Another generalization of Corollary 1 can be obtained by looking at the higher 
levels of the analytical hierarchy. For the definition of the set 2n2n+2 (n > 0) which 
is the analog of the set of constructible reals at level 2n + 2 (so that ce2 = the set 
of constructible reals), the reader can consult [3] and [4]. 

COROLLARY 2. Assume Determinacy (41), n > 0. The field of every 27"?2 

wellordering is contained in W'2n+2. In particular, W'2n+2 is the largest set or reals 

carrying a 121n #2 wellordering. 

PROOF. By the results in [3] and [4], 2(2n+2 is a perfect set basis for 127 2' grant- 
ing Determinacy (4 2). I 

It is well known that if the class of projective sets satisfies property P (i.e. every 

uncountable projective set contains a perfect subset) then every projective well- 
ordering has countable field. A more detailed analysis of the usual constructions of 
uncountable sets with no perfect subsets, shows in fact that if the class of 41 
sets satisfies property P then every J1 wellordering of reals has countable field. 
The following result improves on this estimate. 

COROLLARY 3. Let n > 1 and assume the class of J41 sets of reals satisfies property 
P. Then every 4 7 wellordering of reals has countable field. 

PROOF. Assume that our hypothesis is satisfied and let < be a wellordering of a 
set of reals such that < E Jl(ao), where ao is the parameter in a 41 definition of 
<. Using the Skolem-Lowenheim Theorem we can find easily a countable set of 
reals M which is a perfect set basis for r = Jl(ao). Then the field of < is in- 
cluded in M so it is also countable. I 

We do not know if the hypothesis of Corollary 3 can be weakened further by 
replacing J1 by H1. 

As we mentioned before, from the proofs of the theorems in [3] and [4] it follows 
that, assuming Determinacy(412), every thin (i.e. containing no perfect subset) 

121n+2 set is contained in 62n+2* (For n = 0 this is of course the Perfect Set 
Theorem of Solovay and Mansfield.) Our last application provides a common 
generalization of this fact and Corollary 2 above. It will be convenient to in- 
troduce some terminology first. 

Let -< be a wellfounded relation on reals (i.e. relation for which there is no 
infinite descending chain ... a3 -< a2 , a1 -< ao). Let F = {a :3 (a -< i or 

- < a)} be the field of -<. We say that < satisfies the thin antichain condition if the 
field of -< contains no perfect set of pairwise incomparable under -< elements or 
equivalently if for every perfect set P c F there are a, t E P such that a -< A. 
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THE PERFECT SET THEOREM 633 

THEOREM. Assume Determinacy(Ad,), n 2 0. The field of every 12n+2 wellfounded 
relation which satisfies the thin antichain condition is contained in W22n+2* 

PROOF. Let us first mention two basic properties of K(2n+2 (and its relativization 
'(2n+2 (13)) that will be used below (and can be proved from Determinacy (J2n)). 

(i) W'2n+2 is a perfect set basis for 27nf+2- 

(ii) a E6 W2n+2 (ti) & 13E (e2n+2 (r) a E W2n+2 (r). 
Let -< be a 42nj 2 wellfounded relation which satisfies the thin antichain con- 

dition and let F be its field. Assume that F - W2n+2 :A 0 towards a contradiction. 
Notice first that we may assume that < has the following extra property: 

(*) For all a,r , a -< 1=- a E W2n+2 (). 

To see this, let a < 1 = 3 r B (a, 13, r), where B E H2ln+i. Uniformize (using the re- 
sults of [10]) B by B* E 12n+l so that a -< 1 -- 3 - B* (a, A, 7) J3! 7 B* (a, A, r). 
Following an idea of Mansfield, call A E F bad if I = {(ac r): B* (a, ,3, r)} con- 
tains a perfect set. If there are no bad 13's, clearly for every 1 E F, I: ' W2n+2 (iA), 
so a < 13 => a E W'2n+2 (13) and we are done. Otherwise, since the set of bad 13's 

is Z2n+2 we can find (by the basis theorem of [10]) a bad 1' e J21n+2 If 1' is not 
-<-minimal bad, there is a bad " -< I' also in J12n2 etc. Proceeding this way we 
can find a -<-minimal bad real ~0 which is also in J1n+2. Assuming, as we may 
without loss of generality, that the constant 0 real a0 is not in F let 

a -<' >(a- < 1& 1-< 10) or (a = ao& -< 0). 

Clearly -<' G Z2n+2, a satisfies the thin antichain condition and a -<' 3=> a E 

2(2n+2(0) by the minimality of 30. Moreover the field F' of -<' contains {D: -< 1I}, 
so it contains a perfect subset P with code in J12, therefore F' - W2n+2 :A 0. 
(Since otherwise P ' (e2n+2, therefore q ' W2n+2 violating F - V2n+2 :A 0-) SO 
if < itself does not satisfy (*) we can replace it by -<'. Therefore it is safe to 
assume that < satisfies (*) to start with. 

Let us call a partial function from reals to reals a 2n function if its graph is 2n. 

As in the proof of the theorem in ?2 we can immediately obtain a contradiction 
after proving the following 

LEMMA. Let P be a perfect set with code in 2(2n+2 and let f: P -? F be a partial 
ZY21n+2 in parameters from W'2n+2 1-1 function. Then we can find a perfect set 
Q c P with code in 2(2n+2 and g: Q -? F a partial 22n+2 with parameters from 
W2n+2 1-1 function such thatfor all a E Q, g(a) -< f(a). 

PROOF OF LEMMA. Let f[P] = A c F. Clearly A is 21n+2 with parameters from 
2(2n+2 and contains a real not in 2(2n+2 (namely f(a), where a E P- W2n+2), SO it 
contains a perfect subset R with code in W'2n+2 and consequently it contains a 
perfect set S c R such that S n W'2n,2 = 0. (S can be taken to be i-1 {a E 20: 
Vn (a (2n) = 130 (n))}, where i: R -? 2w is the canonical homeomorphism and 
13o W 2'2n+2.) Find then cc, 1 E S such that a < 1. By the basis theorem we can find 

e Ea2n+2(a, r), where r is a parameter in W'2n+2, such that a -< : E R. Then by 
standard prewellordering arguments (see [8]) we can find a partial Z11?2 with par- 
ameters from 62n+2 function h such that h (ca) = j8. (We are using here the fact 
that there are partial 21n+2 functions {di}j2,, from q into q such that if 7 E 
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634 A. S. KECHRIS 

/2n+2 (3) then there is some i E co so that r = d1(o3).) Consider the set M = {a: 
h(a) is defined & a -< h (a) & h(a) E R}; M is 221n+2 with parameters from 62n+2 

and contains CC ? (K2n+2* SO it contains a perfect set T with code in 2(2n+2* Pick ca" E 
T - W2n+2 and put A' = h(a"). Since 3a(h(a) =3' & a e T), we can find a' e T, 
a' e ~2n+2n ') where ds e )2n+2' such that h(a') = 3' and furthermore we can find 
a partial 121n+2 with parameters from 6e2n+2 function g' such that g'(/3') = a'. 
Consider now the set 

N= {A: A E R & g'(f3 is defined & g'(3) E T & h(g'(/)) = A}; 
N contains /3' W 62n+2 (since otherwise by (*) a" E W2n+2, because a" -< h(a") = A') 
so it contains a perfect set Q' c R with code in W2n+2* Clearly g' is 1-1 on Q' 
and g'(/3) -< / for all /3 e Q'. Let now Q be a perfect subset off-' [Q'] with code in 
W2n+2 and letg: Q -* Fbe given byg(a) = g'(f (a)). I 
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