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Amoeba–absoluteness and projective measurability
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Abstract. We show that Σ1
4–Amoeba–absoluteness implies that ∀a ∈ R (ω

L[a]
1 < ωV

1 ), and

hence Σ1
3–measurability. This answers a question of Haim Judah (private communication).

Introduction

We study the relationship between Amoeba forcing and projective measurability. Re-

call that the Amoeba partial order A is defined as follows.

A ∈ A ⇐⇒ A ⊆ 2ω ∧ A open ∧ µ(A) < 1
2

A ≤ B ⇐⇒ B ⊆ A

Amoeba forcing generically adds a measure one set of random reals. Its importance in

the investigation of measurability of projective sets stems from the classical result, due to

Solovay, that

(*) all Σ1
2–sets are measurable ⇐⇒ ∀a ∈ R (µ(Ra(L[a])) = 1)

∗ The author would like to thank the MINERVA-foundation for supporting him
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(see, e.g., [JS 2, 0.1. and § 3]). Here Ra(M) denotes the set of reals random over a model

M of set theory.

The connection between Amoeba forcing and projective measurability was made more

explicit through Judah’s study of absoluteness between models V ⊆W of set theory such

that W is a forcing extension of V [Ju].

Definition (Judah [Ju, § 2]). Let V be a universe of set theory. Given a forcing notion

P ∈ V we say that V is Σ1
n − P–absolute iff for every Σ1

n–sentence φ with parameters in V

we have V |= φ iff V P |= φ. (So this is equivalent to saying that RV ≺Σ1
n
RV P

.)

Note that Shoenfield’s Absoluteness Lemma [Je, Theorem 98] says that V is always Σ1
2−P–

absolute. Furthermore, using (*), Judah showed [Ju, § 2]

(**) all Σ1
2–sets are measurable in V ⇐⇒ V is Σ1

3 − A–absolute.

Whereas there is no way of getting a characterization of Σ1
3–measurability analogous to

(*), (**) suggests the investigation of the relation between Σ1
3–measurability and Σ1

4 −A–

absoluteness. The main goal of this note is to establish one implication, namely that

Σ1
4 − A–absoluteness implies Σ1

3–measurability (Theorem 5 in § 2). Our tools for proving

this theorem are a partial earlier result of Judah’s, who showed Theorem 5 under the

additional assumption that ∀a ∈ R (ω
L[a]
1 < ωV

1 ), and combinatorial ideas due to Cichoń

and Pawlikowski [CP], which will eventually yield that Judah’s additional assumption is

in fact a consequence of Σ1
4 − A–absoluteness (§ 1 and Theorem 4 in § 2).

Notation. We shall mostly work with 2ω or ωω instead of R. L denotes the ideal of

Lebesgue measure zero sets, and B is the ideal of meager sets. Σ1
n(L) stands for all Σ1

n–sets

are Lebesgue measurable; and Σ1
n(B) means all Σ1

n–sets have the property of Baire. For a

non–trivial σ–ideal I ⊆ P (2ω), let add(I) be the size of the smallest family of members in

I whose union is not in I; cov(I) denotes the least κ such that 2ω can be covered by κ sets

from I; unif(I) is the cardinality of he smallest subset of the reals which does not lie in I;

and cof(I) is the size of the smallest F ⊆ I such that every member of I is included in a

member of F . We always have add(I) ≤ cov(I) ≤ cof(I) and add(I) ≤ unif(I) ≤ cof(I)

(see, e.g., [CP] for details concerning these invariants in case I = L or B).

Our forcing notation is rather standard (see [Je] for any notion left undefined here).

We confuse to some extent Boolean–valued models V P and forcing extensions V [G], G
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P–generic over V . For p.o.s P, Q, P <c Q means that P can be completely embedded in

Q. For a sentence of the P–forcing language φ, ‖φ‖ is the Boolean value of φ. P–names

for objects in the forcing extension are denoted by symbols like r̆. Finally, B will stand for

the random algebra, C for the Cohen algebra, and D for the Hechler p.o. (see, e.g., [BJS]).

Acknowledgments. I am very much indebted to both Haim Judah (for sharing with

me his insight into projective measurability and motivating me to work in the area) and

Andrzej Ros lanowski (for several stimulating discussions, concerning mainly the material

in § 1).

§ 1. The combinatorial component

We start with a straightforward generalization of one version of the main result of

[CP]. The proof is included for completeness’ sake.

Theorem 1 (Cichoń – Pawlikowski [CP, § 1]). Assume that C ≤c P, and that for any

uncountable T ⊆ P there is an s ∈ C such that for all ℓ ∈ ω there exists F ⊆ T of size ℓ such

that any t extending s is compatible with
⋂

F ∈ P. Then there is a family {Ax; x ∈ ωω∩V }

of Lebesgue measure zero sets in V C such that for all z ∈ V P , {x ∈ ωω ∩ V ; z 6∈ Ax} is at

most countable.

Proof. Let {τn; n ∈ ω} be a one–to–one enumeration of ω<ω; set code(τ) = n iff

τ = τn for any τ ∈ ω<ω. Let {Cn(i); i ∈ ω} be an enumeration of all open intervals in the

unit interval I = [0, 1] with rational endpoints of length 2−n, For x, y ∈ ωω let

Bn
x,y =

{

Cn(τy(n)(code(x↾y(n+ 1)))) if code(x↾y(n+ 1)) ∈ dom(τy(n))
∅ if not

Let Bx,y =
⋂

n

⋃

m>nB
m
x,y. Clearly µ(Bx,y) = 0. We claim that if c is Cohen over V ,

Ax = Bx,c for x ∈ ωω ∩ V , then {Ax; x ∈ ωω ∩ V } is the required family.

For suppose not. Then there are a P–name z̆, an uncountable set T ⊆ ωω ∩V , T ∈ V ,

conditions px ∈ P, and kx ∈ ω (x ∈ T ) such that
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px ‖−P ∀n ≥ kx (z̆ 6∈ Bn
x,c̆) (*).

Choose T ′ ⊆ T uncountable and k ∈ ω such that ∀x ∈ T ′ (kx = k). Fix s ∈ C according

to T ′. Let ℓ ≥ k, ℓ ≥ lh(s), and choose F ⊆ ωω of size 2ℓ such that {px; x ∈ F} satisfies

the requirements of the Theorem. Next let n > ℓ be such that |{x↾n; x ∈ F}| = 2ℓ. Let

F = {xi; i ∈ 2ℓ}, and choose i0, ..., i2ℓ−1 such that Cℓ(i0) ∪ ... ∪Cℓ(i2ℓ−1) = I. Let m ∈ ω

be such that τm(code(x0↾n)) = i0, ..., τm(code(x2ℓ−1↾n)) = i2ℓ−1. Let t ≤ s be such that

t(ℓ) = m, t(ℓ+ 1) = n. Then
⋃

i∈2ℓ Cℓ(τt(ℓ)(code(xi↾t(l + 1)))) = I, i.e.

t ∩
⋂

{px; x ∈ F} ‖−P z̆ ∈
⋃

i∈2ℓ

Cℓ(τc̆(ℓ)(code(xi↾ c̆(ℓ+ 1)))) =
⋃

i∈2ℓ

Bℓ
xi,c̆

,

contradicting (*).

As each open set in 2ω can be written as a countable disjoint union of sets of the form

[σ] = {f ∈ 2ω; σ ⊆ f}, where σ ∈ 2<ω, we can think of a condition A in the Amoeba

algebra A as a function φ : ω →
⋃

i∈ω P (2i) with φ(i) ∈ P (2i) such that σ ∈ φ(i) iff σ ∈ 2i

and σ lies in the countable disjoint decomposition of A. We can furthermore assume that

φ has the property:

(*) ∀σ ∈ 2i \ φ(i) (µ(∪{[τ ]; τ ⊇ σ ∧ ∃j > i (τ ∈ φ(j))}) < 2−i).

(Then φ is unique.) We define a p.o. A′ as follows.

(u, φ) ∈ A′ ⇐⇒







1) dom(φ) = ω ∧ ∀i ∈ ω (φ(i) ∈ P (2i)) ∧ φ satisfies (∗)
2) u ⊆ φ (u is an initial segment of φ)
3) µ(∪{[σ]; ∃i ∈ ω (σ ∈ φ(i))}) < 1

2

(u, φ) ≤ (v, ψ) ⇐⇒ u ⊇ v ∧ ∀i ∀σ ∈ ψ(i) ∃j ≤ i ∃τ ∈ φ(j) (σ ⊇ τ)

Lemma 1. A and A′ are equivalent.

Proof. We define Φ : A → A′ as follows. Φ(φ) = (u, φ), where u ⊆ φ is such

that dom(u) is maximal with the following property: for any extension ψ ⊇ φ in A,

ψ↾dom(u) = φ↾dom(u). We claim that Φ is a dense embedding.

Clearly ψ ≤ φ implies Φ(ψ) ≤ Φ(φ), and ψ⊥φ implies Φ(ψ)⊥Φ(φ). To check density,

choose (u, φ) ∈ A′. Let i := dom(u) − 1; and set Sφ := {σ ∈ 2i; for no j ≤ i does there

exist τ ∈ u(j) such that σ ⊇ τ}. For σ ∈ Sφ we have mσ := µ([σ] \ ∪{[τ ]; τ ⊇ σ ∧ ∃i ≥

dom(u) (τ ∈ φ(i))}) > 0. Let a := min{mσ; σ ∈ Sφ}; and note that
∑

σ∈Sφ
mσ >

1
2 .
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Now define ψ satisfying (*) such that

1) ∀i ∈ dom(u) (ψ(i) = φ(i))

2) ∀i ≥ dom(u) ∀τ1 ∈ φ(i) ∃j ≤ i ∃τ2 ∈ ψ(j) (τ2 ⊆ τ1)

3) 1
2
> µ(∪{[τ ]; ∃i ∈ ω (τ ∈ ψ(i))}) > 1

2
− a

2

4) for each σ ∈ Sφ, µ([σ] \ ∪{[τ ]; τ ⊇ σ ∧ ∃i ≥ n (τ ∈ ψ(i))}) ≥ a
2

This is clearly possible. By construction we have Φ(ψ) = (u, ψ) ≤ (u, φ).

Next define A′′ ⊆ A′ by

(u, φ) ∈ A′′ ⇐⇒







for some n ∈ ω we have µ(∪{[σ]; ∃i ∈ dom(u) (σ ∈ u(i))}) > 1
2
− 1

2n ,

µ(∪{[σ]; ∃i ∈ dom(u) − 1 (σ ∈ u(i))}) ≤ 1
2 − 1

2n ,

and µ(∪{[σ]; ∃i ≥ dom(u) (σ ∈ φ(i))}) < 1
2n+7 .

Clearly A′′ is dense in A′. Finally we want to define h : A′′ → C giving rise to a complete

embedding of C into A. To this end, let f : ω → ω be such that ∀n ∃∞i (f(i) = n). For

(u, φ) ∈ A′′ and n ∈ ω such that 1
2 − 1

2n+1 ≥ µ(∪{[σ]; ∃i ∈ dom(u) (σ ∈ u(i))}) > 1
2 − 1

2n

and each j ≤ n choose ij minimal such that µ(∪{[σ]; ∃i ∈ ij (σ ∈ u(i))}) > 1
2
− 1

2j , and let

h((u, φ)) = 〈f(i0)〉̂ ...̂ 〈f(in)〉. We leave it to the reader to verify that h : A′′ → C is indeed

a projection (in the forcing theoretic sense). Furthermore, given T ⊆ A′′ uncountable we

can find T ′ ⊆ T uncountable and u such that all elements of T ′ are of the form (u, φ)

for some φ. Then there is an s ∈ C such that ∀(u, φ) ∈ T ′ (h((u, φ)) = s). Next, given

ℓ ∈ ω, we can find F ⊆ T ′ of size ℓ such that ∩F ∈ A′′. Clearly h(∩F ) = s and so any

extension of s in C will be compatible with ∩F . Hence we have proved that A′′ satisfies

the requirements of Theorem 1. Using Lemma 1 we get

Theorem 2. There is a family {Ax; x ∈ ωω ∩ V } of Lebesgue measure zero sets in

V A such that for all z ∈ V A , {x ∈ ωω ∩ V ; z 6∈ Ax} is at most countable.

Corollary 1. Let V ⊆W be models of ZFC such that ωV
1 = ωW

1 . Then there is no

real random in WA over V A .

Proof. Let {Ax; x ∈ ωω ∩W} be as in Theorem 2 and note that ∀z ∈ ωω ∩WA ∃x ∈

ωω ∩ V (z ∈ Ax). Hence any real in WA lies in a measure zero set coded in V A .

Using a similar argument as in [CP, § 3] we can prove

Corollary 2. After adding one Amoeba real, cov(L) = add(L) = ω1 and unif(L) =

cof(L) = 2ω.
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We note that in [BJS, § 2] results much stronger than Theorem 2 and the Corollaries

were proved for the Hechler p.o. D; e.g. it was shown that after adding a Hechler real,

add(B) = unif(B) = ω1 and cof(B) = cov(B) = 2ω [BJS, 2.5.]. Accordingly we ask:

Question [BJS, 2.7.]. Is unif(B) = ω1 and cov(B) = 2ω after adding an Amoeba

real?

Before ending this section I wish to include a few comments, some of which are due

to Andrzej Ros lanowski.

Definition (implicit in [Tr 2]). A p.o. P is said to have (ω1, ω)–caliber iff for any

uncountable T ⊆ P of size ω1 there is a countable F ⊆ T such that ∩F ∈ P.

This is equivalent to: any set of ordinals A in V P of size ≥ ω1 has a countable subset B in

V [Tr 2]. It is easy to see that if C ≤c P and P has (ω1, ω)–caliber, then the assumptions

of Theorem 1 are satisfied. Furthermore the Amoeba algebra A has (ω1, ω)–caliber (the

proof for this is similar to the corresponding proof for the random algebra B, given in [Tr

2]). This gives an alternative argument to prove Theorem 2. — Our reason for giving the

(slightly more difficult) above argument involving A′ and A′′ is that along the same lines

results corresponding to Theorem 2 and the Corollary can be proved for p.o.s not having

(ω1, ω)–caliber. We include two examples for such p.o.s:

— the eventually different reals p.o. E, due to Miller [Mi]:

(s, G) ∈ E ⇐⇒ s ∈ ω<ω ∧ G ∈ [ωω]<ω

(s, G) ≤ (t, H) ⇐⇒ s ⊇ t ∧ G ⊇ H ∧ ∀g ∈ H ∀i (dom(t) ≤ i < dom(s) → s(i) 6= g(i))

— the localization p.o. L (see, e.g., [Tr 3, § 2]):

(σ,G) ∈ L ⇐⇒ σ ∈ ([ω]<ω)<ω ∧ ∀i ∈ dom(σ) (|σ(i)| = i+ 1) ∧ G ∈ [ωω]≤dom(σ)+1

(σ,G) ≤ (τ,H) ⇐⇒ σ ⊇ τ ∧ G ⊇ H ∧ ∀g ∈ H ∀i (dom(τ) ≤ i < dom(σ) → g(i) ∈ σ(i))

Let {fα; α < ω1} ⊆ ωω be a family of pairwise eventually different reals (i.e. α 6= β →

∃n ∀k ≥ n (fα(k) 6= fβ(k))). Then {(〈〉, {fα}); α < ω1} is an uncountable set of conditions

in E (and L) such that no countable subset has nontrivial intersection, thus witnessing that

E and L do not have (ω1, ω)–caliber. We leave it to the reader to verify that both still

satisfy the assumptions of Theorem 1, however (note that both have a definition similar

to, but easier than, A′′).

(The localization p.o. L arose from Bartoszyński’s characterization of the cardinal

add(L) [Ba], and is closely related to the Amoeba algebra A. Truss [Tr 3, § 4] showed that
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A <c L. By the above discussion the converse cannot hold.)

§ 2. The projective part

We first introduce a notion closely related to absoluteness, and discuss the relationship

between the two notions.

Definition (Judah [Ju, § 2]). Let V be a universe of set theory. Given a forcing notion

P ∈ V we say that V is Σ1
n − P–correct iff for every Σ1

n–formula φ(x) with parameters in

V and for every P–name τ for a real we have V [τ ] |= φ(τ) iff V P |= φ(τ).

Lemma 2. Suppose P <c Q. Then:

(i) Σ1
n −Q–correctness implies Σ1

n − P–correctness.

(ii) Σ1
n+1 −Q–absoluteness + Σ1

n −Q–correctness implies Σ1
n+1 − P–absoluteness.

Proof. We prove both (i) and (ii) by induction on n.

(i) n = 2 follows from Shoenfield’s Absoluteness Lemma. Suppose it is true for n ≥ 2

and assume V is Σ1
n+1 −Q–correct. Let φ(x) be a Σ1

n+1–formula, φ(x) = ∃yψ(y, x) where

ψ is Π1
n. Suppose first that V [τ ] |= φ(τ). Then V [τ ] |= ∃xψ(x, τ). So there is a P-name σ

such that V [τ ] = V [σ, τ ] |= ψ(σ, τ). By induction V P |= ψ(σ, τ); thus V P |= φ(τ).

Assume now that V P |= φ(τ). Hence V P |= ∃xψ(x, τ); and we can again find a P–

name σ such that V P |= ψ(σ, τ). By induction V [σ, τ ] |= ψ(σ, τ). So Σ1
n − Q–correctness

implies V Q |= ψ(σ, τ); thus V Q |= φ(τ). Hence by Σ1
n+1 −Q–correctness V [τ ] |= φ(τ).

(ii) n = 1 follows from Shoenfield’s Absoluteness Lemma. Suppose (ii) is true for

n ≥ 1 and assume V is Σ1
n+2 − Q–absolute and Σ1

n+1 − Q–correct. By (i) V is also

Σ1
n+1−P–correct. Let φ be a Σ1

n+2–sentence, φ = ∃xψ(x), where ψ is Π1
n+1. Suppose first

that V |= φ; i.e. V |= ψ(a) for some a ∈ V . By induction V P |= ψ(a); thus V P |= φ.

Assume now that V P |= φ; i.e. V P |= ψ(τ) for some P–name τ . By Σ1
n+1 − P–

correctness V [τ ] |= ψ(τ). Hence Σ1
n+1 − Q–correctness implies V Q |= φ. Thus V |= φ by

Σ1
n+2 −Q–absoluteness.

Lemma 3 (Truss [Tr 1, 6.5]). D <c A.
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Definition (Judah – Shelah [JS 1, § 0]). A ccc notion of forcing (P,≤) is called Souslin

iff it can be thought of as a Σ1
1–subset of the reals R with both ≤ and ⊥ (incompatibility)

being Σ1
1–relations (in the plane R2).

Note that all p.o.s discussed in this paper are Souslin.

Theorem 3 (Judah [Ju, § 2]). Assume that ∀a ∈ R (ω
L[a]
1 < ωV

1 ), and P ∈ V is a

Souslin forcing. Then V is Σ1
3 − P–correct.

Theorem 4. Σ1
4 − A–absoluteness implies that ∀a ∈ R (ω

L[a]
1 < ωV

1 ).

Corollary 3. Σ1
4−A–absoluteness implies Σ1

3−A–correctness, Σ1
4−D–absoluteness,

and Σ1
3 − D–correctness.

Theorem 5. Σ1
4 − A–absoluteness implies Σ1

3(L) and Σ1
3(B).

The proof of Theorem 4 follows the lines of the proof of 2.6 in [BJS]. Theorem 5

is a consequence of Theorem 4 and a result in [Ju, § 2]. We give the proof here for

completeness’ sake. — Note that Σ1
3 − D–absoluteness is equivalent to Σ1

2(B) [Ju, § 2].

Thus the implication Σ1
3 − A–absoluteness =⇒ Σ1

3 − D–absoluteness (immediate from

Lemmata 2 and 3) is just another version of the Raisonnier–Stern Theorem; and Corollary

3 may be thought of as the corresponding result for Σ1
4.

Proof of Theorem 4. Suppose there is an a ∈ R such that ω
L[a]
1 = ωV

1 . By Σ1
3 − A–

absoluteness we have Σ1
2(L); i.e. ∀b ∈ R (µ(Ra(L[b])) = 1) (see the beginning of this

section). Note that x ∈ Ra(L[b]) is equivalent to

∀c (c 6∈ L[b] ∩BC ∨ ĉ is not null ∨ x 6∈ ĉ),

where BC is the set of Borel codes which is Π1
1 [Je, Lemma 42.1], and for c ∈ BC, ĉ

is the set coded by c. As L[b] is Σ1
2 [Je, Lemma 41.1], Ra(L[b]) is a Π1

2–set. Hence

∀b ∈ R (µ(Ra(L[b])) = 1) which is equivalent to

∀b∃c (c ∈ BC ∧ ĉ is null ∧ ∀x (x ∈ ĉ ∨ x ∈ Ra(L[b])))

is a Π1
4–sentence. So it is true in V A by Σ1

4–absoluteness; in particular Ra(L[a][r]) (where

r is Amoeba over V ) has measure one in V [r] which implies that there is a random real in

V [r] over L[a][r], contradicting Corollary 1 in § 1.

Proof of Corollary 3. Follows from Theorems 3 and 4 and Lemmata 2 and 3.

Proof of Theorem 5 (Judah). Let φ(x) be a Σ1
3–formula and A = {x; φ(x)}. We

shall show that A is measurable in V . First note that the sentence A has measure zero is
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equivalent to

∃c (c ∈ BC ∧ µ(ĉ) = 0 ∧ ∀x (¬φ(x) ∨ x ∈ ĉ)),

which is Σ1
4. So by Σ1

4 − A–absoluteness, if A is null in V A , it is also null in V .

Hence assume that A is not null in V A . As µ(Ra(V )) = 1 in V A , there is r ∈ Ra(V )∩A

in V A ; i.e. V A |= φ(r). By Σ1
3 − A–correctness V [r] |= φ(r). Now let φ(x) = ∃yψ(x, y),

where ψ is Π1
2. Then there is an s ∈ V [r] such that V [r] |= ψ(r, s). If a ∈ V codes

the parameters of ψ and of the name of s, we have by Shoenfield’s Absoluteness Lemma

L[a][r] |= ψ(r, s). Let r̆ be the B–name for the random real r and s(r̆) a B–name for s.

Then the Boolean value ‖ψ(r̆, s(r̆))‖ is non–zero. Furthermore, if r′ ∈ ‖ψ(r̆, s(r̆))‖ ∩ V is

random over L[a], then L[a][r′] |= ψ(r′, s(r′)) and — by absoluteness — V |= ψ(r′, s(r′));

in particular V |= φ(r′).

By Σ1
3 − A–absoluteness we have that µ(Ra(L[a])) = 1 in V (cf Introduction). And

the previous discussion gives us that Ra(L[a]) ∩ ‖ψ(r̆, s(r̆))‖ ⊆ A. This shows that any

non–null Σ1
3–set has positive inner measure; and it is easy to conclude from this that any

Σ1
3–set is indeed measurable.

Finally, Σ1
3(B) follows along the same lines because A adds a comeager set of Cohen

reals.

Questions. 1) Does Σ1
3(L) imply Σ1

4 − A–absoluteness?

2) Does Σ1
4–Amoeba–meager–absoluteness (or Σ1

4 −D–absoluteness) imply Σ1
3(B)? (cf

[Tr 1, § 5] for Amoeba–meager forcing — the problem here is whether Σ1
4–Amoeba–meager–

absoluteness implies ∀a ∈ R (ω
L[a]
1 < ωV

1 ); cf [BJS, § 2] for D — the problem here is that

D does not add a comeager set of Cohen reals)

3) Does ∀n (V is Σ1
n − A–absolute ) imply projective measurability?

4) (Judah) Does Σ1
3(L) imply Σ1

3(B)? (cf Corollary 3)
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