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ABSTRACT

The monadic second-order theory of trees allows quantification over elements and over arbitrary

subsets. We classify the class of trees with respect to the question: does a tree T have a definable

choice function (by a monadic formula with parameters)? A natural dichotomy arises where the

trees that fall in the first class don’t have a definable choice function and the trees in the second

class have even a definable well ordering of their elements. This has a close connection to the

uniformization problem.

0. Introduction

The uniformization problem for a theory T in a language L can be formulated as follows:

Suppose T ⊢ (∀Ȳ )(∃X̄)φ(X̄, Ȳ ) where φ is an L-formula and X̄, Ȳ are tuples of variables. Is there

another L-formula φ∗ such that

T ⊢ (∀Ȳ )(∀X̄)[φ∗(X̄, Ȳ ) ⇒ φ(X̄, Ȳ )] and T ⊢ (∀Ȳ )(∃!X̄)φ∗(X̄, Ȳ )?

Here ∃! means “there is a unique”.

The monadic second-order logic is the fragment of the full second-order logic that allows quantifi-

cation over elements and over monadic (unary) predicates only. The monadic version of a first-order

language L can be described as the augmentation of L by a list of quantifiable set variables and

by new atomic formulas t ∈ X where t is a first order term and X is a set variable. The monadic

theory of a structure M is the theory of M in the extended language where the set variables range

over all subsets of |M| and ∈ is the membership relation.

Given a tree T we may ask the following question: is there a sequence P̄ of subsets of T and a

formula ϕ(x,X, Z̄) in the monadic language of trees such that

T |= ϕ(a,A, P̄ ) ⇒ [A 6= ∅ & a ∈ A] T |= (∀X)(∃y)[X 6= ∅ ⇒ ϕ(y,X, P̄ )] and

T |= ϕ(a,A, P̄ ) ∧ ϕ(b, A, P̄ ) ⇒ a = b ?

* The second author would like to thank the U.S.–Israel Binational Science Foundation for par-

tially supporting this research. Publ. 539
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If the answer is positive we will say that T has a (monadically) definable choice function (with

parameters) and that ϕ defines a choice function from non-empty subsets of T . Note that if we

let φ(x, Y ) be the formula that says “if Y is not empty then x ∈ Y ” then a negative answer to

the choice function problem for T implies a negative answer to the uniformization problem for the

monadic theory of T (with φ being a counter-example).

dealing with the choice function problem we split the class of trees into two natural parts, wild

trees and tame trees and prove the following:

Theorem. Let T be a tree. If T is wild or T embeds ω>2 then there is no definable choice

function on T (by a monadic formula with parameters). If T is tame and does not embed ω>2 then

there is even a definable well ordering of the elements of T by a monadic formula (with parameters)

ϕ(x, y, P̄ ).

Looking at the definitions and proofs we observe that a tree is tame [wild] if and only if it’s completion

is tame [wild] and that the counter-examples for the choice function problem are either anti-chains

or linearily ordered subsets of T . Hence we can prove:

Conclusion. Let T be a tree and T ′ be it’s completion. Then the following are equivalent:

a) For some n, l < ω, for every anti-chain/branch A of T there is a monadic formula ϕA(x,X, P̄A)

with quantifier depth ≤ n and ≤ l parameters from T , that defines a choice function from non empty

subsets of A.

b) There is a monadic formula, with parameters, ψ(x, y, P̄ ) that defines a well ordering of the

elements of T .

c) There is a monadic formula, with parameters, ψ′(x, y, P̄ ′) that defines a well ordering of the

elements of T ′.

The paper continues the work by Gurevich-Shelah ([GuSh]) who answered negatively a question by

Rabin ([Ra]), by showing that the answer for the choice function problem is negative in ω>2.

The ‘positive’ results on the existence of a definable well ordering (§§3,5) are elementary and do not

require knowledge of monadic logic. The negative results (§§2,3,4) are based on understanding of

some composition theorems that hold for the monadic theory of trees. These facts are collected in

§1.

More details and Historical background can be found in [Gu] and [GuSh].

1. Composition Theorems

In this section we will define partial theories and establish the technical tools that will be applied

later. We will formalize composition theorems that will enable to compute the partial theory of a

tree from partial theories of it’s parts. Using such theorems enables to prove that if for example a

dense chain does not have definable choice function then a tree with a dense branch does not have

a definable choice function.

Definition 1.1. (T, ⊳) is a tree if ⊳ is a partial order on T and for every η ∈ T , {ν : ν ⊳ η} is

linearily ordered by ⊳.

Note, a chain (C,<) and even a set without structure I is a tree.

Definition 1.2. Let T be a tree
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1. X ⊆ T is a convex subset if η, ν ∈ X and η ⊳ σ ⊳ ν ∈ T implies σ ∈ X . If T is a chain we use the

term a convex segment or just a segment.

2. (S, ⊳) is a subtree of (T, ⊳) if S ⊆ T and S is a convex subset of T .

3. B ⊆ T is a sub-branch of T if B is convex and ⊳–linearily ordered.

4. B ⊆ T is a branch of T if B is a maximal sub-branch of T .

5. A ⊆ T is an initial segment of T if A is a sub-branch that is ⊳–downward closed. η is above an

initial segment A if ν ∈ A⇒ ν ⊳ η.

6. For η ∈ T , T≥η is the sub-tree ({ν ∈ T : η ⊳ ν}, ⊳). T>η is the sub-tree (T≥η \ {η} , ⊳). For

A ⊆ T an initial segment, T≥A and T>A are defined naturally.

7. For η ∈ T we deote by suc(η) or sucT (η) the set of ⊳–immediate successors of η (which may be

empty).

8. For η, ν ∈ T we denote the intersection of η and ν in T by η ∧ ν. This may be a member of T or

an initial segment of T , in any case the meaning of η ∧ ν ⊳ σ is natural and σ ⊳ η ∧ ν [σ ∈ η ∧ ν] is

used only when η ∧ ν is an element [an initial segment].

9. If there is an η ∈ T that satisfies (∀ν ∈ T )[η ⊳ ν] we say that T has a root and denote η by

root(T ).

10. η, ν ∈ T are incomparable in T if neither η ⊳ ν nor ν ⊳ η. X ⊆ T is an anti-chain of T if X

consists of pairwise incomparable elements of T .

11. A gap in T is a pair (A,B) where A ∩ B = ∅, A ∪ B is a sub-branch, A is an initial segment,

(so η ∈ A, ν ∈ B ⇒ η ⊳ ν), A without a ⊳-maximal element, B without a ⊳-minimal element, and for

some σ ∈ T for every η ∈ A and ν ∈ B we have η ⊳ σ & ν, σ are incomparable.

12. Filling a gap (A,B) in T is adding a node τ to T such that η ∈ A ⇒ η ⊳ τ , ν ∈ B ⇒ τ ⊳ ν and

for every σ as in (11) we have τ ⊳ σ.

Definition 1.3. The full binary tree is the tree ( ω>2 , ⊳) where for sequences η, ν ∈ ω>2, η ⊳ ν

means η is an initial segment of ν.

Definition 1.4. The monadic language of trees L is the monadic version of the language of

partial orders {⊳}. Usually ⊳ means “smaller than or equal” but when we restrict ourselves to chains

(linearily ordered sets) we use < and ≤. For simplicity, we add to L the predicate sing(X) saying

“X is a singleton” so that we can quantify only over subsets. Note that everything that is defined

in 1.2 is definable in L.

Next we define, following [Sh], the partial theories of a tree T . These are finite approximations

of the monadic theory of T . Thn(T ; P̄ ) is essentially the monadic theory of (T, P̄ , ⊳) restricted to

sentences of quantifier depth n.

Definition 1.5. For any tree T , Ā ∈ P(T )lg(Ā), and a natural number n, define by induction

t = Thn(T ; Ā).

for n = 0:

t =
{

φ(X̄) : φ(X̄) ∈ L, φ(X̄) quantifier free, T |= φ(Ā)
}

.

for n = m+ 1:

t =
{

Thm(T ; Ā∧B) : B ∈ P(T )}.

Tn,l is the set of all formally possible Thn(T ; P̄ ) where T is a tree and l(P̄ ) = l.
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Fact 1.6. (A) For every formula ψ(X̄) ∈ L there is an n such that from Thn(T ; Ā) we can

effectively decide whether T |= ψ(X̄).

(B) If m ≥ n then Thn(T ; Ā) can be effectively computed from Thm(T ; Ā).

(C) Each Thn(T ; Ā) is hereditarily finite, and we can effectively compute the set Tn,l of formally

possible Thn(T, Ā).

Next we recall the composition theorem for linear orders which states that the partial theory

of a chain can be computed from the partial theories of it’s convex parts. This allows us to sum

partial theories formally.

Definition 1.7. If C,D are chains then C + D is any chain that can be split into an initial

segment isomorphic to C and a final segment isomorphic to D.

If 〈Ci : i < α〉 is a sequence of chains then
∑

i<α Ci is any chain D that is the concatenation of

segments Di, such that each Di is isomorphic to Ci.

Theorem 1.8 (composition theorem for linear orders).

(1) If l(Ā) = l(B̄) = l(Ā′) = l(B̄′) = l, and

Thm(C, Ā) = Thm(C′, Ā′) and Thm(D, B̄) = Thm(D′, B̄′)

then

Thm(C +D,A0 ∪B0, . . . , Al−1 ∪Bl−1) = Thm(C′ +D′, A′
0 ∪B

′
0, . . . , A

′
l−1 ∪B

′
l−1).

(2) If Thm(Ci, Āi) = Thm(Di, B̄i), l(Āi) = l(B̄i) = l for each i < α, then

Thm
(

∑

i<α

Ci, ∪iA1,i, . . . ,∪iAl−1,i

)

= Thm
(

∑

i<α

Di, ∪iB1,i, . . . ,∪iBl−1,i

)

.

Proof. By [Sh] Theorem 2.4 (where a more general theorem is proved), or directly by induction

on m.

♥

Notation 1.9.

(1) t1 + t2 = t3 means: for some m, l < ω, t1, t2, t3 ∈ Tm,l (remember definition 1.5) and

if

t1 = Thm(C,A0, . . . , Al−1) and t2 = Thm(D,B0, . . . , Bl−1)

then

t3 = Thm(C +D,A0 ∪B0, . . . , Al−1 ∪Bl−1).

By the previous theorem, the choice of C and D is immaterial.

(2)
∑

i<α Th
m(Ci, Āi) is Thm(

∑

i<α Ci, ∪i<αA1,i, . . . ,∪i<αAl−1,i).

(3) If D is a subchain of C and X1, . . . , Xl−1 are subsets of C then Thm(D,X0, . . . , Xl−1) abbre-

viates Thm(D,X0 ∩D, . . . , Xl−1 ∩D).

(4) We use abbreviations as P̄ ∪ Q̄, ∪iP̄i and P̄ ⊆ C. The meanings should be clear.

(5) For C a chain, a < b ∈ C and P̄ ⊆ C we denote by Thn(C; P̄ ) ↾[a,b) the theory Thn([a, b); P̄ ∩

[a, b)).

The class of trees has some weaker (but sufficient for our purpose) composition theorems. First

we define the composition of subtrees of the full binary tree following [GuSh] and quote the the

respective composition theorem.
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Definition 1.10. Let M ⊆ ω>2 be a tree. A grafting function on M is a function g satisfying the

following conditions:

(a) Dom(g) ⊆M × {0, 1},

(b) if (x, 0) ∈ Dom(g) then x ∧〈0〉 6∈M and if (x, 1) ∈ Dom(g) then x ∧〈1〉 6∈M ,

(c) every value g(x, d) of g (d ∈ {0, 1}) is a tree ⊆ ω>2.

A composition of a tree M and a grafting function g is the tree

M ∪
{

x ∧〈d〉 ∧y : (x, d) ∈ Dom(g), y ∈ g(x, d)
}

.

Theorem 1.11 (composition theorem for binary trees). Let M ⊆ ω>2 be a tree, N ⊆ ω>2

be the composition of M and a grafting function g, X̄ ⊆ N and n < ω. Then, there ism = m(n) < ω

(effectively computable from n) such that from Thm(M ; X̄, L̄g(n, X̄), R̄g(n, X̄)) we can effectively

compute Thm(N ; X̄) where

Lg
t (n, X̄) :=

{

x ∈M : (x, 0) ∈ Dom(g), Thn(g(x, 0), X̄) = t
}

L̄g(n, X̄) :=
{

Lg
t (n, X̄) : t a formally possible n− theory

}

and R̄g(n, X̄) is defined similary by replacing L, 0 with R, 1.

Proof. This is theorem 2 in §2.3. of [GuSh]. The language that is used there is different from our

L but all the mentioned symbols are monadically inter-definable (with some additional parameters)

with our ⊳, (For example the relation “X is an immediate left successor of Y ” is easily definable

from ⊳ and the parameter A := {η ∈ ω>2 : (∃ν ∈ ω>2)[η = ν ∧〈0〉]}). Thus the translation of

[GuSh]’s proof is clear.

♥

The next three theorems allow us to compute a partial theory Thn(T ; X̄) from partial theories

of sub-structures of T . The proofs are by induction on n noting that Th0(T ; P̄ ) can express only

statements as Pi ⊳Pj , Pi ∈ Pj and Pi = Pj and that Thn+1 is a collection of n-theories. Everything

is basically the same as in the previous case and we will not elaborate beyond that.

Theorem 1.12 (composition theorem for general successors). Let T be a tree, X̄ ⊆ T and

A ⊆ T an initial segment (i.e. linearily ordered by ⊳ and downward closed).

For every x above A (x 6∈ A and y ∈ A⇒ y ⊳ x) denote by TA,x the sub-tree

{y ∈ T : (∃z)[z ⊳ x & z ⊳ y & z above A]}.

We say that x and y are equivalent above A if x and y are above A and TA,x = TA,y (compare with

definition 4.1), finally let {Ti : i ∈ IA} list the equivalence classes above A (it’s a disjoint union of

sub-trees).

Then for every n < ω, there is m = m(n) < ω (effectively computable from n) such that from

Thm(T≤A; X̄) and Thm(IA; P̄
A(n, X̄)) we can effectively compute Thn(T ; X̄) where

T≤A := {y ∈ T : y not above A}

PA
t (n, X̄) := {i ∈ IA : Thn(Ti; X̄) = t},

P̄A(X̄) := {PA
t (n, X̄) : t a formally possible n− theory},

and Thm(IA; P̄
A(n, X̄)) is the m-theory of a set without sructure – i.e. in the monadic language of

equality.

(A natural case is when for some y ∈ T we have A = {z : z ⊳ y}, {xi : i ∈ I} = suc(y) and

Ti = T≥xi
).

♥
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Theorem 1.13 (composition theorem for branches). Let T be a tree, B ⊆ T a branch,

X̄ ⊆ T and n < ω. (B′, ⊳) is the chain that is obtained by adding nodes to fill the gaps in B –

remember 1.2(12), (so B′ is contained in the completion of B). And let T ′ be the tree obtained by

replacing the branch B by B′

Then there is m = m(n) < ω (effectively computable from n) such that from Thm(B′; P̄B′

(n, X̄))

we can effectively compute Thn(T ; X̄) where

for η ∈ B′, T ′B′

≥η := T ′
≥η \B

′

PB′

t (n, X̄) :=
{

η ∈ B : Thm(T ′B′

≥η ; X̄) = t
}

PB′

t (n, X̄) :=
{

PB′

t (n, X̄) : t a formally possible n− theory
}

.

Moreover, if Ȳ ⊆ B then from Thm(B′; P̄B′

(n, X̄), Ȳ ) we can effectively compute Thn(T ; X̄, Ȳ ).

♥

Notations 1.14. For stating the next composition theorem we need a considerable amount of

notations.

Let T be a tree, by “F : ω>2 →֒ T is an embedding” we mean F is 1-1 and for η, ν ∈ ω>2, η ⊳ν ⇐⇒

F (η) ⊳ F (ν), we also assume that T has a root and F (root( ω>2)) = root(T ).

let S ⊆ T be F ′′( ω>2), it is a tree (but not necesarily a subtree of T ) that can be identified with
ω>2.

For x = F (η) ∈ S define x0 [x1] ∈ S to be F (η ∧〈0〉) [F (η ∧〈1〉)].

For Y ⊆ S an anti-chain (hence an anti-chain of T ) let Bush(Y ) := {x ∈ T : (∃y ∈ Y )[x ⊳ y]} (it’s a

subtree of T ) and let BushS(Y ) := Bush(Y ) ∩ S (it’s a subtree of S).

For every y ∈ S denote y0∧y1 by yi. It may be an element of T or an initial segment but remember

the convention in 1.2(8).

For every y ∈ S we define some subtrees of T≥y (some of them may be trivial if for example y = yi):

0) T0(y):=T≥y.

1) T1(y):=
{

x ∈ T : (¬yi ⊳ x) & (∃z 6= y)[(z ⊳ x)&(y ⊳ z ⊳ yi)]
}

, [These are the elements that split

from the segment (y, yi) ].

2) T2(y):=
{

x ∈ T : (y ⊳ x) & (∀z)[(z ⊳ yi)&(z ⊳ x) ⇒ (z ⊳ y)]
}

. (If yi is an initial segment replace

z ⊳ yi with z ∈ yi), [These are the elements that split from y but not from the segment (y, yi) ].

3) T3(y):=
{

x ∈ T : (¬y0 ⊳ x) & (∃z 6= yi)[(z ⊳ x)&(yi ⊳ z ⊳ y0)]
}

. (If yi is an initial segment replace

(∃z 6= yi) with (∃z)(yi ⊳ z) ), [These are the elements that split from the segment (yi, y0) ].

4) T4(y):=
{

x ∈ T : (¬y1 ⊳ x) & (∃z 6= yi)[(z ⊳ x)&(yi ⊳ z ⊳ y1)]
}

. (If yi is an initial segment replace

(∃z 6= yi) with (∃z)(yi ⊳ z) ), [These are the elements that split from the segment (yi, y1) ].

5) T5(y):=
{

x ∈ T : (yi ⊳ x) & (∀z)[(z ⊳ x)&(z ⊳ y0 ∨ z ⊳ y1) ⇒ (z ⊳ yi)]
}

. (If yi is an initial segment

replace z ⊳ yi with z ∈ yi), [These are the elements that split from yi but not from the segments

(yi, y0) and (yi, y1)].

6) T6(y):= T≥y0 .

7) T7(y):= T≥y1 .

For y ∈ S, P̄ ⊆ T , t̄ = 〈t0, t1 . . . , t7〉, ti a possible n-theory, we have y ∈ Qt̄ ⇐⇒ Thn(T0(y); P̄ ) =

t0 & . . .& Thn(T7(y); P̄ ) = t7. For y 6∈ S we have y ∈ Q∅.

Finaly let Q̄(n, P̄ ) be 〈Qt̄ : t̄ a possible sequence of n-theories〉∧〈Q∅〉

Note that every anti-chain Y is definable from BushS(Y ) and S is definable from Q̄.

Theorem 1.15 (composition theorem for embeddings). Following the above notations, let

T be a tree and F : ω>2 →֒ T an embedding.
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Then for every Y ⊆ S an anti-chain, y ∈ Y , P̄ ⊆ T and n < ω, there is m = m(n) < ω (effec-

tively computable from n) such that from Thm(BushS(Y ); y, Q̄(n, P̄ )) we can effectively compute

Thn(T ; y, Y, P̄ ).

♥

2. Dense linear orders

Every finite set A has a definable well ordering by a formula with |A| parameters. This is not

the case for infinite models.

Claim 2.1. Let A be an infinite set without structure. Then there is no definable choice function

on A. Moreover, if |A| > 2l then no formula with ≤ l parameters defines a choice function on A.

Proof. Let P̄ ⊆ A and suppose ϕ(x,X, P̄ ) defines a choice function on an infinite A. Let B ⊆ A

be an indiscernible set with respect to (belonging to) P̄ of size ≥ 2. Then, for every b1, b2 ∈ B,

A |= ϕ(b1, B, P̄ ) iff A |= ϕ(b2, B, P̄ ), a contradiction. The second part is clear.

♥

A chain C that embeds a dense linear order (hence the rational order Q) does not have a

definable choice function. The proof is by applying a Ramsey-like theorem for additive colourings

from [Sh].

Definition 2.2. (a) A colouring of a chain C is a function f from the set of unordered pairs of

distinct elements of C, into a finite set I of colours.

(b) The colouring f is additive if for xi < yi < zi ∈ C (i = 1, 2),

[f(x1, y1) = f(x2, y2), f(y1, z1) = f(y2, z2)] ⇒ f(x1, z1) = f(x2, z2).

In this case a partial operation + is defined on I, such that for x < y < z ∈ C, f(x, z) = f(x, y) =

f(y, z). (Compare with 1.9(1)).

(c) A subchain D ⊆ C is homogeneous (for f) if there is an i0 ∈ I such that for every x < y ∈ D,

f(x, y) = i0.

Theorem 2.3. If f is an additive colouring of a dense chain C, by a finite set I of colours, then

there is an interval of C which has a dense homogeneous subset.

Proof. This is theorem 1.3. in [Sh].

♥

Claim 2.4. Let (C,<) be a linear order that embeds a dense linear order. Then there is no

definable choice function on C.

Proof. Let P̄ ⊆ C and suppose ϕ(x,X, P̄ ) defines a choice function on C. Let n be so that from

Thn(C;x,X, P̄ ) we know if ϕ(x,X, P̄ ) holds and finaly let D ⊆ C be dense (in itself). By 2.3 there is

an A ⊆ D, dense inside an interval of D, hence in itself, homogeneous with respect to the colouring

f(a, b) = Thn(C; P̄ ) ↾[a,b), (Remember the notation 1.9(5)).

Let t∗ be the constant theory Thn(C; P̄ ) ↾[a,b) for every a < b in A. Let Z be the set of integers and

X ⊆ A, X := {xn : n ∈ Z} be of order type Z. Suppose our choice function picks xm from X , i.e.

C |= ϕ(xm, X, P̄ ).
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We assume for simplicity of notations that inf(X) and sup(X) belong to C and denote inf(X) by

0 and sup(X) by 1. So Thn(C; P̄ ) ↾X= Thn(C; P̄ ) ↾(0,1).

Letting t0 be Thn(C; P̄ ) ↾{x:x≤0}, and t1 be Thn(C; P̄ ) ↾{x:x≥1} we get:

Thn(C; P̄ ) = t0 +
∑

k∈Z

Thn(C; P̄ ) ↾[xk,xk+1) +t1 = t0 +
∑

k∈Z

t∗ + t1

Now denote:

t′0 := Thn(C;xm, X, P̄ ) ↾{x:x≤0} ( = Thn(C; ∅, ∅, P̄ ) ↾{x:x≤0} ),

t′1 := Thn(C;xm, X, P̄ ) ↾{x:x≥1} ( = Thn(C; ∅, ∅, P̄ ) ↾{x:x≥1} ),

t′ := Thn(C;xl, X, P̄ ) ↾[xk,xk+1) for k 6= l, ( = Thn(C; ∅, xk, P̄ ) ↾[xk,xk+1) ) and

t(l) := Thn(C;xl, X, P̄ ) ↾[xl,xl+1) ( = Thn(C;xl, xl, P̄ ) ↾[xl,xl+1) ).

Clearly t0 determines t′0, t1 determines t′1, t
′
0 and t′1 do not depend on m and t∗ determines t′ and

t(l). We also have, for every l ∈ Z:

Thn(C;xl, X, P̄ ) = t′0 +
∑

j∈Z,j<l

t′ + t(l) +
∑

j∈Z,j>l

t′ + t1

But, by homogeneity, we get for every k, l ∈ Z:

1) t(k) = t(l),

2) Thn(C;xl, X, P̄ ) ↾(0,xl)=
∑

j∈Z,j<l t
′ =

∑

j∈Z,j<k t
′ = Thn(C;xk, X, P̄ ) ↾(0,xk),

3) Thn(C;xl, X, P̄ ) ↾(xl,1)=
∑

j∈Z,j>l t
′ =

∑

j∈Z,j>k t
′ = Thn(C;xk, X, P̄ ) ↾(xk,1).

It follows that Thn(C;xm, X, P̄ ) = Thn(C;xl, X, P̄ ) for every l ∈ Z, but ϕ “chooses” xm from X ,

(and can be computed from Thn) – a contradiction.

♥

3. Scattered orders

A scattered order is a linear order that does not embed a dense order. We will define Hdeg, the

Hausdorff degree of scattered chains, and show that a scattered chain (C,<C) has a definable well

ordering if Hdeg(C) < ω and that Hdeg(C) ≥ ω ⇒ there is no definable choice function on C.

Definition 3.1. We define by recursion the Hausdorff degree of a scattered chain (C,<C):

Hdeg(C) = 0 iff C is finite

Hdeg(C) = α iff ∧β<αHdeg(C) 6= β and C =
∑

i∈I Ci where I is well ordered or inversely well

ordered and for every i ∈ I, ∨β<αHdeg(Ci) = β.

Hdeg(C) ≥ δ iff (∀α < δ)(Hdeg(C) > α) (δ limit).

Claim 3.2. (1) Let C be a scattered chain with Hdeg(C) = α, C′ the completion of C and

D ⊆ C′. Then C′ and D are scattered and Hdeg(D) ≤ Hdeg(C′) = α.

(2) Let C be a scattered chain. Hdeg(C) is well defined (i.e. it is an ordinal α).

Proof. (1) By induction on α.

(2) By [Ha].

♥

Claim 3.3. Let C be a scattered chain with Hdeg(C) = n. Then there are P̄ ⊆ C, lg(P̄ ) = n− 1,

and a formula (depending on n only) ϕn(x, y, P̄ ) that defines a well ordering of C.
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Proof. By induction on n = Hdeg(C):

n ≤ 1: Hdeg(C) ≤ 1 implies (C,<C) is well ordered or inversely well ordered. A well ordering of

C is easily definable from <C .

Hdeg(C) = n + 1: Suppose C =
∑

i∈I Ci and each Ci is of Hausdorff degree n. By the in-

duction hypothesis there are a formula ϕn(x, y, Z̄) and a sequence 〈P̄ i : i ∈ I〉 with P̄ i ⊆ Ci,

P̄ i = 〈P i
1 , . . . , P

i
n−1〉 such that ϕn(x, y, P̄

i) defines a well ordering of Ci.

Let for 0 < k < n, Pk := ∪i∈IP
i
k (we may assume that the union is disjoint) and Pn := ∪{Ci : i even}.

We will define an equivalence relation ∼ by x ∼ y iff
∧

i(x ∈ Ci ⇔ y ∈ Ci).

∼ and [x], (the equivalence class of an element x), are easily definable from Pn and <C . We can

also decide from Pn if I is well or inversely well ordered (by looking at subsets of C consisted of

nonequivalent elements) and define <′ to be < if I is well ordered and the inverse of < if not.

ϕn+1(x, y, P1, . . . , Pn) will be defined by:

ϕn+1(x, y, P̄ ) ⇔
[

x 6∼ y & x <′ y
]

∨
[

x ∼ y & ϕn(x, y, P1 ∩ [x], . . . , Pn−1 ∩ [x])
]

ϕn+1(x, y, P̄ ) well orders C.

♥

Next we prove that a scattered orders of infinite Hdeg don’t have a definable choice function

(hence a well ordering).

Definition 3.4. We define for every n < ω a model Mn in the language consisted of a binary

relation <n:

a) The universe of Mn, which will be denoted by Mn, is the tree n≥ω.

b) Let, for every η ∈ n≥ω, <η be a linear ordering of suc(η) := {η∧〈k〉 : k < ω} such that if lev(η)

is even then k < l ⇒ η∧〈k〉 <η η
∧〈l〉, and if lev(η) is odd then k < l ⇒ η∧〈l〉 <η η

∧〈k〉.

(So <η orders suc(η) with order type ω if η is in an even level and with order type ω∗ if η is in an

odd level).

c) <n is the lexicographic order induced by the orders <η of immediate successors.

(Mn, <n) is hence a chain. Note, the ‘usual’ partial order ⊳ on n≥ω (being an initial segment), is

not definable in Mn.

Definition 3.5. We define by induction the scattered chains Cn and C∗
n:

C1 := ω, C∗
1 := ω∗,

C2 :=
∑

i∈ω ω
∗, C∗

2 :=
∑

i∈ω∗ ω,

and in general:

Cn :=
∑

i∈ω C
∗
n, C∗

n :=
∑

i∈ω∗ Cn.

Definition 3.6. f :Mn →֒ C is an embedding of Mn in a scatterd chain (C,<C) if f is 1–1 and

σ <n τ ⇒ f(σ) <C f(τ)

Fact 3.7. Let C be a scattered chain with Hdeg(C) ≥ n + 1. Then there is an embedding

f :Mn →֒ C.

Proof. Clearly the following hold:

(α) For a scattered chain C: Hdeg(C) = n⇒ [Cn ⊆ C or C∗
n ⊆ C].

(β) Mn ⊆ Mn+1

(γ) There is an embedding g:Mn →֒ Cn.
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Now assume Hdeg(C) = n + 1 and use (α). In the case Cn+1 ⊆ C we have by (γ) an embedding

g:Mn+1 →֒ C and by (β) an embedding f :Mn →֒ C. In the case C∗
n+1 ⊆ C we have, by the

definition of C∗
n+1, Cn ⊆ C∗

n+1 and by (γ) an embedding f :Mn →֒ C.

♥

Conclusion 3.8. Let C be a scattered chain with Hdeg(C) ≥ ω. Then, for every n < ω there is

an embedding of Mn into C.

♥

Lemma 3.9. If C is scattered and Hdeg(C) ≥ ω then no monadic formula ϕ(x,X, P̄ ) defines a

choice function on C.

Proof. Assume towards a contradiction that there is P̄ ⊆ C, lg(P̄ ) = l and ϕ(x,X, P̄ ) defines a

choice function on C. Let m be so that from Thm(C;x,X, P̄ ) we can decide if C |= ϕ(x,X, P̄ ). As

in the proof of 2.4 it is enough to find an B ⊆ C, of order type Z, homogeneous with respect to the

colouring f(a, b) = Thm(C; P̄ ) ↾[a,b). Let

n > |{Thm(D; Q̄) : D a chain , Q̄ ⊆ D, l(Q̄) = l}| = |Tm,l|

and f :Mn →֒ C be an embedding. Let T ⊆ C be the image of f and we will identify T with n≥ω

and the submodel (T,<C) ⊆ (C,<C) with the model ( n≥ω,<n)

Notation: We will write < instead of <C and it’s restriction <n. Given η < ν ∈ n≥ω = T we will

write Thm[η, ν) instead of Thm(C; P̄ ) ↾[η,ν). T≥η and T>η are the usual subsets of n≥ω = T

We will begin to thin out the tree T = n≥ω, in order to obtain a quite homogeneous subtree A ⊆ T

going down with the levels. Arriving to a node η, we will have defined A≥ν for every ν ∈ suc(η)

and will define A≥η by thinning out suc(η) to a set Bη and taking {η} ∪ {A≤ν : ν ∈ Bη}. A≥η will

satisfy the following:

(∗) [σ < τ ∈ A≥η, lev(σ) = lev(τ)] ⇒ Thm[σ, τ) depends only on lev(σ ∧ τ)

Assume w.l.o.g that n is odd.

Step 1: for every η ∈ n≥ω with lev(η) = n− 1 pick out an infinite set Bη ⊆ ω such that

k < l ∈ Bη ⇒ Thm(C; P̄ ) ↾[η ∧〈k〉,η ∧〈l〉)= tη

(note that k < l < ω ⇒ η ∧〈k〉 < η ∧〈l〉), let kη be the second element of Bη. Let A≥η be

{η} ∪ {η ∧〈k〉 : kη ≤ k ∈ Bη}, this is a subtree of T and (∗) clearly holds.

Step 2: Given ν ∈ n≥ω with lev(ν) = n− 2 we have defined Bσ, kσ and A≥σ for every σ ∈ suc(ν).

Pick out an infinite B0
ν ⊆ ω so that (∗) will hold for lev(σ) = lev(τ) = n− 1, lev(σ ∧ τ) = n− 2 i.e.

k > l ∈ B0
ν ⇒ Thm[ν ∧〈k〉, ν ∧〈l〉) = tν

(suc(ν) are ordered as ω∗). Thin out B0
ν to an infinite B1

ν ⊆ ω so that (∗) will hold for lev(σ) =

lev(τ) = n, lev(σ ∧ τ) = n− 2 i.e.

k > l ∈ B1
ν , σ = ν ∧〈k〉, τ = ν ∧〈l〉 ⇒ Thm[σ ∧〈kσ〉, τ

∧〈kτ 〉) is constant

Why does it suffice to look only at e.g. σ ∧〈kσ〉 ? because by the choice of tσ and Aσ we have

tσ+ tσ = tσ hence for every η < σ ∈ T we can break the paths [η, σ ∧〈kσ〉) and [η, σ ∧〈l〉), for l ∈ Aσ,
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into three parts: first from η to σ then from σ to it’s ‘first’ successor in Aσ, and then to σ ∧〈kσ〉 or

σ ∧〈l〉 (this is why we chose kσ to be the second element of Aσ), but adding the last theory does not

change the sum hence Thm[η, σ ∧〈kσ〉) = Thm[η, σ ∧〈l〉) for every l ∈ Aσ. By a similar argument we

can show that for every l ∈ Aσ we have Thm[σ ∧〈kσ〉, η) = Thm[σ ∧〈l〉, η).

Next, thin out B1
ν to get Bν so that (∗) will hold for lev(σ) = lev(τ) = n, lev(σ ∧ τ) = n− 1 i.e.

k ∈ Bν , σ = ν ∧〈k〉 ⇒ tσ is constant

let kν to be the second element of Bν . Define the subtree A≥ν to be {ν} ∪ {Aν ∧〈k〉 : kν ≤ k ∈ Bν}.

Clearly A≥ν satisfies (∗).

Step n− 1: we have reached 〈e〉, the root of n≥ω. B0
e , B

1
e , . . . , B

(n−1)·(n−2)
e = Be are defined as

before, taking care of (∗) for all the possibilities of the form lev(σ) = lev(τ) = k, lev(σ ∧ τ) = l

(some thinning outs are not necessary as they have been taken care of in previous steps), ke, te and

A≥e = A are defined as well.

Final Step: By our construction, for every η < ν in A, with lev(η) = lev(ν), Thm(C; P̄ ) ↾[η,ν)

depends only on lev(η ∧ ν) and we define tk by:

tk := Thm[η, ν) where η < ν, lev(η) = lev(ν) = n, lev(η ∧ ν) = n− k

By our choice of n we have some k < l ≤ n with tk = tl. Let’s show how to get a suitable

homogeneous subset B of T (C) from this.

Example 1. t1 = t2

Pick η ∈ A with lev(η) = n− 2. The successors of η in A have order type ω∗ and for every successor

of η in A, it’s successors have order type ω. Define:

B1 :=
{

η ∧〈l〉 ∧〈kη ∧〈l〉〉 : l ∈ Aη, l > kη
}

and

B2 :=
{

η ∧〈kη〉
∧〈k〉 : k ∈ Aη ∧〈kη〉

}

and let B = B1 ∪B2.

Clearly B1 has order type ω∗, B2 has order type ω and B has order type Z. Moreover, for every

σ < τ ∈ B1 we have Thm[σ, τ) = t1 (since lev(σ ∧ τ) = n− 1) and for every σ < τ ∈ B with τ ∈ B2

we have Thm[σ, τ) = t2 (since lev(σ ∧ τ) = n− 2). By t1 = t2 we conclude:

∀(σ < τ ∈ B)
[

Thm(C; P̄ ) ↾[σ,τ)= t1
]

.

Finding a homogeneous subset of C of order type Z, we can proceed as in claim 2.2 to get a

contradiction to “ϕ(x,X, P̄ ) defines a choice function on C”.

Example 2. t2 = t3

Pick η ∈ A with lev(η) = n− 3. The successors of η in A have order type ω and for every successor

of η in A, it’s successors have order type ω∗. Let σ := η ∧〈kη〉 (lev(σ) = n − 2), for l > kη ∈ Aη

ηl := η ∧〈l〉 (lev(ηl) = n− 2) and σl := ηl
∧〈kηl

〉 (lev(σl) = n− 1). Define:

B1 :=
{

σl
∧〈kσl

〉 : l ∈ Aη, l > kη
}

(B1 has order type ω∗). To define B2 we let, for l ∈ Aσ, τl := σ ∧〈l〉 (τl are extensions of η and σ

with lev(τl) = n− 1) and then extend each τl to a ρl defined by ρl := τl
∧〈kτl〉. So

B2 :=
{

ρl : l ∈ Aσ

}
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and it has order type ω. B := B1 ∪ B2 has order type Z and we can easily check that for every

ν1 < ν2 ∈ B we have Thm[ν1, ν2) = t3 (as ν1 ∧ ν2 = η so lev(ν1 ∧ ν2) = n − 3) and for every

ν1 < ν2 ∈ B2 we have Thm[ν1, ν2) = t2 (as ν1 ∧ ν2 = σ so lev(ν1 ∧ ν2) = n − 2). By t2 = t3 we

conclude:

∀(σ < τ ∈ B)
[

Thm(C; P̄ ) ↾[σ,τ)= t2
]

.

and we proceed as before.

What we did in both examples can be described as follows: we fixed a node η ∈ A and a successor

σ of η, we extended the other successors of η and the successors of σ in a “canonical” way, (ν is

extended to ν ∧〈kν〉) to nodes of level n. The result is a homogeneous subset of C of order type Z.

General case. l + 1 < r, tl = tr

Let σ, τ ∈ A be such that lev(σ) = lev(τ) = n and lev(σ ∧ τ) = n− r, so Thm[σ, τ) = tr. Then find

ρ ∈ A with σ < ρ < τ , lev(ρ) = n, lev(σ ∧ ρ) = n− (l + 1) and lev(ρ ∧ τ) = n− r. What we get is

the following equation:

tr = Thm[σ, τ) = Thm[σ, ρ) + Thm[ρ, τ) = tl+1 + tr

but tr = tl hence

(∗) tl = tl+1 + tl

Imitate this computation: let σ, τ ∈ A be such that lev(σ) = lev(τ) = n and lev(σ∧ τ) = n− (l+1),

so Thm[σ, τ) = tr and find ρ ∈ A with σ < ρ < τ , lev(ρ) = n, lev(σ ∧ ρ) = n − (l + 1) and

lev(ρ ∧ τ) = n− l. What we get is the following equation:

tl+1 = Thm[σ, τ) = Thm[σ, ρ) + Thm[ρ, τ) = tl+1 + tl

hence

(∗∗) tl+1 = tl+1 + tl

Combining (∗) and (∗∗) we get tl+1 = tl. Now proceed as in example 1 (if l is odd) or as in example

2 (if l is even) by taking “canonical extensions” of successors to get the required homogeneous subset

B of order type Z.

♥

Conclusion 3.10. For every m, l < ω there is an n < ω such that if C is a scattered chain and

Hdeg(C) ≥ n + 1 then C does not have a definable choice function by a formula with quantifier

depth ≤ m and with ≤ l parameters.

Proof. Let n be larger than |Tm,l|. Now if Hdeg(C) ≥ n+1 then we can embed n≥ω into C and

immitate the previous proof.

♥

4. Wild trees

Intuitively, wild trees are trees that have a large amount of splitting (4.2(1)(i)) or have ‘compli-

cated’ branches (4.2(1)(ii)(iii)), the next two definitions state this formally. Wild trees don’t have

a definable choice function (4.6).
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Definition 4.1. Let (T, ⊳) be a tree

(1) If A is an initial segment of T then top(A) is {x ∈ T : (∀t ∈ A)[t ⊳ x]}. (It’s a tree).

(2) Let A be an initial segment of T then the binary relation ∼0
A on T \A is defined by

x ∼0
A y ⇐⇒ (∀t ∈ A)[t ⊳ x ≡ t ⊳ y]

(It’s an equivalence relation that says “x and y ‘break’ A in the same place”).

(3) Let A be an initial segment of T then the binary relation ∼1
A on T \A is defined by

x ∼1
A y ⇐⇒ [x ∼0

A y] & (∃z)[z ⊳ x & z ⊳ y & z ∼0
A x]

(It’s an equivalence relation that divides – for every initial segment B ⊆ A – top(B)/ ∼0
B into

disjoint subtrees).

Definition 4.2. (1) A tree T is called wild if either

(i) sup
{

|top(A)/ ∼1
A | : A ⊆ T an initial segment

}

≥ ℵ0 or

(ii) There is a branch B ⊆ T and an embedding f :Q → B or

(iii) All the branches of T are scattered linear orders but sup
{

Hdeg(B) : B a branch of T
}

≥ ω.

(2) A tree T is tame for (n∗, k∗) if the value in (i) is ≤ n∗, (ii) does not hold and the value in (iii)

is ≤ k∗

(3) A tree T is tame if T is tame for (n∗, k∗) for some n∗, k∗ ≤ ω.

Claim 4.3. If T is a wild tree and (1)(i) of 4.2 holds then no monadic formula ϕ(x,X, P̄ ) defines

a choice function on T .

Proof. We will use the composition theorem for general successors 1.12.

Suppose ϕ(x,X, P̄ ) defines a choice function on T and Thn(T ;x,X, P̄ ) computes ϕ. For an initial

segment A ⊆ T let top(A)/sim1
A = {Ti : i ∈ IA}, by our assumption, for every l < ω there is an

initial segment A ⊆ T such that |IA| > l. Choose a large enough l (see below) and a corresponding

A and for every i ∈ IA pick xi ∈ Ti.

If l is larger than the number of possible theories (= |Tn,l(P̄ )|) then there are i 6= j ∈ IA such

that Thn(Ti;xi, P̄ ) = Thn(Tj ;xj , P̄ ) and let’s assume that we have chosen such an l. Now let

R̄1 = {xi} ∪ {xi, xj} ∪ P̄ and R̄2 = {xj} ∪ {xi, xj} ∪ P̄ . Apply 1.12: clearly

Thm(T≤A; R̄1) = Thm(T≤A; R̄2) = Thm(T≤A; ∅, ∅, P̄ )

and easily

Thm(IA; Q̄
A(n, R̄1) = Thm(IA; Q̄

A(n, R̄2)

but by 1.12 these theories determine Thn(T ;xi, {xi, xj}, P̄ ) and Thn(T ;xj, {xi, xj}, P̄ ) hence

T |= ϕ(xi, {xi, xj}, P̄ ) ⇐⇒ T |= ϕ(xj , {xi, xj}, P̄ )

a contradiction.

♥

Claim 4.4. If T is a wild tree and (1)(ii) of 4.2 holds then no monadic formula ϕ(x,X, P̄ ) defines

a choice function on T .
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Proof. Let B ⊆ T be a branch that embeds Q. We will apply 1.13 and “translate” the choice

function on T to a choice function on B but by 2.4 there is no definable choice function on B.

So assume that ϕ(x,X, P̄ ) defines a choice function on T and is determined by Thn(T ;x,X, P̄ ). By

1.13 there is an m < ω, a chain B′ with (B, ⊳) ⊆ (B′, ⊳) and a sequence of parameters Q̄ ⊆ B′ such

that from Thm(B′; Q̄) we can compute Thn(T ; P̄ ). Define, for η⊳ν ∈ B, f(η, ν) = Thm(B′; Q̄) ↾[η,ν).

f is an additive colouring hence by 2.3 there is X = {ηi}i∈Z, of order type Z, homogeneous with

respect to f . As in the proof of 2.4 we have:

i, j ∈ Z ⇒ Thm(B′; ηi, X, Q̄) = Thm(B′; ηj , X, Q̄)

and (by the ‘moreover’ clause in 1.13) this implies

i, j ∈ Z ⇒ Thn(T ; ηi, X, P̄ ) = Thn(T ; ηj , X, P̄ ).

Hence

i, j ∈ Z ⇒ [T |= ϕ(ηi, X, P̄ ) ⇐⇒ T |= ϕ(ηj , X, P̄ )]

and this contradicts “ϕ chooses an element from X”.

♥

Claim 4.5. If T is a wild tree and (1)(iii) of 4.1 holds then no monadic formula ϕ(x,X, P̄ )

defines a choice function on T .

Proof. Similar to the previous proof.

By (1)(iii) for every m < ω there is a branch B ⊆ T with Hdeg(B) > m. Use 1.13, 3.10 and the

proof of 3.9 to find, for a suitable branch B, a homogeneous subset that contradicts the assumption

that ϕ(x,X, P̄ ) defines a choice function on T .

The details are left to the reader.

♥

We conclude

Theorem 4.6. T is a wild tree ⇒ T does not have a monadically definable choice function.

Moreover, every candidate fails to choose from either linearily ordered subsets (4.4, 4.5) or anti-

chains (4.3).

♥

5. Tame trees

By [GuSh] ω>2 does not have a definable choice function. To know if a tame tree T has a

definable choice function we just have to ask if there is an embedding of f : ω>2 →֒ T . If such an

embedding exists we use [GuSh] to show that T does not have one, if not, T has even a definable

well ordering.

Claim 5.1. Let T be a tree and F : ω>2 →֒ T be a tree embedding. Then no monadic formula

ϕ(x,X, P̄ ) defines a choice function on T .
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Proof. We will use [GuSh] 1.15 and the notations of 1.14. First, we may assume w.l.o.g that T

has a root (adding a root will not effect the existence of a choice function) and that F (root( ω>2)) =

root(T ). Now apply the proof in §5 of [GuSh]. From the proof there we learn that for every Q̄ ⊆ ω>2

and m < ω there is an infinite anti-chain Y ⊆ ω>2 such that for every y ∈ Y there is y∗ 6= y ∈ Y

with Thm(Bush ω>2(Y ); y, Q̄) = Thm(Bush ω>2(Y ); y∗, Y, Q̄). In our context (F ′′( ω>2) = S ⊆ T )

the result has the form:

(∗) for every Q̄ ⊆ S and m < ω there is an infinite anti-chain Y ⊆ S such that for every y ∈ Y

there is y∗ 6= y ∈ Y with Thm(BushS(Y ); y, Q̄) = Thm(BushS(Y ); y∗, Q̄).

Let ϕ(x,X, P̄ ) be a candidate for a definition of a choice function on T and suppose Thn(T ;x,X, P̄ )

decides ϕ. Let m < ω and Q̄ = Q̄(n, P̄ ) be as in 1.15 and Y ⊆ S be the anti-chain from (∗).

Suppose T |= ϕ(y, Y, P̄ ), by (∗) we have y∗ ∈ Y as in there. Now Thm(BushS(Y ); y, Q̄) =

Thm(BushS(Y ); y∗, Q̄) and by 1.15

Thn(T ; y, Y, P̄ ) = Thn(T ; y∗, Y, P̄ )

hence

T |= ϕ(y, Y, P̄ ) ⇐⇒ T |= ϕ(y∗, Y, P̄ )

hence ϕ fails to define a choice function on T .

♥

Definition 5.2. Let T be a tree. For η ∈ T we define by recursion a rank function rk(η) by:

rk(η) ≥ α+ 1 ⇐⇒ there are ν1, ν2 ∈ T with η ⊳ ν1 and η ⊳ ν2 such that ν1, ν2 are incomparable in

T and rk(ν1), rk(ν2) ≥ α

If rk(η) is not defined we stipulate rk(η) = ∞.

Fact 5.3. (1) η ⊳ ν ∈ T ⇒ rk(ν) ≤ rk(η) where ≤ has the obvious meaning.

(2) ω>2 is not embeddable in a tree T ⇐⇒ for every η ∈ T , rk(η) 6= ∞

Lemma 5.4. Let T be a tame tree. If ω>2 is not embeddable in T then there are Q̄ ⊆ T and a

monadic formula ϕ(x, y, Q̄) that defines a well ordering of T .

Proof. Assume T is (n∗, k∗) tame, recall definitions 4.1 and 4.2 and remember that for every

x ∈ T , rk(x) is well defined (i.e. < ∞). We will partition T into a disjoint union of sub-branches,

indexed by the nodes of a well founded tree Γ and reduce the problem of a well ordering of T to a

problem of a well ordering of Γ.

Step 1. Define by induction on α a set Γα ⊆ αOrd (this is a our set of indices), for every η ∈ Γα

define a tree Tη ⊆ T and a branch Aη ⊆ Tη.

α = 0 : Γ0 is {〈〉}, T〈〉 is T and A〈〉 is a branch (i.e. a maximal linearily ordered subset) of T .

α = 1 : Look at (T \ A〈〉)/ ∼1
A〈〉

, it’s a disjoint union of trees and name it 〈T〈i〉 : i < i∗〉, let

Γ1 := {〈i〉 : i < i∗} and for every 〈i〉 ∈ Γ1 let A〈i〉 be a branch of T〈i〉.

α = β+1 : For η ∈ Γβ denote (Tη \Aη)/ ∼1
Aη

by {Tη ∧〈i〉 : i < iη}, let Γα = {η ∧〈i〉 : η ∈ Γβ , i < iη}

and choose Aη ∧〈i〉 to be a branch of Aη ∧〈i〉.

α limit: Let Γα = {η ∈ αOrd : ∧β<αη ↾β∈ Γβ , ∧β<αTη↾β 6= ∅}, let for η ∈ Γα Tη = ∩β<αTη↾β and

Aη a branch of Tη. (Tη may be empty).

Now, at some stage α ≤ |T |+ we have Γα = ∅ and let Γ = ∪β<αΓβ . Clearly {Aη : η ∈ Γ} is a

partition of T into disjoint sub-branches.

Notation: having two trees T and Γ, to avoid confusion, we use x, y, s, t for nodes of T and η, ν, σ

for nodes of Γ.
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Step 2. We want to show that Γω = ∅ hence Γ is a well founded tree. Note that we made no

restrictions on the choice of the Aη’s and we add one now in order to make the above statement

true. Let η ∧〈i〉 ∈ Γ define Aη,i to be the sub-branch {t ∈ Aη : (∀s ∈ Aη ∧〈i〉)[rk(t) ≤ rk(s)]} and

γη,i to be rk(t) for some t ∈ Aη,i. By 5.5(1) and the inexistence of a stricly decreasing sequence of

ordinals, Aη,i 6= ∅ and γη,i is well defined. Note also that s ∈ Aη ∧〈i〉 ⇒ rk(s) ≤ γη,i.

Proviso: For every η ∈ Γ and i < iη the sub-branch Aη ∧〈i〉 contains every s ∈ Tη ∧〈i〉 with rk(s) =

γη,i.

Following this we claim: “Γ does not contain an infinite, stricly increasing sequence”. Otherwise let

{ηi}i<ω be one, and choose sn ∈ Aηn,ηn+1(n) (so sn ∈ Aηn
). Clearly rk(sn) ≥ rk(sn+1) and by the

proviso we get

rk(sn) = rk(sn+1) ⇒ rk(sn+1) > rk(sn+2)

therefore {rk(sn)}n<ω contains an infinite, stricly decreasing sequence of ordinals which is absurd.

Step 3. Next we want to make “x and y belong to the same Aη” definable.

For each η ∈ Γ choose sη ∈ Aη, and let Q ⊆ T be the set of representatives. Let h:T →

{d0, . . . , dn∗−1} be a colouring that satisfies: h ↾A〈〉
= d0 and for every η ∧〈i〉 ∈ Γ, h ↾Aη ∧〈i〉

is

constant and, when j < i and sη ∧〈j〉 ∼
0
Aη

sη ∧〈j〉 we have h ↾Aη ∧〈i〉
6= h ↾Aη ∧〈j〉

. This can be done as

T is (n∗, d∗) tame.

Using the parameters D0, . . . , Dn∗−1 (x ∈ Di iff h(x) = di), we can define ∨ηx, y ∈ Aη by “x, y are

comparable and the sub-branch [x, y] (or [y, x]) has a constant colour”.

Step 4. As every Aη has Hausdorff degree at most k∗, we can define a well ordering of it using

parameters P η
1 , . . . , P

η
k∗ and by taking P̄ to be the (disjoint) union of the P̄ η’s we can define a partial

ordering on T which well orders every Aη.

By our construction η ⊳ ν if and only if there is an element in Aν that ‘breaks’ Aη i.e. is above a

proper initial segment of Aη. (Caution, if T does not have a root this may not be the case for 〈〉

and a < n∗ number of 〈i〉’s and we may need parameters for expressing that). Therefore, as by step

3 “being in the same Aη” is definable, we can define a partial order on the sub-branches Aη (or the

representatives sη) by η ⊳ ν ⇒ Aη ≤ Aν .

Next, note that “ν is an immediate successor of η in Γ” is definable as a relation between sν and

sη hence the set A+
η := Aη ∪ {sη ∧〈i〉} is definable from sη. Now the order on Aη induces an order

on {sη ∧〈i〉/ ∼0
Aη

} which is can be embedded in the complition of Aη hence has Hdeg≤ k∗. Using

additional parameters Qη
1 , . . . , Q

η
k∗ , we have a definable well ordering on {sη ∧〈i〉/ ∼0

Aη
}. As for the

ordering on each ∼1
Aη

equivalence class (finite with ≤ n∗ elements), define it by their colours (i.e.

the element with the smaller colour is the smaller according to the order).

Using D̄, P̄ , Q and Q̄ = ∪ηQ̄
η we can define a partial ordering which well orders each A+

η in such a

way that every x ∈ Aη is smaller then every sη ∧〈i〉.

Summing up we can define (using the above parameters) a partial order on subsets of T that well

orders each Aη, orders sub-branches Aη, Aν when the indices are comparable in Γ and well orders

all the “immediate successors” sub-branches of a sub-branch Aη.

Step 5. The well ordering of T will be defined by x < y ⇐⇒

a) x and y belong to the same Aη and x < y by the well order on Aη; or

b) x ∈ Aη, y ∈ Aν and η ⊳ ν; or

c) x ∈ Aη, y ∈ Aν , σ = η ∧ ν in Γ (defined as a relation between sub-branches), σ ∧〈i〉 ⊳ η, σ ∧〈j〉 ⊳ ν

and sσ ∧〈i〉 < sσ ∧〈j〉 in the order of A+
σ .
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Note, that < is a linear order on T and every Aη is a convex and well ordered sub-chain. Moreover

< is a linear order on Γ and the order on the sη’s is isomorphic to a lexicographic order on Γ.

Why is the above (which is clearly definable with our parameters) a well order? Because of the

above note and because a lexicographic ordering of a well founded tree is a well order, provided

that immediate successors are well ordered. In detail, assume X = {xi}i<ω is a stricly decreasing

sequence of elements of T . Let ηi be the unique node in Γ such that xi ∈ Aηi
and by the above note

w.l.o.g i 6= j ⇒ ηi 6= ηj . By the well foundedness of Γ and clause (b) we may also assume w.l.o.g

that the ηi’s form an anti-chain in Γ. Look at νi := η1 ∧ ηi which is constant for infinitely many i’s

and w.l.o.g equals to ν for every i. Ask:

(∗) is there is an infinite B ⊆ ω such that i, j ∈ B ⇒ xi ∼0
Aν

xj ?

If this occurs we have ν1 6= ν with ν ⊳ ν1 such that for some infinite B′ ⊆ B ⊆ ω we have i ∈

B′ ⇒ ν1 ⊳ ηi. (use the fact that ∼1
Aν

is finite). W.l.o.g B′ = ω and we may ask if (∗) holds for

ν1. Eventually, since Γ does not have an infinite branch, we will have a negative answer to (∗). We

can conclude that w.l.o.g there is ν ∈ Γ such that i 6= j ⇒ xi 6∼0
Aν

xj i.e. the xi’s “break” Aν in

“different places”.

Define now νi to be the unique immediate successor of ν such that νi⊳ηi. The set S = {sνi}i<ω ⊆ A+
ν

is well ordered by the well ordering on A+
ν and by clause (c) in the definition of <, xi > xj ⇐⇒

νi > νj so S is an infinite stricly decreasing subset of A+
ν – a contradiction.

This finishes the proof that there is a definable well order of T .

♥

Finally we can conclude:

Theorem 5.5. Let T be a tree. If T is wild or T embeds ω>2 then there is no definable choice

function on T (by a monadic formula with parameters). If T is tame and does not embed ω>2 then

there even a definable well ordering of the elements of T by a monadic formula (with parameters)

ϕ(x, y, P̄ ).

♥

As mentioned in the introduction, a tree is tame [wild] [embeds ω>2] if and only if it’s completion is

tame [wild] [embeds ω>2]. Moreover looking at the proofs of 4.3, 4.4, 4.5 and 5.1 we note that the

counter-examples for the choice function problem are either anti-chains or linearily ordered subsets

of T . We conclude:

Conclusion 5.6. Let T be a tree and T ′ be it’s completion. Then the following are equivalent:

a) For some n, l < ω, for every anti-chain/branch A of T there is a monadic formula ϕA(x,X, P̄A)

with quantifier depth ≤ n and ≤ l parameters from T , that defines a choice function from non empty

subsets of A.

b) There is a monadic formula, with parameters, ψ(x, y, P̄ ) that defines a well ordering of the

elements of T .

c) There is a monadic formula, with parameters, ψ′(x, y, P̄ ′) that defines a well ordering of the

elements of T ′.

♥
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