Effective bounds from ineffective proofs in analysis:
an application of functional interpretation and majorization*

Ulrich Kohlenbach
Fachbereich Mathematik, J.W.Goethe—Universitt
Robert—-Mayer—Str. 6-10, 6000 Frankfurt am Main, FRG

Abstract

We show how to extract effective bounds ® for Yu'Vv <., tu3w"Go-sentences which depend

on u only (i.e. VuVv <, tudw <, PuGo) from arithmetical proofs which use analytical assump-

tions of the form (¥)Va®3y <, saVz"Fy (d,p,T are arbitrary finite types, n < 2, Go, Fy are

quantifier—free and s,t closed terms). If 7 <2, (x) can be weakened to

V.

x‘s,zTHy <, szVZ <; zFp. This is used to establish new conservation results about weak

Knig’s lemma WKL. Applications to proofs in classical analysis, especially uniqueness proofs in
approximation theory, will be given in subsequent papers.

1 1

ntroduction and basic notions

Various theorems in classical analysis have the form

A=Vee Xy e K, CY Ai(a,y),

where X, Y are complete separable metric spaces, K, is compact in Y and A is purely universal. If

an analytical sentence B is proved in using besides lemmata A only arithmetical constructions
and induction, then A — B is provable in classical arithmetic A (formulated in the language of all

finite types). This is the case for an important class of uniqueness theorems (e.g. in approximation

theory). Here B is essentially of the form

N

uweUwveV,3k € N By(u,v, k),

where U,V are complete separable metric spaces, V,, is compact in V and B; € 2.

Using a suitable standard representation of such spaces, A and B can be expressed in A as

A = Va'3y <; sa¥2' Ay and B = Vu'Vo <; tu3k®B, (Ao, By are quantifier—free and s, ¢ closed

terms).
In this

From

paper we establish results which are (in their simplest form) of the following type:

a proof of () A — B in A one can extract an effective bound @ for 3k in B which depends

on u only, i.e.

A = Yu'Vo <q tuFk <o du By.

This also holds if x,y, z,v have arbitrary types and k has a type n < 2.
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A similar extraction yields a bound ¥ for z in A:
Yl (Vx‘sﬂy <p saVz < Wu Ag = Vo <, tudk <) Qu BO) (r,m < 2);

thus a stronger conclusion follows from a weaker assumption. A proof of A is not needed for the

extraction of ®, U. The correctness of ® follows from the truth of (the weakened) A.

We extract & and ¥ using a combination of functional interpretation and pointwise majorizability
of primitive recursive functionals of finite type. If only elementary instances of induction occur in
the proof of (x) then ® and ¥ are simple constructions in the numerically relevant terms and datas
of the proof.

As logical applications of these results we obtain new conservation results for weak Knig’s lemma
WKL, e.g. conservation w.r.t. Vu'Vv <, tu3dw" By-sentences.

Mathematical applications to uniqueness proofs in approximation theory yielding new numerical
estimates for rates of convergency will be given in subsequent papers.

Let E — PA“ be the classical extensional arithmetic in all finite types (i.e. (E — HA“)¢ in the
notation of Troelstra (1973)), where the set T of all finite types is given by the clauses

0eT and p,7 €T = p(r) € T (each functional of type p(T) maps objects of type 7 to objects
of type p; we often omit brackets which are uniquely determined and write e.g. 0(00) for 0(0(0))).
If the axiom of extensionality for each type is replaced by a quantifier—free rule of extensionality

AO — 8 =p t
Ay — r[s] =; r[t]

ER—qf

3

where Ay is quantifier—ree, then one obtains the system WE — PA“. For the corresponding
theories with intuitionistic logic only, we write E — HA“Y and WE — HA%. All these systems
7 have the same quantifier—free part qf~7 (in the sense of Troelstra (1973),1.6.13) which we call
T. T is an extensional version of the Hilbert (1926)/Gdel (1958) calculus of primitive recursive
functionals of finite type.

For functionals xf,z5 we have the following natural inequality relation:

21 <o 3 := 21 < a9 (where® <7 is primitive recursively defined as usual)

z1 <r5 22 = VYo (m1y <; 22y).

The axiom schema of full choice is defined by AC := |J {(AC)”7}, where

p,TeT

(AC)?™ . VaPIyT A(z,y) — Y "PV2P Az, Yz).



Quantifier—free choice AC—qf is AC restricted to quantifier—free formulas.

We begin our investigations in this paper with the following observation:

Let A€ L(WE — PA“) be a closed formula (i.e. a sentence) having the form

(1) Vo'V <, sz3y" Ao(z, 7, y)

with Ay quantifier—free and s”' € T closed, where p € T is arbitrary and 7 <2 (i.e. 7=0,00 or
0(00)). If A is provable in WE — PA% 4+ AC—qf then by a combination of functional interpretation
and a pointwise version of hereditary majorization of functionals from 7T, one can extract a closed
term ®7! € T from any given proof such that

(2) WE — HAY B Vavz < sxdy <, PxAp(x,Z,y)

(see Kohlenbach (1992),3.4 and the proof of 2.3 below). This allows the extraction of uniform bounds
€ T for sentences of the form (1) which are proved in WE — PA%“ 4+ AC—qf from assumptions having
the form (3) Va0 3y <, saVz"Ag:

(4) WE — PA* + AC—qf+ anﬂy <, sxV2"Ag — YulVo <, tudw™ By implies
WE — PA® + AC—qf - VY <,5 sVuVv < tudz, z, w(AO(aU, Y, z)— Bo).

Using the extraction of the bound for “Jw” above, one can construct a closed term ® € T such
that

WE — HAY b 3Y < sVx,zA(z, Y, 2z) = Vuve < tudw <, Pu By
and therefore

(5) WE — HA® + AC F Vz3y < sa¥VzAy) — YuYv < tudw <, ®u By (2.3).

For 7 =0 this yields an algorithm ® € T' for w:

min w <g Pu[By(u,v,w)] if such a w exists,

0% otherwise (2.5).

(i)UU =

Using a more complicated extraction (2.9) one can prove (5) within F— H A¥+ AC—qf, thus avoiding
the axiom of choice for formulas containing quantifiers.

The result (5) is of mathematical interest since various important (non-constructive) theorems of
classical analysis have the logical form

(6) Va'lly <y sV A (modulo a suitable standard representation of complete separable metric
spaces and compact metric spaces) and are therefore admissible premises for our extraction (5). In



the case where only premises of the form (6) are used, (5) can be proved even in WE — HA% (thus
choice can be avoided altogether) and if furthermore ~ < 1, then WE — PA“ may be replaced by
E — PA“ in (4) (see 3 below).

Examples of theorems of analysis having the logical form (6) are:

a) Vf €C[0,1]3x0 € [0,1](f(z0) = Zlﬁ)pl}f(x)),

b) The intermediate value theorem for f € C[0,1] and the mean value theorem for the Riemann
integral.

A more specific example is

¢) the existence of a best approximation and an extremal alternant for the best Chebycheff approx-
imation of f € C[0,1] by algebraic polynomials of degree <n (P,):

(7) Vf € C[Ov 1]E|pb S Pna (‘Tla "'axn+2) € [Oa 1]n+27j € {07 1}(Hf *proo = dlSt(fa Pn)

n+l n+2 o
A 4/:\1 (zip1 — 2 > 0L A A (=1)H (py(a3) — fla)) = dist(f, Pn)),

7 i=1

where ||.||oc denotes the sup norm and dist(f, P,) := in1£ IIf = 2lloo-
peln

(Since [|py — flloc =dist(f, Pa) ( < |flloc) = Ipblloc < 2/l flloc, P can be replaced by

K¢n ={p€P, : |plloc <2|fllxc} which is compact and therefore has a bounded standard rep-

resentation).

Such sentences are in fact used in proofs of Vu'Vv <; tu3w®By—theorems in classical analysis.
Examples are uniqueness proofs, e.g. proofs of the uniqueness of the best Chebycheff approximation.
Uniqueness in this case means

(8)Vf €Cl0,1],n € IN,py,p2 € Kf,n(le — flloe = dist(f, Pn) = [[p2 = flloo = [Ip1 — P2lloc = 0)-

If we now write “VZO(Hpi — fllse—dist(f, P,) < H%l)” for “||p; — flleo =dist(f, P,)” and

“Vk0(||p1 — P2l < %—&-1)77 for “||p1 — palleo = 0” then (8) transforms (modulo standard representa-

LIf dist(f, Pn) > 0 (i.e.f ¢ Py,) then the last conjunction implies ;41 — 2; > 0 — @41 > ;.



tions of C[0,1] and Ky ,) into

. 1 1
(g)vfla HOVplap2 Sl S(fv n)VkOEZO( le/Q - f”oo - dlSt(fa Pn) < m — le - p2||oo < m)
F:=
Since dist ( 7, Pn) and ||.||oc are primitive recursively computable (we consider f € C[0,1] always

endowed with a modulus of uniform continuity) the premise part of F is (equivalent to) a V’—formula,
while the conclusion is a 3°—formula. Therefore, by prenexing, F has the form 3°F,. Hence (9) is
of the form (1). Furthermore (9) can be proved from assumptions of the form (6), for example a)
and c), relative to WE — PA¥ + AC%%—qf. Therefore our logical analysis of such uniqueness proofs
yields a realization ®fnk of | which does not depend on p1,ps:

. 1 1
(10)Vf7n7p17p2 S S(fyn),k(le/Q - f”oo - dlSt(f, Pn) S W — ||p1 —p2||oo < m)
For a best approximant p;" € P, of f this yields
A¥Fmip < s(F )k (Ip = flloo = dist(f, Pu) < g = Ip =2 loe < 5 7)-
RS ~ dfnk+1 b k+1

A classical result in approximation theory says (non-constructively) that a best approximant p;™
always exists. This can be constructivized to

v echnlV pie Ky (e = flloo—dist (£, Pa) < 5 )-

Now let W(f,n,l) denote an algorithm for p; then (11) implies

1
(12)Vf € C[0,1], n, k:(||\1/(f,n, O fnk) — pileo < A E Kfm),i.e.

l—=oo fmn

M. @ fnk is a modulus of convergence for the sequence (\Ilfnl)le]N — pp’" (w.r.t. the norm

l.lloc)- One easily shows that Ak.2®fnk + 1 is also a modulus of (pointwise) continuity of the
Chebycheff projection

P: Cl0,1]xIN—UP,

(f,n) = pl™

All this will be elaborated in subsequent papers where we analyse, in particular, various classical
proofs for the uniqueness of best Chebycheff approximation and extract the corresponding moduli
® with all numerical details. This yields new a priori moduli of uniqueness and continuity and esti-

mates for strong unicity and Lipschitz continuity (which improve results of D. Bridges (1980,1982)
by an n (=degree) in the exponent).

In this paper we develope the underlying proof—theoretic method and apply it to obtain conservation
results for weak Knig’s lemma WKL (4.1).



By using an argument analogous to the one for (5) one can construct a bound ¥ e T for “Vz"" if
1n < 2 such that

(13) WE — HAY + AC + Vu(VxEly < saVz <, Yudo — Vo < tudw <, <I>uBO) (2.13).
For 7 =0, this reduces the logical complexity of the implicative assumption

Vrdy < szVzC A,

to

mezzly < sz /\ AO(Iay7k)7
k=0

z
where A Ao(z,y,k) can be expressed in a quantifier—{ree way in WE — HAY.
k=0

In particular, proofs using sentences as e.g.

Vf €Cl0,1]3z0 € [0,1](fzo = sup fx)
z€[0,1]

can be transformed into proofs which use only their “c—versions”

1
- <—).
erC[O,l],k:e]None[0,1](|fxo rzx&&}fﬂ_ k—i—l)

These e—versions are usually provable in WE — HA“ (Thus e.g. the results for best approximation,
mentioned above, can be verified within WE — HAY).

Furthermore (13) can be generalized classically to formulas
Vu!3a®Vh <, ruadw’ By (6,7 <2)

— instead of Vu'Vv < tu3wBy - yielding bounds (depending on u only) for w and a (2.12).

All the above results also hold for the restricted (in the sense of Feferman (1977)) systems (W)E —pA” N (W)E ~H

and PR instead of (W)E — PAY, W)E — HAY and T with quantifier—free induction and ele-
mentary recursor constants only.

Finally we show that WKL is an admissible premise (6) since
WE — HA") F WKL  Ya'3y <, Ak.1v20AK,

for a suitable quantifier—free formula Af € E(WE/—\H A” M) and

WE — HA") Ve, 23y < Akl N\ AK (2,9,1) (4.7).
1=0



As a corollary we see that WE — PA¥ plus AC—qf and WKL is a conservative extension of
WE - HAY (WE — PA* + AC—qf) w.r.t. sentences of the form

VulVo <., tuTw” Ay (Vu'Vo <, tuFw'Vz' Ag) where ~,7 € T are arbitrary.

By constructing a counterexample we show that WKL is not conservative for Va?3yAg(x,y)—
sentences (4.11).

The above conservation results are also valid for the systems with restricted induction WE—PA” [\ WE—HA" [\

If v,7/<1 then WE — PA¥ (WE/—\PAw M can be replaced by E — PA“ (E :\PAWM.

The following conservation results can be found in the literature:

Sieg (1985) showed proof-theoretically that for the restriction RCAg of WE — PA” N ACY0—f to
objects of type 0,1 only RCAy+ W KL is conservative over primitive recursive arithmetic PRA for
[19-sentences. He used normalization of proofs and majorization of primitive recursive terms t9[f]
with function parameters (primitive recursive in the sense of Kleene (1952)) to establish his results.
H. Friedman previously proved the same result using modeltheoretic methods due to Kirby/Paris

(1977). Feferman (1988) states the result also for (WE —)I/DZMP + AC—qf and refers to unpublished
work of Sieg and himself for a (proof-theoretical) proof.

In Sieg (1987),(1991) a proof that RCAg + WKL is II}—conservative over RCAg is formulated
as well as for the corresponding theory with full induction and various intermediate systems (with
J,-induction in Sieg’s terminology): The proof relies on normalization of infinitary proofs using
infinite terms (in the sense of Tait (1965)), but makes incorrect use of Herbrand normal forms in
order to generalize Vf13n®Ag—conservation (A¢ quantifier—free) to arbitrary II}-sentences and thus
establishes conservation only for the former case which is a special form of our Vu!Vo <5 tudw™ Ag-
sentences (For details see Kohlenbach (1992 A) where a counterexample to Sieg’s use of Herbrand
normal form is given). There is mention in the literature, e.g. Sieg (1985), of an unpublished
model-theoretic proof by Harrington that RCAg + WKL is II}—conservative over RC Ay (more
precisely for a variant of RCA, with set variables instead of function variables). This is general-
ized in Clote/Hajek/Paris (1990) to systems with 0-induction (instead of X{-induction, which is

provable in RCAy and WE/—\PANF + AC®0—¢f).

Finally there is the classical result (due to Kreisel (1963),(1966), Scott (1962) and Troelstra (1974))
that WE — PAY + WKL + AC—qf is conservative over PA.

Furthermore we prove that, relative to WE — PAY + WKL, each
Va'3y <; szVz%/1 Ag-sentence is equivalent to a Vn®By sentence, where Ag, By € L(IWE — PAY)

are quantifier—free. An analogous result holds for WE/—\PAw[\ instead of WE — PA¥ (4.15).



We conclude this paper by showing how one can extract bounds from proofs which use assumptions
of the form (x) Va!(Vw®Ag — Jy <1 saVz°By(z,y, 2)) (4.17). In this case, a proof of the e—version

of (x) is needed (This contrasts to the assumptions Va°3y <, szV2" Ay considered above).

1.1 Notation

The theories E — PAY, E — HAY WE — PAY, WE — HA“ and T all contain recursor constants
R, with the defining axioms

R,0yz =,y
R,(S2%)yz =, 2(R,zyz)x,

where y and z are of type p and pOp.
s=,t (for p=0pg...p1) is used as an abbreviation for Vy{*,..,yP*(sy1...yx =0 ty1...yx) (resp.
for syi..yr =o tyi...yx in the quantifier—free calculus T') with different variables yi,...,yx not

occuring in s and t.
We often denote finite tuples i, ...,y of functionals by y.

If the constants R, are replaced by elementary recursor constants ﬁp characterized by

R,0yzv =g yv
ﬁp(S'xo)yzy = z(ﬁpxyzy)xy,

P1

where v = v} vk

..vp* such that yv is of type 0, and if the schema of full induction is replaced by

the axiom of quantifier—free induction
(IA)qf - Vf1<f0 = 0AVz(fz =0 f(Sz) =0) — Va(fz = o)),

then one obtains the restricted systems F —pa” N,... ect. with quantifier—free part PR due to

Feferman (1977) (The functionals of PR are essentially the primitive recursive functionals in the
sense of Kleene (1959)).

All the systems above allow the definition of a term Az".t°[z] € T (ﬁl\%) for each term t? € T (ZSI\%)
such that (Aw.t[z]) (t/T) =, t[t'] (see Troelstra (1973),1.6.8,1.8.4). For a theory 7T the language of
T is denoted by L(T).

k k
We usually use “Va <, yA”, “dx <, yA”, © '/\0 Az), « 4\/0 A(i)” as abbrevations for
1= 1=

Yr(x <,y = A), “De(x <, yNA)”, Vi < EA(4)”, “Ji < kEA(3)”. Furthermore “Va; & <, sz A”
stands for “Vavz <, svA”, but “Vo,z <, yA” stands for “Va <, yvVT <, yA”.

Ag, By, Cy,... denote quantifier—free formulas.



By the principle of bounded choice we mean the schema

(b—AC)P»T :NZTP (V:L’pﬂy <; Zzx Alz,y,Z) = 3Y <., ZVNzA(z,Yx, Z).

(b— AC)PT—f ((b —AC)PT =¥, (b—AC)PT — Vb> is (b— AC)”™ restricted to quantifier—free

formulas (formulas having the form Yu®Ag resp. Vu <svAg). b— AC := | {(b— AC)""}.
p,‘rET

(C)?: Fy°PVaP (yz =0 0 > A(z)) (comprehension),
(MP)*: Vz(A(z) V-A(z)) A —~—JzA(z) — FzA(z) (Markov principle),
YO — ACHY: w3yl 20 Ag(x,y, 2) — TfV2IzAg (2, fx, 2),

Y —TA: vft (Elyo(ny =0) AV2? (Jy(foy = 0) = Jy(f2'y = 0)) = VaIy(fay = O)),2

AY — CA: Va° (EIyOAO(x,y) > VyOBO(m,y)) — Elflwv(fx =0+ EIyAO(m,y)).

For a set I' of sentences € L(IWE — PA“), WE — PA¥ @' means that the sentences from I’
are added as new axioms to WFE — PA“ but that application of the extensionality rule is allowed
only when Ayg — s =1t is proved in WE — PA“ (i.e. without using the axioms I'). WE — PA“
satisfies the deduction theorem w.r.t. @ but not w.r.t. +.

1.2 Definition

min,(xf,z5) is defined by induction on the type p:

ming(z1,x2) = min(zy, x2)

min,,(z1, x2) = A\y?.min, (x1y, 2y).

Clearly min, € PRCT.

1.3 Proposition
1) WE — PA") + AC™0qf F 29 — ACO, 39 — JA, AY — CA.
2) E jTLIAW[\ + AC—qf F b — AC—qf (Analogous for E — HAY).
Proof:

1) is standard.

2) follows from FE “HA” M- Ty <, zAo(z,y) <> FyAo(x, min,(z,y)).

2’ stands for Sz where S is the successor function.




2 Extraction of uniform bounds in higher types

2.1 Notational conventions

1) In the following r,s,¢ and &®,¥ always denote closed terms of Gdel’s calculus T or

Kleene/Feferman’s calculus PR of primitive recursive functionals of finite type as defined in
1.

2) (From now on (up to the end of this paper) all free variables of formulas are indicated, i.e.
expressions of the form “Vu;v < tu (VxEIy < suvaVzAo(u,v, 1, y, z) — Jw?By(u, v, w)) always
stay for closed formulas (which are called sentences as usual). Sometimes we abbreviate e.g.

VaIyVzA(z,y,z) by VzIyvzA.

(From Kohlenbach (1992) we recall the following definition of pointwise strong majorization, which
is a variant of notions due to W.A. Howard (1973) and M. Bezem (1985).

2.2 Definition

For z*,x of type p, 2" maj, z is given by

r* majox = ¥ > w,

z* maj,oz = Vn® (z*nmaj, xn),

¥ maj,r x = Vy*,y (Y maj-y — x*y* maj, 2y, xy)
(r#0)

Here “>” denotes the usual primitive recursively defined inequality relation for objects of type 0.
A discussion of the basic properties of maj, can be found in Kohlenbach (1992).

The following theorem shows how one can extract bounds for existence quantifiers of type <
2(not depending on bounded parameters), which are proved from premises of the form Vz°3y <,

saVz" Aoz, y, 2):
2.3 Theorem
1) WE — PA® + AC—qf - Vul;v <, tu(Vx‘sEly <, suwvzVzT Ag(u,v,x,y,2) — 3w230(u,v,w)>
= 392! € T such that

WE — HAY +b— AC% —V + Vu;v <5 tu(Vm‘SHy <, suvaVzT Ag(u, v, z,y, z)

— Jw <9 duBy(u,v, w))

® can be extracted from any given proof of the assumption by functional interpretation
combined with majorization.

2) The systems WE — PAY, T and WE — HA“ in 1) can be replaced by WE— PA” \, PR
and WE— HA").

10



Proof:

1) WE — PAY + AC—f - Vul;v <5 tu(Vm‘sﬂy <, suvzVzT Ay — HwQBO) =
WE — PAY + AC—qf - Vu';v <, tu (EIY <ps suvVad, 27 Ag(u, v, 2, Yz, 2) — Eino) =
WE — PAY + AC—qf - Vu'; v <, tw; Y <5 suv3z, z,w(Ag — Bo).

By functional interpretation (see Kohlenbach (1992),3.3) one extracts a closed term ®¢ € T
such
that

(H)WE — HA® - Vu';v <, tu; Y < suv (Vm, zAog — Bo(u,v, ‘I>0uvY)>.
By Kohlenbach (1992) 2.15, one can construct closed terms ®§, s*,t* € T with

WE — HAY F ®f maj o A s* maj s ANt* maj t.
Define @ := \u'. ®ju(t*u)(s*u(t*u)) € T if v > 0 and ® := )\ul.(tbgu)M(t*u)((s*u)M(t*u))
if v = 0, where (z°*)M = An.mazx, (20, ...,2n) (see Kohlenbach (1992) 2.11). As in the proof
of 3.1.1 in Kohlenbach (1992) one shows that

WE — HAY FVu;v < tu; Y < suv(Pumajs Pouvy)
which implies

(++) WE — HAY F Vu;v < tu; Y < suv(Pu >5 PouvY’) (Kohlenbach (1992),2.5.2)
(+) and (++) imply that

WE — HAY FVu;v < tu; Y < suv (Vx, zAg — Fw <y <I>uBo(u7v,w)>

Hence

WE — HA® FVu;v < tu (EIY < suvVe, zAg(u, v, 2, Y, 2) = Jw <5 du Bo).

Using b— AC%? —VY one concludes

WE — HAY +b— AC%P —V Yuyv < tu(Viny < suvzVzAg — Jw <o du Bo).

2) is proved similar using the analogous result for PR proved in Kohlenbach (1992).

11



2.4 Corollary to the proof of 2.3

1) If the quantifier “Vz” does not occur then the conclusion can be proved without b — AC:

WE — PAY + AC—qf - Vul;v <, tu(Ely <, suvVzT Ay — EleBO)
= 332! € T such that
WE — HAY F VYul;v <5 tu(ﬂy <p suvVzAy — Jw <o <I>uBo).

A

2) For variables w” of an arbitrary type A, 2.3 holds with “Elw(@u majy w A Bo(u,v,w))”

instead of “Jw <) ®uBy(u,v,w)”. If one has “Jw? 1w By(u,v,w, )" instead of “Tw?By”
then it is still possible to bound “Jw?” by “Jw <y PuIWB,”.

3) 2.3 holds also if grad(type/w) < 2, where grad(p) is defined by
grad(0) := 0, grad(pr) := maz(grad(p), grad(t) +1).

Furthermore, 2.3. generalizes to tuples wu,v,z,w of variables (grad(u;) < 1,grad(w;) < 2)
and (with a corresponding modification of b — AC — V) also for tuples z,y instead of the

single variables w,v, z,w,z,y.

4) The theorem generalizes immediately to the situation where one has a finite conjunction of

premises having the form Vz93y <, suvaVzT Ag.

2.5 Corollary to 2.3

1) WE — PA“ + AC—qf - Vu*;v <, tu(Vm‘sﬂy <, suvaVzT Ag(u, v, z,y, z)

— EleBo(u,v,w)>
— 389! € T such that
WE — HAY +b— AC% —V I Yu;v <, tu(Vm‘SEly <, suvzVzT Ay — Bo(u,v, Ci)uv))

In particular, if T is a set of sentences having the form

Vr®3y <, sa¥z" Ag(z,y,z) then the following rule holds

WE — PAY & AC—qf ® T + Vu! 3w’ By (u, w) = 30 € T :
WE -~ HA* ©T ®b— AC — ¥ F YuBo(u, du).

2) Analogous for WE/—\PAW\\,I/DR and WE/—\HAM\\ instead of WE — PAY, T and WE —
HA~.
Proof:

1) Using 2.3 one gets a bound ® € T such that Jw < PuBy(u,v,w). Since By is quantifier—{ree,
there exists a closed term xp, € T' with

WE — HAY - Vu,v,w(XBguvw =00« Bg(u,v,w))
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(see e.g. Luckhardt (1973) or Troelstra (1973). Define ® € T such that

N min w <g Pu[xp,uvw = 0] if such a w exists,
Puv =
0° otherwise.

Since @®,xp, € T it follows that such a d e T exists. @ fulfils the claim.

Now assume WE — PA* @ AC—qf & T + Vu'3w® By (u, v). There exist finitely many sentences
Aq,...,A, €T such that

WE — PA* & ACof ® A1 & ... ® A, - Vu'Iuw’B,.

Hence

WE — PAY ® AC—qf - /\ A; — YuJwBy.

i=1
The corollary now follows by the reasoning above together with 2.4.4.

follows analogously since PR is also closed under bounded search.

Remarks

The bound @ in 2.3 is extracted by functional interpretation of the proof of a sentence
having the form Va';b <; saVc <, rab3d" Fy(a,b,c,d) and majorizing the resulting primitive
recursive term ®g € T. As the proof of 2.15 in Kohlenbach (1992) shows, such a majorizing
functional can be constructed in a quite simple manner and uses only the operation z*? — 2™

M= )\no.ma:vp(asO,...,xn) besides @®(. In applications to concrete mathematical

where 2z
examples, this construction will be done in the mathematically most natural way and not follow
in detail the general procedure from the proof in Kohlenbach (1992). Also in mathematical

applications the terms s,t are usually majorizable in a straightforeward way.

The proof of theorem 2.3 uses essentially the majorizability of primitive recursive functionals
of higher types (the raising of types reduces the logical complexity of the original formulal):
Even for the special case

(%) Val3y <4 savzAg — YulIuw By.

one has to majorize a functional ®y of type 3 in order to obtain a bound for ®; on arguments
Y <i(1) s. While majorizability for type-2-objects follows also from the uniform continuity of
primitive recursive functionals of type 2 (on bounded domains), this hereditary boundedness
for types >3 is an important property of the mathematical structure of the T—definable
functionals which no longer holds for (proof-theoretic inessential enlargements as) T + g
(where

p1 20000400 .= min nlz(7;m) =0 2y, see Kohlenbach (1992), or type structures as HEO or

ECF (see Troelstra (1973),Kohlenbach (1990)).
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3) The use of bounded search in the definition of the algorithm ® in 2.5 may be replaced by

more simple operations using additional information in concrete applications, e.g. if By is
monotonic w.r.t w ,.e

VU;’U S tu;wlan (BO(U,U,’lUl) A wa Z wy — Bo(U7U7U}2)),

then @ can be identified with ®. This is the case for an important class of examples (namely
uniqueness sentences in classical analysis), where @ is of mathematical interest since it does
not depend on v (this will be discussed in detail in a subsequent paper).

2.7 Proposition

If in 2.3 grad(p),grad(y) <1 then WE — PA® + AC—qf can be replaced by E — PAY + AC*P—f
where (&« = 0A S arbitrary) or (¢ = 1A =0). In 2.5 WE — PAY @ AC—qf®T" can be replaced
by E — PAY + AC*P qf 4T if T consists of sentences of the form Vz'3y < p s2V2" Ay where
p,7 fulfil the above restriction. This also holds for the corresponding restricted systems.

Proof:

Assume for simplicity p=~=1 and
E — PA¥ + AC’O"quf Fvul;v <4 tu(Vx‘sEly <q suvaVzT Ag — EIwQBO).

By elimination of extensionality (see Luckhardt (1973)) this sentence can be proved also without the

axiom of extensionality, in particular it can be proved within WE — PA“ + AC®P—qf. One easily

verifies that the elimination procedure can also be applied to the restricted system FE “pA” [\

In the following we show that, using a more complicated extraction of the bound @, one can prove
the conclusion of 2.3 within WE — HAY +b— AC—f and EF — HA¥ 4+ AC—qf which avoids the
need of higher bounded choice.

Firstly, we need the following

2.8 Lemma

1) Let Ap € LIWE — PA“) be a quantifier—free formula (possible containing further variables
than x,y, z). Then the following holds:

WE — PAY + AC—qf - V2* (Va: <, 23y " Ag(x,y,z) = IYVx <, zA¢(z, Yz, z))

2) Analogous for WE?PAWP instead of WE — PA¥.

Proof:
Assume p = 0pg...p1. Then

Vo <, 23y" Aoz, y, 2) — Va (val, e U (zv <g 20) = FyT Ao(w, v, z))

— Vv, ...,vk,y(xy <o zv — Ao($ayaz))-

14



The lemma now follows from the fact that WE/—\PAW[\ allows the coding of tuples vq,...,vg,y of
functionals into a single functional (of suitable type, which depends on py, ..., px, 7 only).

2.9 Theorem
1) WE — PA“ + AC—qf - Vu*;v <, tu(Vm‘SHy <, suvaVzT Ag(u, v, z,y, z)
— Jw? By (u, v, w))

= 32! ¢ T such that
WE — HAY +b— AC—qf F Yu;v <, tu (Vx‘sfly <, suwwzVzA(u,v,z,y,2)

— Jw <9 duBy(u,v, w))

The conclusion can also be proved within F — HAY + AC—qf.
® can be extracted by functional interpretation and majorization.

2) Analogous for WE/:PAw[\, WE—HA" NE “HA” N, PR.
Proof:
1) Let T denote WE — PA“ + AC—qf. The assumption implies

T B Vuyv < tu(Vo—Vy <, suwwz3" Ay — Jw’By) = (2.8)

T EYu;v < tu (Vm—EIZTpVy <, suvz—Ao(u,v,z,y, Z2y) — 3w2BO) =

TEYuv < tu(V:r, Z"P3y <, suwwzAo(u,v,z,y, Zy) — EwQBO) =

TEYu;v < tu(HY < \Z7P.suvVz, Z™P Ag(u,v,2,Y Zx, Z(Y Zz)) — EIwQBO).
By 2.4.1 one can extract a closed term ®2' € T such that

WE — HAY FYu;v < tu(ElY < NZ7P suwNe, ZAg(u, v, 2, Y Za, Z(Y Zx)) — Fw <y @uBO).
Since Vz,Z can be replaced by a single V—quantifier via coding, this implies

WE — HA® +b— AC—qf FVu;v < tu(Vm, Z3y < suvxAg(..., Zy) — FJw <o @uBO)

WE — HAY +b— AC—f - Vu;v < tu(VxEy < suvaVzAp(...,z) = Jw <q <I>uBO)
= (1.3.2)
E— HAY + AC—qf - Vu;v < tu(VmHy < suvaVzAg — FJw <5 du By(u,v, w))

2) is proved analogously.
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2.10 Remark

Using (a suitable) negative translation (e.g. the translation * from Luckhardt (1973)), the assump-
tion of 2.9 implies

(x)WE — HA® + AC—f+ (MP)* +VYu;v < tu(V:L";—'—Ely < suvzVzAg — EwBo).

If one treats the bounded quantifiers for the moment as usual quantifiers in the definition of functional
interpretation,then functional interpretation applied to (x) yields

WE — HA FVuv < tu; Y < A\Z.suv3z, Z, w(Ao (u,v,2,Y Zz, Z(Y Zz)) — BO),

which corresponds to the reasoning in the proof of 2.9.
On the other hand, if (%) is weakened by deleting “~—" in the premise, i.e.

(x)WE — HAY + AC—qf + (MP)* F Vu; v < tu(VaTy < swwaVzAg — JwBy),
then functional interpretation applied directly to (kx) gives
WE — HA® FVu;v < tu; Y < suvdz, z, w(Ao(u, v,x, Y, z) — Bo)

as in the proof of 2.3. Therefore the difference in the extraction of ® in 2.3 and 2.9 is due to a
different use of ———translation. Since the extraction in 2.3 is much easier (compared with 2.9), and
since in the (most interesting) analytical case b — AC can be eliminated altogether from the proof
of the conclusion in 2.3 (see 3.8), this extraction seems to be more useful for applications.

Next, we generalize 2.3 from “JwBy” to formulae having the form “Ja?Vb <, ruva3w?By” and show
how one can extract primitive recursive bounds for w and a. The proof uses the following

2.11 Lemma

1) Let Ag € L(IWE —HA¥) be a quantifier—{ree formula (possibly containing other free variables
in addition to #,Y,%,z,y,2). Then

E—HA +b— AC —VF vaz,?,z(va: <, i3y <, Vave <5 2A0(2, Y, 2,1,1, 2)
—3Y <, YV <, Tz < ZAo(&, % ,2,x,Yx,z)>

2) An analogous result holds for E —HA” |

Proof:

1) Provable within E — HA“ one has

Vo <, 23y <, YaVz <5 2A0(%,Y, %, 2,y, 2)

— Vady <, Y(minp(z,f))Von(f,  Z,man,(x, &), y, mins(z, 2)).
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Applying b — AC —V to the conclusion one gets
3y < Ax.f’(min(m,i‘))h’x <I;2z< ZAo(if,}N’, zZ,min(z, %), Yz, min(z, 2)).

Using extensionality the assertion in the lemma follows by putting Y := min(f/, Y).

2) The proof is analogous.

2.12 Theorem
1) WE — PA% + AC—qf - Vul;v <5 tu(Vm‘sEly <p suvrVz"Ag —

Ja?Vb <, ruva3w?Bo(u, v, a, b, w))
= 392!, $2! € T such that
E — PA“ +b— AC -V FVu;v <, tu(VaTy < suvaVzAg —
Ja <o PuVb <, ruvaw <, duBy(u,v,a, b,w))
®,® can be extracted by functional interpretation and majorization.
2) 1) holds analogously for WE — PA” |\,F}\% and E— PA” [\

Proof:

1) The following implications hold by logic:

Ja?Vb <, ruvaIw?Bo(u, v, a, b, w) —

—Va?3b <, ruvaVw?-By(u,v,a,b,w) —

=3B <9 ruvVa?, w?=By(u,v, a, Ba,w) —

VB <.o ruv3a®, w?By(u,v, a, Ba,w).

Therefore the assumption of the theorem implies

WE — PAY + AC—qf - Vul;v <, tu(V:L’55|y <, suvaVz"Ag —

VB <5 ruvda®, w?By(u, v, a, Ba,w)).
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By 2.3 one can extract closed terms ®,® € T such that
WE —HAY +b— AC —V +VYul;v < tu(VxEly < suvxVzAg —
VB <.5 ruvda <o Pudw < duBg(u,v,a, Ba,w)).
Since
VB <.o ruvda <o dudw < duBy(u,v,a, Ba,w) — (by logic)
=3B <,9 ruvva <5 duvw <o du-By(u,v,a, Ba,w) = (in E— HAY +b— AC — V,2.11)
—Va <3 dudb <, ruva¥w <5 Pu—-By(u,v,a,b,w) — (by logic)

da <o duvb <; ruvadw <, PubBy,

the theorem follows.

2) is proved analogously.
In the proof of 2.3 we reduced the original situation to
WE — PAY + AC—qf - Vut; v <y tu; Y <p5 suvd, z,w(Ao — BO)

and constructed a bound ®u for w. If the types of x and 2z are < 2 then it is also
possible to bound “dz” and “dz”. Thus JwBy can be proved from the weakened assumption
Ve < yudy < suvaVz < YuAq for suitable x,v € T. We formulate this only for “3z” since the
possibility of bounding x is not used in this paper:

2.13 Theorem

1) WE — PA¥ + AC—qf - Vul;v <, tu (Vm‘sﬂy <, suwvaVz?Ao(u,v,z,y, z)
— Jw" By(u, v, w))
= 3Ju2l T
WE — HAY +b— AC% —¥* - Vu;v < tu (Vaﬂy < suvaVz <9 Yuldg — 3wB0>.
2) WE — PA¥ + AC—f - Vul;v <5 tu (Vw‘SHy < suvzVz2 Ay — 3w2B0>
= 302, 92 e T
WE — HA® +b— AC% — ¥ - Vu: v < tu (v:cay < suvaVz <3 Wudy — Jw <o <I>uBO).

If type/w =0 one can compute an algorithm ® for w which depends on u and w(as in
2.5). If type/z =0, then b— AC%? — V¥’ can be weakened to b — AC®P—qf.
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3) WE — PA¥ + AC—qf - Vu';v <, tu (Va:‘SEly <, suvaVz? Ay — Ja?Vb <, TuvanQBo)
= 321 §21 Y2l e 7T :
E—PAY +b— AC =Y’ +Vuv <5 tu(VxHy < suvzVz <3 YuAy
— da <9 duvb <y ruvadw <o q)uBo).

1),2) and 3) are also valid for WE — PA")\,PR, WE — HA | and E— PA"|.
Proof:

1) As in the proof of 2.3 it follows that
WE — PAY + AC—qf + Vu;v < tu; Y < suv3dx, z,w(Ao(u,v,x,Yx, z) = Bo).
Using functional interpretation one extracts a closed term Wy € T such that
WE — HAY FVu;v < tu,Y < suv (Von(u, v, 2, Y, VouvY) — HwBo).

By a construction analogous to the one used in the proof of 2.3 one obtains a closed term
¥ €T such that

WE — HA®” EVu;v <tu;Y < suv(‘llu >4 ‘IlouvY).
Hence

WE — HA® FYu;v < tu(EIY < suvVx; z <o YuAldy — EIU)BO).

The theorem now follows by applying b — AC%? —V* to Va'3y < suvaVz < Uudy.
2) follows from the proofs of 1) and 2.3,2.5.

3) follows from the proofs of 1) and 2.12.

2.14 Corollary to the proof of 2.13

1) If “V22” and “Vw?” in 2.13 are replaced by “Vz2,27” and “Yw?,@"” where 7,m € T are

2

arbitrary, then it is still possible to extract primitive recursive bounds ¥ and ® for 2° and

w? (which depend on u only).

2) A remark analogous to 2.4 holds for theorems 2.12,2.13.
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2.15 Corollary
WE — PAY + AC—qf F Vul;v <, tu(Vac‘sﬂy <, suvaVz2Ag — JwoVf1 By (u, v, w, f)) =
WE — PAY + AC%'qf+b — ACO? —¥° F Yu; v < tu(V:c‘s, 723y <, suvaVz <g ZAg

— JwOVf Bo(u,v,w, f)).

If type/z =0, then b— AC%? —¥* can be
weakened to b — AC%P—(f.

WE — PA* can be replaced by WE — PA" |\ (for Ag, By € L(WE — PA"|).

Proof:
The assumption implies that

WE — PA¥ + AC—qf - Vu';v <, tu(Vx‘sEly <, suvaVz? Ay — VFY 300 By (u, v, w, Fw))

By 2.13.1 it follows that 3U € T (since grad(1(0)) =1) such that
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WE — HAY +b— AC% — V- Yu; v < tu, F1(O) (Vz3y < suvaVz <o DuF A
— Jw By (u, v, w,Fw)).
= WE — HAY +b— AC%" — ¥’ Yu; v < tu, F(Va:, 223y < suvaVz <, ZAg
— JwBy(u, v, w, Fw))
Since WE — PA® 4+ AC%'—qf - VF' 93w By (u, v, w, Fw) — 3wV f! By(u, v, w, f)

the corollary follows.

3 The analytical case

In this paragraph we show that the conclusion of 2.13.3 can be proved in WE — HA¥ (so in
particular without any choice!) if all variables have types< 1.

3.1 Primitive recursive coding and some notations
We use the following primitive recursive coding of finite sequences of objects of type 0:
J(x,y) =272y +1) = 1, jiz :=min z < 2[Fy < 2(2*(2y + 1) = S2)],

Jez:=miny < z[Fz < 2(2°(2y + 1) = Sz)].

vi(x) =, Vpt1(To, X1, .eey Tn) ::j(mo,un(atl, ...,xn)),

. n J10 (jg)i_l(x) fl1<i<n .
(@) =, ji'(z) == ) ' (if n > 1).
()" Ha)ifl<i=n
It follows that j7 (v, (21,....z0)) = ;i (1 <4< n), vu(7(2),.... 2 (2)) = 2.
<>:=0,< T, ..., T >i= S (v2(n, Vg1 (20, s T0)) ).

As an abbreviation we use T :=< x >. One can construct primitive recursive functions x, lth, II
such that

< Xy oy Ty > % < YOy wms Y =< L0 eeey Tins Y05 oy Y > 1ER(< 20, oy Ty >) =m0+ 1.

zy ify <m,
II(n,y) = .
00 otherwise, for n =< zg, ..., Tm > .

We usually use the notation (n), for II(n,y). For functions (i.e. functionals of type 1) a', we define

a0 :=<>, a(Sx) := ax*x < ax >. Thus for = # 0 one has ar =< a0,..,a(zx — 1) >. ax is
primitive recursive in a.

ay ify <z
(az o) (y) == vy
v(y — x) otherwise.

0! := Ax0.0°, 1!:= X20.1° where 1°:=S0°. @,z := @z *0'.



3.2 Lemma

1) Let Ag(z',y) € LIWE — HA¥) be a quantifier—free formula whose free variables are a?,
Y =Y1,-Yn and type/y; <1 (1 <0< n).

Then the following holds:

2) An analogous result holds for WE—HA" Mif A € E(WE/;H Aw[\).

Proof:

1) There exists a closed term ¢ € T such that
1. WE — HAY - Va,y(tey =0 0 <> Ag(z,y)) (see e.g. Troelstra (1973),1.6.14).

By Troelstra (1973),2.7.8 there exists, furthermore, a primitive recursive modulus of continuity
teT for t (w.r.t. the variable x):

2. WE — HA® -V, y,v' (tay =0 t(Z(fzy) * v)y) :
1. and 2. imply
3. WE - HAY - Vw,g(Ao(z,y) < Ao(i(fxy) * Ol,y)).

Since Am.(Z(txy)), = Z(txy) 0", the lemma follows.

2) is proved analogously using the fact that each t? € PR possesses a modulus € PR of

pointwise continuity (provable in WE—HA" M), which can be shown by using an adaptation
of Troelstra’s proof for T (see Kohlenbach (1990) for details).

3.3 Remark

In the proof of 3.2 we could also have used a modulus € T (JST%) of uniform continuity w.r.t.

for teT (F]\%), ie.
2 WE — HA® EVZ; 2,0 <4 i;g(ﬁ(t}y) =0 E(fi:y) — tay = tvy).
(WE —HA")).

Then 3. in the proof of 3.2 holds also with ?:cy instead of fxg. Such a modulus of uniform

continuity can be extracted from extensionality proofs of ¢ using functional interpretation and
pointwise majorization (see Kohlenbach (1992),3.6).
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3.4 Corollary

1) Let Ag(2%y') € LIWE — PA®) be a quantifier—free formula, whose free variables are of
type< 1. Then

(i) WE — PA® + AC™0—qf - Va'3f Ay (z, f) — IFOv20 Ay (2, F),
(ii) WE — PA® + AC*%qf - 3f' Ao (0, f) AVz® (3fAo(z, f) = gAo(2', g)) — VaIf Ao(z, f),

ie. WE —PA“ 4+ AC%%—qf implies AC%'—qf and 3f!Ag-induction for formulas Ay having
only free variables of type< 1.

2) Analogous for WE/—\PAM[\ instead of WE — PAY.

Proof:
1)(i),2)(i) follow immediately from 3.2, and 1)(ii),2)(ii) are proved using 1.3.1 and again 3.2.

3.5 Lemma

1) Let Ao(z,2',y) € LIWE — HA¥) be a quantifier—free formula whose free variables are
T, T,y = Y1,...,Yyn where type/r,y < 1. Assume that s € T is closed and
d = type/x(< 1). Then there are (effectively) quantifier—free formulas By(x,y) and Co(z,y)

(containing only x,y free) such that
1. WE - HA® -V <y swAo(x,2,y) < Bo(z,y),
2. WE - HA® I 3% <y szAo(z,2,y) < Co(z,y)-

2) 1) holds also for WE— HA" M instead of WE — HAY.

Proof:

1) As in the proof of 3.2 there exists a closed term ¢ € T' such that

WE — HAY FVx; & <4 sx;y(txjg =0 0 ¢+ Ag(z, j,y)).

By Kohlenbach (1992) (3.5,3.6) one can compute a modulus ¢ € T of uniform continuity for

t on {z'|% <y sz}, so in particular
WE — HAY FVx; & <y sx;g(tm}g =0 ta(Z(try) * 01)y>.
It follows that

Vi < lthk((k); < sxi) — Ag(z, Am.(k)m,
WE — HA% /\ijgsonH /\koéfpxy v (() —sz) 0(1‘ m() y)

3 3 | Vi <Uthk((k); < sai) A Ag(@, Am(k)m, y),
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where ® € T such that

/t\ngl
Sy = max { < o, "'7j?xy71 > | /\ T; <o swi
. i=0

There are closed terms t1,t5 € T such that
WE — HA® b Va,y| (hoy =0 0 < ¥k < Say (Vi < ihk((k); < svi) — Ao, Am.(K)m,)) )

Aty =0 0 ¢ 3k < @ay(vi < Uhk((R); < swi) A Ao(w, Mm.(K)m, ) ) |-
By(z,y) := (tizy =0 0) and Co(z,y) := (tawy =0 0) fulfil the lemma.

2) can be proved analogously since by Kohlenbach (1992) (3.5,3.6) a modulus ¢ € PR of uniform
continuity for ¢ € PR can be constructed (provable in WE— HA” M.

3.6 Corollary to the proof of 3.5

1) For each sentence of the form Vz!'3y <; szA¢(z,y) € LWE — HA¥) one can construct a
closed term x € T such that

WE — HA* - Vz(Jy < szAo(z,y) ¢ Ao(z, xz) A xz <1 sz).

2) 1. holds analogous for WE — HA" |, PR instead of WE — HA® T.

Proof:

1) The proof of 3.5 yields the construction of a closed ® € T' such that
WE — HA F Vg(Ely < szAo(z, y) < Tk <o Dz (Ao(z, Am.(k)m) AVi < lthk((k); < sxi))).
Define xo,x € T" such that

min k < ®z [Ag(z, Am.(k)m) A Vi < Ithk((k); < sxi)] if existent,
X0 =
0% otherwise,

and xz = Am.(xoz)m. x fulfils the claim.
2) An analogous assertion holds for WE - HA" \ PR instead of WE — H A“T.

3.2 permits the construction of an algorithm for w in 2.5 even when type/w =1 instead of = 0:
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3.7 Proposition

WE — PAY + AC—qf - Vul;v <4 tu(Vm‘sﬂy <p suvaVzT Ag — Jw! By(u, v, w))
1) = 33! ¢ T such that
WE — HA® +b— AC% =V Vul; v <y tu(Va3y <, suvaVz"Ag — Bo(u,v, )\m.(@uv)m)).

2) 1) holds also for WE — PA”), PR and WE — HA").
Proof:

By 3.2 one can replace “Jw!Bgy(u,v,w)” by “3k°Bo(u,v, Am.(k)mm)”. The conclusion now follows
from 2.5.

3.8 Theorem
Assume that (« =0A S arbitrary) or (¢ = 1A 8 =0).

1) E— PAY + ACP—of F Yul;v <4 tu(‘v’mlﬂy <4 suvzVz'Ay —
JaVb <1 ruvadw! Bo(u, v, a, b,w))

= 3%,%,¥ € T such that

Yu
WE — HAY F Yul;v <4 tu(Va:lEly <y suvx N\ Ao(u,v, 2,9, A\m.(i)m) —
i=0

7=

Pu Pu
Vb <1 ruo(m. (7)) 'V Bo(t 0, m.(7)ms b, A (k)m) ).
j=0 k=0

2) Analogous for E —pA” N, PR and WE/—\HAwP instead of £ — PA“,T and WE — HA“.

®,d, T can be extracted by functional interpretation combined with majorization.

Proof:

1) By the elimination of extensionality (see Luckhardt (1973)) and 3.2 the assumption implies
WE — PAY + AC*PB—qf - Vul;v <4 tu(leﬂy <y suwvaViAog(u, v, 2z, y, Am.(i)m,) —
Ja'Vb < ruva3k’ By (u, v, a,b, dm.(k)m)).
As in the proof of 2.12.1 one shows
WE — PAY + AC*P—qf - Yu; v < tu(leﬂy <y suvzViAdg —

VB Sll ruvﬂal, kOBO(ua v, a, BCL )\m(k)m))
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By the proofs of 2.3 and 2.13 one can extract closed terms @, ff), VU e T such that
(x) WE — HAY - Vu;v < tu <3Y <11 suvVzlyi <o Yudg(u,v, 2, Yz, Am.(i)m,) —
VB <q; ruvda <4 &m; k <o @uBo(u,v,a,Ba,)\m.(k)m)).
Claim:
(i) WE — HA® FV213y <q suvaVi <o Yudg(u, v, z,y, Mm.(i)m) —
Y <qp suvvalsi <o Yudo(u,v, 2, Y, A\m.(i)m).
(it) WE — HA® FVYu;v < tu(VB <41 ruvda <4 ‘/1511,; k <o ®uBy(u,v,a, Ba, \m.(k);,) —
3j <o Bub < ruv(Am.()m) Ik <o PuBo(u, v, A (§)m, b, )\m.(k)m)),
for some closed ® € T which can be extracted from the given data.
Proof of the claim:
(i) There exists a closed ta, € T such that
WE — HAY b tauvzy =0 0 <> Vi <o Qudo(u,v,x,y, Am.(i)m).
Now applying 3.6 to “t g4 uvzy = 0" we find a x € T' such that
WE — HAY - Jy <4 suv:z:(tAOuvxy =0 O) — ta,uvz(xuvx) =¢ 0 A yuve <; suvr =
WE — HAY - Vz3y <y suvz (tAOuva:y =0 O) — Vx (tAouw:(Xuvx) =0 0 A xyuve < suvsc) =
WE — HAY - Vzdy <1 suvzx (tAouva:y = 0) — 3yl (Vz(Ya: <y suvx)
AVz (t gguvz(Yz) = 0))
= (i).
(i) WE — PA® - VB <11 ruvda <1 usk <o PuBo(u,v,a, Ba, Am.(k)m) —

—-3B <1 ruvva <4 <f>u; k <o ®u—By(u,v,a, Ba, Am(k)m,) (4';
—Va < udb <; ruvavk <o Qu—Bo(u,v,a,b, dm.(k)m) —

(+%) Ja <1 Puvb <1 ruvadk <o PuBo(u,v,a,b, Am.(k)m).
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Ad !: The implication follows analogously to the proof of claim (i).

Let tp, € T' be such that
WE — HA® F tp,uvab =¢ 0 <> 3k <o PuBy(u, v, a,b, Am.(k)pm).
3.5 applied to Vb < ruva (tgouvab =0 0) yields a closed term t~BO €T such that

WE — HA® Vb < ruva(tgouvab =0 O) <~ fBOuva =0 0.

Let fu € T be a modulus of uniform continuity of fz, on {ala <; ®u} and {v|v < tu}
(see Kohlenbach (1992),3.5,3.6). Then

WE — HA® b Vo <i tu(Ja <; Su(is,uva = 0) - 3j°(1th j < fun
Vm < lthj((j)m < &)um) A tg, (U, v, Am.(§)m) =0 0))

Since lthj < /t:u AVm < lthj((j)m < ZI;um) implies j <g < ;ISUO, ey :ISu(It:u 1) >= Pu, it
follows that

WE — HAY b Vv < tu(3a <4 Eﬁu(fgo(u,v,a) =0) — 3j <o fi)u(fBO(u,v,/\m.(j)m) =0)).

Combining this with () , we have

(xxx)WE—PAY FVu;v < tu(VB < ruvda < ‘i)u; k <o ®uBy — 3j <o ‘i)u(fBO (u, v, A\m.(§)m) = O)),

where

WE — HA® & tp, (u, 0, Am.(j)m) = 0 ¢

Vb <1 ruv(Am.(j)m) 3k <o PuBo(u, v, Am.(J)m, b, Am.(k)m).

Applying negative translation we conclude that (x * x) is provable in WE — HA®, which
implies (ii).

End of the proof of the claim.

The theorem follows immediately from (x) and the claim.
2) is proved analogously.
The proof of 3.8 easily generalizes to tuples of variables (with types < 1) instead of the single

variables wu,v,x,y, z,a,b, w.
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4 Weak Knig’s lemma

4.1 Definition (WKL, Troelstra (1974))

The weak Knig’s lemma is defined to be
WKL : Vf! (Tf AVZOTn0(Ith n =z A fn = 0) — 3b <y Me.1a® (f(bx) = 0)),

where T'f := Vn,m(f(n*m) =0— fn= O) /\Vn,x(f(n* <zr>)=0—>z< 1).
Tf asserts that f represents a 0,1-tree.

(The designation “weak Knig’s lemma (WKL)” is due to H. Friedman).

WKL is equivalent (relative to WE/—\PAMM to the variant WK L*, where the knots of the tree
are bounded by an arbitrary function h instead of Ak.1 (see 4.12 and 4.13 below).

On the other hand, the “full” Knig’s lemma KL is the strengthening of WKL, obtained when
only the number of branchings (i.e. the number of successor knots to each knot) in the tree is
bounded (The knots themselves, which are represented by natural numbers, are not bounded). It
is known that KL is equivalent to the schema of arithmetical comprehension ACA (relative to

WE/:PAw[\ + AC—df; see Friedman (1975)). This equivalence also holds if KL is restricted to
trees with at most two branchings). It follows that WE — PA¥ + AC-qf+K L is proof-theoretically

stronger then PA (see Feferman (1977),5.5.2), but WE— PA” N+ AC—qf+KL has the same
strenght as PA (Shoenfield (1954), Feferman (1977),5.5.1).

If arbitrary (logically complex) formulas for the definition of 0,1-trees are allowed in WKL, then
the resulting strengthening of WKL also implies ACA (see Troelstra (1974)).

These results contrast with the conservation results for WKL given below.

A detailed discussion of WKL and KL can be found in Kreisel/Mints/Simpson (1975).

WKL is equivalent to
(+) Vf,g(Tf AV (Ith(gz) =z A f(gz) = 0) — Tb <1 Me.1¥2® (f(bx) = o)).

Since Va%3In® (lth n=zA fn= 0) T—(f>) Vrdn < Wx(lth n=uxA fn= O) the proof of this
equivalence needs no AC—qf.
(+) is a sentence having the logical form

(%) V! (Vnvo(n,x) — Jy <1 sa2V2" By (x, y,z)),

where Ay and By are quantifier—free formulas.
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One could try now to generalize the results above for premises of the form Vz3y < saVzAp(z,y, 2)
directly to assumptions having the form (%), in particular one can ask:

WE — PAY + AC—qf - Vm(VnAo(n, x) — Jy <4 sszOBO) — VKOO Cy L30eT:
WE — HA® + Vx(VnAo(n,x) = dy <4 sxVZOBO) — Vk3l < OkCY.

(€

This is false, however, as the following example shows (but see theorem 4.17):

Let Vm3nTk(e,m,n) define a total recursive function, which is not definable in T (here Tk
denotes Kleene’s T-predicate). Classical logic yields

WE — PAY - Vm(VYn—Tk(e,m,n) — 0 =1) — VkIITk (e, k,1).

Modulo “dummy” quantifiers, Vm(VnﬂTK (e,m,n) — 0= 1) has the logical form Vm (Vn—'T x(e,m,n) —
Jy <1 Ak.1VzBy(y,2)). By (xx) we could extract a term ® € T' such that Vi3l < Ok Tk (e, k,1).

But this implies that the recursive function defined by Vk3l Tk (e, k,1) is definable in T, which is
a contradiction.

Nevertheless the results proved so far can be applied to proofs which use WKL, since WKL is
equivalent (provable within WE/—\HAwM to a sentence of the form Vz!'Jy <; M\k.1V2Y Al (z, vy, 2)

z

and WE — HA") FVz, 23y <, Me.l N\ AK (2,9, k):

k=0
4.2 Construction
Y ; n iffn;é()\/(Vk,l(k*l:n%szo)/\w<lthn((n)igl)),
n .=
19 otherwise.
2) F fn if f(g(ith n)) = 0 Alth(g(Iith n)) = Ith n,
n .=
! 0° otherwise.
4.3 Remark

o~

f (fg) is primitive recursive in f (f and g) in the sense of Kleene (1952) and therefore also in

the sense of PR and T).

The operation  modifies f in such a way that the resulting function represents a 0,1-tree, i.e.

o~

T(f). If f satisfies already Tf, then  doesn’t change f:

4.4 Lemma

1) WE = HA" ) FYF(T(])),
2) WE— HA ) EVF(T(f) = [ =1 f).

Proof:
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~ ~

1) fnxm)=0— f(nxm)= f(nxm)=0—
Vk I(k*l=nxm — fk=0)AVi<lth(nxm)((nxm); <1) —

Vi, I(k*l=n— fk=0) AVi <lthn((n); <1) = fn= fn=0.

o~ o~

flnx<az>)=0— f(nx<z>)=fnx<z>)=0—
Vi <lth(nx <z >)((nx <z >); <1) 5z <1
2) Assume Tf. Then
fr=0-Vk,I(k+l=n— fk=0)AVi<Ilthn((n) <1).

Therefore fn = fn for all necw.

fq always satisfies the foundation condition Vz3n (lth n=xA fon= O). If already
Va(lth(gz) =z A f(gz) = 0), then f, =1 f:

4.5 Lemma

1) WE = HA | b Vf,g¥a3n(ith n =z A fyn = 0),
9) WE — HA") F Vf,g(Vm(lth(gm) = A fgz) =0) = f, = f).

Proof:

1) Define n; :=<0°,...,0° >. Then Ith n; = z.
———
z—times
Case (i):  f(g(ith n1)) = 0 Alth(g(Iith ny)) = lth ny: Put n := g(ith ny). Then f(n) =0

and therefore also fy(n) =0.

Case (ii): f(g(ithn1)) # 0VIith(g(lth ny)) # lth ny: By fy—definition fy(n;) = 0. Therefore
n :=ny fulfils the lemma in this case.

2) Va(lth(gz) =z A f(gz) =0) = Vn (f(g(lth n)) = 0 Alth(g(lth n)) = lth n)

— Vn(fgn = fn).

4.6 Definition

WKL : ¥f',g'3b <1 M1V ((f), (be) = 0).
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4.7 Proposition

1) WE — HA)FVf,g,23b <1 Ak J\ ((ﬂg(gy) =0 0)~
y=0
2) WE—HA") - WKL ¢ WKL
Proof:

1) We show by induction on =z
(%) Vaﬂn(lth n=xzAVi<z((n); <1) A @g(n) = 0)

(Since the quantifier “In” can be bounded by 11z, this induction is an application of
(IA)—gf only).

— T

(x) implies 1): Define b:=n*0!. By 4.4.1 (ﬂg(gac) =0 implies A @(By) =0.
0

y:
r=0: lthn=2x<+n=<>=0.

~ ~

Case (i): f(g0) =0AIlth(g0)=0: g0=0A f(0)=0.

F(0) =0 implies (ﬂg(O) =0 and furthermore (f)g(O) =0.

~

Case (ii): f(g0) # 0V lth(g0) #0: (ﬂg(O) =0 and therefore (ﬂg(O) =0.
x — x + 1: By the induction hypothesis there exists a ng such that

Ith ng = =, (}‘)g(no) =0 and Vi < Ith no((no); <1).

Define nj :=ng*x < 0 >.

Case (i): f(g(Ith n1)) = 0 Alth(g(ith n1)) = lth ny:
Then n := g(Ith ny) fulfils the claim:

Ith n = Ith(g(ith ny)) = lth ny = x + 1. Furthermore :
fr=0"%"VEI(n=k*l— fk=0) AVi <ith((n); <1)

Bk (= kel (1), (k) = 0) AVE < lth((n): < 1)
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U5 (F), (n) = 0 A < tth n((n); < 1).

Case (ii): f(g(lth n1)) # 0V ith(g(lth n1)) # lth ny: Then n:=ny fulfils the claim:

—

The case implies (+) (]?)g(nl) =0 by 4.2.2. Since (ﬂg(no) = 0, it follows by 4.2.1 that
Wk, 1(nog = k+ 1= (f), (k) = 0).
Together with

(+) and ng = nex < 0> this implies (f)g(nl) =0.

“—”: By 4.4.1, T((}Tg) holds for all f,g.

Using 1), WKL’ now follows by WKL.
“7: Assume T'(f) and Vadn(lthn =z A fn=0). Then
(+4+) VzIn < Fx(lth n=xAfn= 0).

Define

min n < 1lz[ith n =z A fn = 0] if such an n exists,
g =
0% otherwise.
g is primitive recursive in f and (++) implies Vx(lth(gx) =z A f(gz) = O). 4.5.2 yields
fg =1 f. Since f =; f (4.4.2), this proves that (f)g =1 f. Using WKL’ one derives
b <y Ak 1Vl (f(bx) = 0).

We are now able to conclude the following

4.8

Theorem

The results 2.3,2.4,2.5,2.7,2.9,2.12-2.15,3.7,3.8 also hold if WE — PA“ + AC—qf (resp. E— PA“ +
AC™P—f) is replaced by WE — PAY @ WKL @ AC—f (resp. E — PAY + WKL+ AC*#qf). In

particular
WE — PA* & AC—qf ® WKL F Vul;v <, tuda®Vb <, ruvadw? Ag(u, v, a, b, w)
1) = 3%, € T, closed such that
E—PAY +b— AC —V® - Vu; v <, tuda <o duvb <y ruvadw <o Pudy.
WE — PA* & AC—qf ® WKL F Vu;v <, tudw? A (u, v, w)
2) = 3® ¢ T, closed such that
WE — HAY F VYu;v <4 tudw <o Pud,.
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E — PAY + AC*P—f + WKL F Vu';v <; tuda'vb <y ruvadw' Ag(u,v,a, b, w)
3) = JP, P e T, closed such that

Pu
WE — HA® FVu;v < tu \/ Vb <y ruv(Am.(j)m)

V' Bolu,,Am. (1), b A ()

[
k=0

Variables of type 1 (resp. 2) can be replaced by variables of type 0 with grad(d) <1 (< 2).
All the results above also hold for the corresponding restricted systems WE - PA” [\ WE - HA" N E —pA” \
and PR.

Proof:
We prove one case of the theorem, namely that in 2.3 WE — PAY + AC—qf can be replaced by
WE — PAY & AC—qf @eWKL.

WE — PA¥ & AC—qf ®W KL+ Vu';v <, tu(Vax‘sEly <, suvzVz" Ag(u,v,x,y, )
— Jw?By(u,v,w)) =

WE — PAY & AC—qf F WKL — Vul;v <, tu(Vac‘sﬂy <, suvrVzAg — HwQBo) L7e
WE — PA® & AC—af I Vulv <, tu (¥, g3 <1 Me1vn® ((F), (Bn) =0 0)
AVz®Jy <, suvaVzAg — EwQBO)

Proofof2.13,2.4
PO e @ e T

WE — HA® +b— AC —Y I Yusv <, tu(EIB <M, g, kVS, g¥i < @u(@((%)i) - o)
AV Ty <, suvaVzAg — Jw <y quo) LY
WE — HA® +b— AC% —V F Yusv <, tu(Vf, g3b <y ARV < \Pu((%\g(gi) —0 0)
A2y < suvaVzAg — Jw <o <I>uBo) —
WE — HA® +b— ACO" —V - Yu;v <, tu(Vf,g,ng <4 Ak1Vi < n(@(gi) — o)

AVzIy < suvzVzAyg — Fw <o (ImBo) L7

WE — HAY +b— AC%P —V F Yu; v <, tu(VxEly < suvxVzAg — Jw <y @uBO).

The other assertions in the theorem can be proved in a similar way.

Furthermore we obtain the following conservation results concerning WK L:
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4.9 Theorem

1) WE—PA*® AC—qf ®W KL is conservative over WE — PA*® AC%'—qf (WE — HAY) w.r.t.
sentences of the form Vu';v <, tu3w'Vz' Ay (Vu';v <, tudw™Ag) (y,7 € T arbitrary).

2) E— PAY + AC*P—qf+WKL (a=0AJ arbitrary) or (a = 1 A § = 0) is conservative over
WE — PAY + AC*Y—f (WE — HA%) w.r.t. sentences of the form
Vul;v <; tudw'Vzt Ay (Vul;v < tudalvb <q ruvadwt Ag)

(Ap is quantifier—free and ¢, € T are closed).

Variables of type 1 can be replaced by (tuples of) variables of type ¢ with grad(d) < 1.

1) and 2) also hold for the restricted systems WE/—\PAw[\, WE - HA" N and F :\PAWI\ instead
of WE — PAY, WE — HA¥, E — PA¥ (Then, of course, t,r € I/DT%)

Proof:
1) follows from 2.15 (2.13) and 4.7 (By 3.6 the proof of the conclusion does not need b—AC —V?).

2) Assume E — PA“ 4+ ACPqf+WKL F Yu';v < tudw®Vz' Ag. Using elimination of exten-
sionality and 3.2,4.7 one concludes

WE — PA® + AC*Pqf - WKL — Vu';v < tuIw VE® Ao (u, v, w, Am.(k) ).
Asin 1), 2.15 and 4.7 now imply
WE — PA® + AC*"—qf F Vu'; v <y tu3w’VEL Ay.

(Since type/k =0, only ACC—qf but not AC%!'-qf is needed; the use of b— AC —V® can
be avoided by 3.6).

The second assertion of 2) follows immediately from 3.8 and 4.7.

4.10 Remark

Theorem 4.9.1 remains valid if WE—-PA“®AC—qféeW KL and WE—-PA*®ACY1—f (WE—-HAY)
are replaced by WE —PA*® AC—qfeWKL®T and WE —PAY ® AC%'—qfel’ (WE—-HA*@T),
where T' is an arbitrary set of sentences of the form Jx!Vy? Fy(z,y) € LWE — PA¥) (Fy(z,y) is
quantifier—ree and contains no further free variables than z,y). An analogous generalization holds

for 4.9.2 (with + instead of @) if T is a set of sentences of the form Iy Fy(z,v).

This remark is also correct for the corresponding restricted systems.

Proof:

Assume

WE — PA* @ AC—qf WKL T Vu;v <, tuTuw’V2' A.
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Then there are finitely many sentences Fi, ..., F,, € I' such that

WE — PA* & AC-qf @ WKL+ [\ F; = Vu'iv <, tuTuw’Vz" Aq.
=1

For notational simplicity, we assume that n = 1. Let F := F} := 32'Vy”Fy(z,y). Then
WE — PA* & AC—qf ®WKLF F — Yul;v <, tu; Zl(O)EIwOAO(u,U,w, Zw) =
WE — PAY & AC—qf ® WKLV V', 240y <5 tuEIyp,w(Fo(x,y) — Ag(u,v,w, Zw))
By 4.9.1 we conclude that
WE — HA® FVa',u, 2"y <, tudy, w(Fy — Ag) and therefore
WE — HAY \ JaVyFy(x,y) — Yu;v <, tu; 710304, (u, v, w, Zw), which implies
WE — PA* ® AC*'—qf F JaVyFy(z,y) — Yu;v <., tuw’Vz' Ag.

The other assertions of 4.10 can be proved in a similar manner.

4.11 Remark
WKL is not conservative w.r.t. sentences of the form (i) Iy'VaAg(y,x) or (ii) Va?3yt Ag(z,y):

(i) Each instance of WKL’ with f,g € T has the form 3y <; A\k.1¥2°Aq(y,z) and is provable in
WE — PAY @ AC—qf®eW KL but in general not in WE — PAY + AC—qf:

Let Jy <; Mk.1¥zP A% be the application of WKL’ to the primitive recursive Kleene-tree (here
f,g€T). Assume: T :=WE — PAY + AC—qf- Jy <; M\k.1Vz" A5, Then

T F Jyl(y is not recursive) since no recursive y realizes Jy < A\k.1Vz® AL (provable within 7).
But this contradicts the fact that HEO | T+Vy!(y is recursive) (see Troelstra (1973),2.6.20,2.6.21).
Analogous for Jylva® Ay with Aj(y,z) := AL (ming (y, Ak.1), z).

(ii) Assume

(WE _PA® QWKL ® AC qf - V223y' Ay = WE — PA® + ACqf - VxZElylAO)
for arbitrary quantifier—free Ag. Then

(WE ~ PA¥ @ WKL ® AC—qf - 3y'Va® Ao (y, o) =

assumption
)=

WE — PA® @ WKL ® AC—qf - VX3 Ao (y, Xy
WE — PAY + AC—qf - VX?3y' A (y, Xy) =

WE — PAY + AC—qf - 3y'vVa" Ay (y, x)),
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but this contradicts (i).

As mentioned above, our majorant—construction allows the extraction of primitive recursive bounds
(resp. algorithms) for Vul;v < tuFw’ By-sentences from proofs, which use arbitrary assump-
tions of the form Vz%3y < p 52Vz7 Ag. Furthermore, weak Knig’s lemma WKL is equivalent to
a special Vz'3y <; saVz0Ay-—sentence (namely W KL'). Mathematical experience indicates that
Val3y <; saxVz0Ag-—sentences are quite often provable from their “s—versions” using WKL (e.g.
the theorem that each f € C[0,1] assumes its maximum on [0,1]). We want to prove now this
universal character of WKL (for the case §,p,7 <1):

Each sentence having the form Va'3y <; saVz'Ag € LIWE — PA%) follows provable in WE —
k
PAY + WKL from () Va,k°Jy < sz N\ Ao(x,y, A\m.(i)m). By 3.5 () is equivalent to a ValAy—
i=0
sentence and therefore (by 3.2) to a V0 Ag-sentence. Hence each true Vz'3y <, sxV20/ I Ag—sentence
is provable within WE — PA“ + WK L+a true Vz° A{,-sentence.

This result is mainly of theoretical interest. For concrete extractions of bounds from given

proofs it is much easier to apply our method directly to mathematical assumptions having the
form Vz3dy < szVzAp instead of first reducing them to W K L+true universal sentences and then
eliminating W K L. Furthermore, for higher types 6, p,7 > 1, it is in general not possible to reduce

Vr®3y <, sxV2" Ag-sentences to WKL plus universal sentences (see 4.16) but we still can apply

our method to extract bounds from proofs which use such assumptions (as was shown in 2.3).

4.12 Definition

WKL : V' (T (h, f) AVadn(ith n =2 A fn=0) = 3b <, hva®f(br) = 0),
where

T(f,h) :=Vn,m(f(nxm)=0— fn=0) AVn,z(f(nx <z >)=0—z <h(ith(n))).

One easily proves the following lemma (using Troelstra (1973),1.9.24)

4.13 Lemma
WE— PA" ) WKL & WKL*.

4.14 Proposition

1) Let Val3y <q saVzlAg(x,y,2) be asentence in L(IWE — PAY), where s'' € T is a closed
term. Then

k
WE — PAY + WKL F Vot k°3y <4 sz /\ Ag(x,y, Am.(1) ) < Va'3y <; szVz' Ay,
i=0

2) 1) holds also for WE— PA” I instead of WE — PAY.
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Proof:

)

By 3.2 it suffices to consider VazIy < saVkYAg(x,y, k).

k
Va,kJy < sz N\ Ao(x,y,i) implies
=0

1=

k
(%) Ve, kﬂn(lth n="kAVj<k((n); <szj) NIy < sz /\ Ap(z,n* dm.y(m + k),z))
i=0

Ag(x,kn):=

By 3.5 Ap is quantifierfree definable in W E — PA“. Therefore we can define in WE — PA¥
a function f, such that

F 0 if Ag(z,lth n,n),
N 1=

1 otherwise.

For all z, T(fy,sz) holds. Furthermore () implies Vz, k3n(lth n = kA fyn = 0). Therefore
WKL* applied to f,,sz yields

k
wk) Vodyg < szVk(dy < sz [\ Ao(x, Yok * Am.y(m + k),1) ).
0
i=0

It remains to show that VkAp(x,yo, k): Assume there exists a k € w such that —Ag(z, yo, ko)-
Since Ag is quantifier—free, there exists a closed term ¢t € T' such that

WE — PA® b Va,y, k(teyk =9 0 > —Ao(z,y,k)). By Troelstra (1973),2.7.8 there exists a

modulus of pointwise continuity ¢ € T' for t w.r.t. y:
(# % %) WE — PA” b Vz,y, 7, k(te(y(tayk) = §)k =¢ teyk).

Define ng := tayoko. Since tzyoko = 0, (* % %) implies Vm > no,y(ﬁAo(x,yom * 1Y, ko)).
Define m := max(ng, ko), then (xx) yields Jy < sxAg(z,gom * Ak.y(m + k), ko), which is a
contradiction.

is proved analogously using the fact that each % € PR possesses a modulus of pointwise

continuity £ € PR provable within WE— PA” | (see Kohlenbach (1990)).

4.15 Corollary

1)

For each sentence of the form Va'3y <; saV2%1 Ag(z,vy, 2) € L(WE—PA®) one can construct
a corresponding I1-sentence Vn°By(n) € L(WE — PA“) such that

WE — PA* + WKL Vz'3y <, saV2" Ag(z,y, z) & Yn"By(n).

37



2) An analogous result holds for WE/—\PAWP instead of WE — PA¥.

Proof:
The corollary follows from 4.14 together with 3.5 and 3.2.

For types > 1 the above corollary no longer holds:

4.16 Proposition

There exist true sentences A = I <, 12Vy' Ag(z,y) € L(E — PA¥) such that

E - PAY +WKL+TWA, where T' is the set of all true sentences having the form VzfFy(z) €
L(E—PAY) with grad(p) <2 and Fp is quantifier—free (“True” here means valid in the full type
structure of all set—theoretical functionals of finite type).

Proof:

b— AC applied to WKL’ yields A:=3d < 11(1)(1)Vf,g,x((f)g((@fg)x) = O). One easily shows
that @ is not continuous w.r.t. f. Hence ECF A (see Troelstra (1973),2.6.5 for the definition
of ECF := ECF(wY)).

On the other hand ECF = E—PAY+WKL+T": Since ECFjy contains all functions w*, ECF =
WKL. Since the continuous x” are a subset of all set-theoretical x” (grad(p) < 2!), the truth of
I' implies the truth of [I'gcp. ECF | E — PA¥ follows from Troelstra (1973),2.6.5.

Our last theorem states that it is possible to extract bounds for (1) Vul;v <; tu3k®Dy—sentences
which are proved from assumptions having the form (2) Va?(Vw®By — Jy <; s2Vz°Cp) by analysing
both the proof of (2) — (1) and a proof of the e-version of (2). Thus, in contrast to assumptions
Vrdy < saVzAp, the truth of (2) is not sufficient for the extraction.

4.17 Theorem
1) Assume (p=0AT7 arbitrary) or (p =1A7=0) and

(i) E — PAY + ACP7—qf - Va!3B <1 ravn®Ag(a, B,n) —

Yl (VwOBO(:v,w) —V203y <y sz A Co(mayJ)) and
j=0

(it) E — PA* + ACP™—qf b Va (Vw®By(z, w) = Jy <1 sa¥2°Cy(z,y, 2))

— Vul;v <q tuFkY Dy (u, v, k:))

Then from (i) one can extract a closed term x € T' such that
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(i)* WE — HA® - Va,n°38 < ra A\ Ao(a, B,i) —
=0

2

Xxz z

Vx,z( Bo(xal)—>39§3$ /\ CO(‘rayvj))

= 7=0
(From (ii)—using x—one can extract a closed ¥ € T such that
n Y
(79)* WE — HAY FVa,n3p <ra A\ Ao(a,B,i) = Yu;v < tu \/ Do(u,v,k).
i=0 k=0
2) An analogous result holds for E :TDAw[\, PR and WE — HA" [\
Proof:
1) ;From (i) one concludes (using elimination of extensionality)
WE — PAY + ACP"—qf + Val3B <; ravndo(a,B,n) — Va:l,zozlwo(Bo(:c,w) — dy <4
z
st N C()).
§=0

By 3.5 there exists (eff.) a quantifier—free formula Fy € L(WE — PA“) such that

WE — PA® \ Fy(x,w, z) < (Bo(x,w) — Jdy < sz /\ Co).

j=0
2.13.2 yields closed terms &, x € T such that
fxz XTz z
WE — HA® - Va:,z(Vaﬂﬁ <4 roa /\ Ay — (/\ Bo(z,i) = Jy < sz /\ C’o))
i=0 i=0 j=0

(by 3.6, b— AC —V* is not needed to prove this conclusion),

which implies (2)*.

(ii) implies (using again elimination of extensionality)

w

WE — PAY + ACPT—f - Vz3dy < sszHw( /\ By(z,i) — /\ Co(amy,j)) — Vu;v < tudkDy.
§=0

=0
Hence
Wzxz z
WE—-PA“+ACP™qf - 3Y < s, WOOlvg;,z( /\ Bo(z,i) — /\ Co(x, Yx,j)) — Yu;v < tu3kDy.
i=0 j=0
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Therefore

Waxz z

A Bo(z,i) — A\ co(x,yx,j))

WE — PA® + ACP™ qft- VY < s W, u;0 < tu3z, 2, k((
§=0

= HkDo(u,v,k)).

Using functional interpretation (see Kohlenbach (1992),3.3) one can construct ®, ¥ € T' from
the given proof such that
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Wz(dY Wuw) Y Wuw
WE — HA* FVY < s;W,u;0 < tu(Vm( A Bolzi)— A Co(xym,j))

i=0 §=0
TY Wuw
— Dy (u,v, k:))
k=0
—
Xx(‘i’quv) Y yuv
(x) WE — HAY VY < sju;v < tu(Vx( A Bo(z,i) — A C’O(:v,Y:c,j)>
i=0 j=0
\i/quv
- \/ Do(’u, v, k)) .
k=0

By Kohlenbach (1992),2.15 one can construct ®*, ¥*, x*, s*,t* € T such that
WE — HA* - ®* maj ® AU maj ¥ Ax* maj x As* maj s At* maj t.
Define ® := Au.®*s**u(t*u), ¥ := . U*s*x*u(t*u), then
WE - HAY FVY < s;u;v < tu(@u >0 Y yuv A Tu > \ileuv).

Together with () this implies

Xxz z
WE - HAY FVYY <sju;v < tu(v,z < @u;x( A Bo(z,i) = A Co(x,Y;v,j))
i=0 §=0

Wy
—  Do(u,v,k))
k=0

—

XTIz z
WE — HAY Vu(ElY < sVx;z < Q)u( N Bo(z,i) = A Co(I,YI,j)>
i=0 §=0

Y
— Yo <tu \ Do(u,v,k)>

k=0
3.6
=
XTIz z
*xx) WE — HAY + Vu(VxHy < saVz < <I>u( Bo(z,i) = A C’o(x,y,j))
i=0 j=0

Yu
= Vo <tu\ Do(u,v,k)>.
k=0

It remains to show
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XLz z

A Bo(e,i) 3y < sz A Col.0.4)) =

WE— HA“ F Vx,z(
1=0 1=

XTz z
Yu, 3y <1 saVz <g <I>u< N Bo(z,i) = A C’O(x,y,j))
i=0 §=0

(Together with (%) and (4)* this implies (i4)*).

Xxz z

Bo(z,i) = Jy < sz A\ Co(x,y,j)). Define primitive recursively in z, u
i=0 Jj=0

(2

Assume (+) Vz,z (

XTz XT 2w,z
(in the sense of T') z,, suchthat z,, =maz {z <o Pu| A Bg(x,i)}. Then Bo(x,1).
i=0 i=0
By (+) there exists an y < sz with (4++) /\T Co(z,y,7). We show
3=0
Xz 2
(+4+4) Vz <o <I>u( /\ By(z,i) — /\ Co(x,y,j)) :
i=0 §=0
z
Case 1: 2z <z, 4. Then by (++) A Co(x,y, 7).
§=0
XTz
Case 2: Pu > z > z,,. By the maximality of z,, it follows that — A By(z,i) and hence
i=0
XLz ) z )
/\ Bo(x,’l/) — /\ Co(xayu?)'
i=0 j=0

2) The proof is analogous.

4.18 Remark

1) The above theorem is usefull for the analysis of proofs which can be split into the parts
(i) Va3B < ra¥nAy — Vw(VwBO -y < sszCo) and
(i) Vx(VwBO — dy < s:cVzC’o) — Yu;v < tudkDy :

One analyses separately the proof of (i), which is in particular a proof of

(1)* Ya3B < ravnAy — Vx(VwBo — Vz3dy < sz /\ C’O)7

§=0
and the proof of (ii) and combines the results to a bound for “3&”.
In classical analysis there are interesting examples of proofs having this structure, e.g. the proof

of the uniqueness of best Chebycheff approximation from de La Vallee Poussin (1919) /Natanson
(1949), which we analyse in a subsequent paper using exactly the above strategy.
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2) Theorem 4.17 implies immediately (without 4.7) that F — PAY + AC*P-qf+WKL is con-
servative over WE — HAY w.r.t. Vul;v <; tudk®Ap-—sentences (analogous for the systems
with restricted induction), since

WE - HA) - WKL < Vf,g(Tf/\Va:(lth(gx) — 2Af(gz) = 0) — Tb <3 e 1¥z(f(ba) = 0))

and

WE - HA ) - Vf,g(Tf AVa(ith(gz) = z A f(gz) = 0) — YaTb < Ak.1 ;\ (f(Bj) = o)).
3=0

[Correction (1993): Replace the condition ‘(aw = 0 A 8 arbitrary) or (oo = 1 A8 =0)" on AC? — ¢f
in 2.7, 3.8,4.9.2 and 4.17 by ‘(a=0AB<1)or (a =1AB=0)"]
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