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Abstract

Storage operators have been introduced by J.L. Krivine in [5] ; they are closed I-terms
which, for a data type, alow to ssimulate a "call by value" while using the "call by
name" strategy. In this paper, we introduce the directed 1-calculus and show that it has
the usual properties of the ordinary 1-calculus. With this calculus we get an equivalent -
and smple - definition of the storage operators that alows to show some of their
properties :

- the stability of the set of storage operators under the b-equivalence (theorem 5.1.1) ;

- the undecidability ( and its semi-decidability ) of the problem "is a closed I-term t a
storage operator for afinite set of closed normal 1-terms ?" (theorems 5.2.2 and 5.2.3) ;
- the existence of storage operators for every finite set of closed normal 1-terms
(theorem 5.4.3) ;

- the computation time of the "storage operation” (theorem 5.5.2).

Résumé

L es opérateurs de mise en mémoire ont été introduits par J.L. Krivine dans[5] ; il sagit
de I-termes clos qui, pour un type de données, permettent de ssmuler "I'appel par nom"
dans le cadre de "I'appel par valeur". Dans cet article, nous introduisons le 1-calcul
dirigé et nous démontrons qu'il garde les propriétés usuelles du 1-calcul ordinaire. Avec
ce calcul nous obtenons une définition équivalente - et simple - pour les opérateurs de
mise en mémoire qui permet de prouver plusieurs de leurs propriétés :

- la stabilité de I'ensemble des opérateurs de mise en mémoire par la b-éguivalence
(théoreme 5.1.1) ;

- l'indécidabilité (et sa semi-décidabilité ) du probleme "un terme clos t est il un
opérateur de mise en mémoire pour un ensemble fini de termes normaux clos ? "
(théoremes 5.2.2 et 5.2.3) ;

- I'existence d'opérateurs de mise en mémoire pour chaque ensemble fini de termes
normaux clos (théoréme 5.4.3) ;

- une inégalité controlant le temps calcul d'un opérateur de mise en mémoire (théoreme



5.5.2).
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8 0. Introduction

operators

operators

0.1 Lambda-calculus as such is not a computational model. A reduction strategy is
needed. In this paper, we consider 1-calculus with the left reduction (iteration of the
head reduction denoted by ¥'). This strategy has some advantages : it always terminates
when applied to a normalizable 1-term, and it seems more economic since we compute a
I-term only when we need it. But the major drawback of this strategy is that a function
must compute its argument every time it uses it. This is the reason why this strategy is
not really used. We would like a solution to this problem.

Let F be al-term, D a set of closed normal 1-terms, and taD. During the computation,
by left reduction, of (F)ht (where ht:t), ht may be computed several times (as many



times as F uses it). We would like to transform (F)ht to (F)t. We also want that this
transformation depends only on ht (and not F). In other words we look for some closed
I-term T which satisfies the following propreties :

- For every F, and for every taD, (T)htFY.(F)t ;

- The computation time of (T)htF depends only on h.

Definition (temporary) :
A closed I-term T is called a storage operator for D if and only if for every taD, and
for every he:pt, (T)hef Y (F)t (Where f isanew variable).

It is clear that a storage operator satisfies the required properties. Indeed,
- Since we have (T)hf Y (f)t, then the variable f never comes in head position during the

reduction, we cmay then replace f by any 1-term.

- The computation time (T)htF depends only on ht.

K. Nour has shown (see [9]) that it is not always possible to get a normal form (it is the
case for the set of Church integers). We then change the definition.

Definition (temporary) :
A closed I-term T is called storage operator for D if and only if for every taD, thereis
aclosed I-term ti:pt, such that for every he:pt, (T)hef Y (F)tt (Where f isanew variable).

J.L. Krivine has shown that, by using Godel translation from classical to intuitionitic

logic, we can find, for every data type, a very simple type for the storage operators. But
the 1-term t; obtained may contain variables substituted by 1-terms depending on ht.

Since the I-term t; is by-equivalent to a closed 1-term, the left reduction of tui/x1,
...,un/Xp] is equivaent to the left reduction of t;, the 1-terms ug,...,un Will therefore

never be evaluated during the reduction. We then modify again the definition.

Definition (final) :

A closed I-term T is called a storage operator for D if and only if for every taD, there
is a I-term t:pyt, such that for every hgpt, there is a substitution s, such that
(Mhf Y. (Hs(tt) (wheref isanew variable).

In the case where tt=t, we say that T is a strong storage operator, and in the case
where t; is closed, we say that T is a proper storage operator. These special operators

are studied in[9] and [12].

The previous definition is not well adapted to study these operators. Indeed, it is, a



priori, a Pstatement (VtEt; Vht Es A(T t,tt,ht,s)). We will show that it is in fact
equivalent to Pstatement (t; can be computed from t, and s from hy).

We now describe the intuitive meaning of the directed lambda calculus.

0.2  Consider the particular case of the set N of Church integers.

A closed I-term T is a storage operator for N if and only if for every n=0, there is al-
term tn:pyN, such that for every hn:pn, thereis asubstitution s, such that (T)hnf Y. (f)s(tn).

Let's analyse the head reduction (T)hnfY(f)s(tn), by replacing each 1-term which comes
from hp by anew variable.

If hn:ph, then haYlgIX(O)tn-1, th-kY (Q)tn-k-1 1=k=nd, toY'x, and ty:,(g)kx Osk<n.
Let Un be a new variable (Un represents hp). (T)Unf is solvable, and its head normal

form does not begin by 1, therefore it is a variable applied to some arguments. The free
variables of (T)Un f are Uy and f, we then have two possibilities for its head normal form

(f)d (in this case we stop) or (Un)az...am.

Assume we obtain (Up)az...am. The variable Un represents hp, and hpY1gix(g)tp-1,
therefore (hp)az...am and ((ap)tp-1[a1/9,a82/x])ag. ..am have the same head normal form.
The I-term tph-1[a1/9,80/x] comes from hp. Let Un-1,a1.52 be a new variable (Un-1,a1,a2
represents tp-1[a1/g,a2/x]). The 1-term ((a1)Un-1,a1,a2)@3--.@m 1S solvable, and its head
normal form does not begin by 1, therefore it is a variable applied to some arguments.
The free variables of ((a1)Un-1,a1.a2)@3...8m are among Un-1,a1,.a2, Un, and f, we then

have three possibilities for its head normal form :
(f)d (in this case we stop) or (Un)bs...br or (Un-1,a1.a2)b1...br.

Assume we obtain (Un-1,a1,a2)01...br. The variable Un-1,a1,52 represents tp-1[ai/g,a0/X],
and th-1).(Q)tn-2, therefore (th-1[a1/g,ap/X])b1...by and ((ag)tn-2[a1/9,80/x])b1...by have
the same head normal form. The I-term th-1[a1/g,ap/x] comes from hp. Let Up-2,a1,22 be
anew variable (Un-2,a1,a2 represents tn-o[a1/g,a0/x]). The I-term ((a1)Un-2,a1.a2)b1...br IS
solvable, and its head normal form does not begin by 1, therefore it is avariable applied
to arguments. The free variables of ((a1)Un-2,a1.a2)D1...br are among Un-2,a1,a2, Un-
1.a1.a2, Un, and f, therefore we have four possibilities for its head normal form :

(f)d (in this case we stop) or (Up)C1...CsOr (Un-1,a1.a2)C1.--CsOF (Un-2,a1,a2)C1.--.Cs
...andsoon...

Assume we obtain (Up,di.d2)el..-e during the construction. The variable Ug.d1.d2



represents to[d1/g,d2/x], and tp) X, therefore (to[d1/g,do/x])es1...ex and (dp)e;...ex have
the same head normal form ; we then follow the construction with the 1-term (dp)e;...
ex.

The I-term (T)hnf is solvable, and has (f)s(t) as head normal form, so this construction
dways stops on (f)d. We will prove later by a simple argument that d:pyn.

According to the previous construction, the reduction (T)hnfY (f)s(tn) can be divided
into two parts :

- A reduction that does not dependonn:

(MUunfY(Un)ag...am,

((&1)Un-1,a1,a2)@3- - -8m X.(Un-1.a1.a2)b1.- - - br,

((a1)Un-2.a1.22)b1...brY.(Un-2.a1.22)01. . br,

- A reduction that depends on n (and not on hy) :
the reduction from (Up)az...am to ((&1)Un-1.a1.a2)@3- - - @m,
the reduction from (Un-1,a1,a2)b1...byr to ((21)Un-2,a1,a2)C1. - . Cs,

the reduction from (Up,d1.d2)€1...€k to (do)er... e,

If we allow some new reduction rules to get the later reductions, (something as :
(Un)azapy’ (a1)Un-1,a1,a2 ; Ui+1,a1,82 (1) Ui.ar.a2 (for i>0) ; Uo,a1,a2).a2)

we obtain an equivalent -and easily expressed - definition for the storage operators for
N:

A closed I-term T is a storage operator for N if and only if for every n=0, ((T)UnfY(f)dn,
and dn:pyN.

0.3 The directed I-calculus is an extension of the ordinary I-calculus built for
tracing anormal 1-term t during some head reduction. Assume u is some, non normal, 1-
term having t as a subterm. We wish to trace the places where we really have to know
what t is, during the reduction of u. Assume we have for every normal 1-term t with free

We will prove later the following result (theorem 4-1) :
A closed I-term T is a storage operator for a set of closed normal 1-terms D if and only



if for every taD, (T)WfX.(f)dt, and di:pyt.

04 By interpreting the variable Ut g .. a (that will be denoted by [t]<ai/x1,...,an/
Xp> and called a box) by t[ai/X1,...,an/Xn] (the 1-term t with an explicit substitution ),
the new reduction rules are those that allow to really do the substitution. This kind of 1-
calculus (1-calculus with explicit substitution) has been studied by P.L.Curien (see [1]
and [4]) ; his Is-calculus contains terms and substitutions and is intended to better
control the substitution process created by b-reduction, and then the implementation of

the 1-calculus. The main difference between the Is-calculus and the directed 1-calculusis

- Thefirst one produces an explicit substitution after each b-reduction ;

- The second only " executes " the substitutions given in advance.

We can therefore consider the directed 1-calculus as a restriction (the interdiction of
producing explicit substitutions) of 1s-calculus ; a well adapted way to the study of the
head reduction.

0.5 This paper studies some properties of storage operators. It is organized as
follows:

. The section 1 is devoted to preliminaries.

. In section 2, we define the storage operators, and we give the general form of their
head normal forms.

. In section 3, we introduce the directed 1-calculus, and we prove that it has the main
properties of the ordinary 1-calculus : the Church-Rosser theorem, the normalisation
theorem, the resolution theorem. We focus on the head reduction, and we will prove
that the reduction with the boxes represents correctly the reduction of terms where
boxes are replaced by b-equivalent I-terms.

. In section 4, we present an equivalent definition for the storage operators.

. In section 5, we give some properties of storage operators :

- If T isastorage operator for a set of closed normal I-terms, and if T:,T', then T' dsois
a storage operator for this set.

- The problem " Let t be a closed I-term. Is it a storage operator for a set of closed
normal 1-terms ?* is undecidable. It is semi-decidable in case of afinite set.

- Each finite set of closed normal I-terms has a storage operators.
- the number of b-reductions to go from (T)htf to (f)s(ty) is linear in the number of

reductions to normalize hy.

Note : The presentation made below hides some technical uninteresting difficulties.
Since we work with name for the variables, and modulo a-equivalence, there is a



problem to define precisely the notion of subterms.
- We suppose, for example, that the I-terms (X)X, (y)y, (2)z,... are subterms of the 1-
term Ix(x)x.
- A l-term may have equal subterms ; we assume that we can distinguish these
subterms.
These problems could be solved by indexing subterms with the paths from the root of
the I-term and using de Bruijn notation. We will do not do that here.

Acknowledgements. We thank J.L. Krivine, S. Ronchi, and H. Barendregt for helpful
discussions.

§ 1. Basic notions of purel-calculus
1.1. Notations

They are standard (see[2] and [6]).

- We shall denote by L the set of terms of purel-calculus, also called I-terms.

- Let t,u,ug,..., unaL, the application of t to u is denoted by (t)u or simply tu. In the
same way we write (t)us...un or tus...uninstead of (...((t)uy)...)un.

- Theb (resp. y, resp. by) -reduction is denoted by t5,u (resp. t5yu, resp. tspyu).

- One step of b (resp. y) -reduction is denoted by t5pou (resp. t5you).

- Theb (resp. y, resp. by) -equivalence is denoted by t:pu (resp. t:yu, resp. tzpyu).

- The set of free variables of al-termt is denoted by Fv(t).

- The notation t[a1/X1,...,an/Xn] represents the result of the simultaneous substitution of
I-terms a,...,an to the free variables Xi,...,xp of t (after a suitable renaming of the
bounded variables of t).

The notation s(t) represents the result of the simultaneous substitution s to the free
variables of t.

- Thelenght of al-term t (number of symbols used to write t) is denoted by Ig(t).

- We denote by ST (t), the set of subterms of t.

- If t isb-normalizable, we denote by tP its b-normal form.

- If t isby-normalizable, we denote by tbY its by-normal form.

- The notation t}.Yot' (resp. tY;X:t') means that t' is obtained from t by one step of left
reduction (resp. by some left reductions).

Theorem 1.1.1 (normalization theorem). u is normalizable if and only if u is left
normalizable.



Proof. See[2] and [6].

- If t is a normalizable 1-term, then tY Y'tb. We denote by Tps(t), the number of steps
used to go fromt to tb.

- The notation t},ot' (resp. tY:t") means that t' is obtained from t by one step of head
reduction (resp. by some head reductions).

- A l-term t is said solvable if and only if for every 1-term u, there are variables x1,
..., Xk, and al-terms uy,...,Ux,V1,...,v| K,|=0, such that (tfu/xq,...,Uk/Xk])V1...V| ;pu.

Theorem 1.1.2 (resolution theorem). The following conditions are equivalent :
1) tissolvable;

2) the head reduction of t terminates;;

3) tis b-equivalent to a head normal form.

Proof. See[6]. ®

- If tis a solvable I-term, then there is a term t' in head normal form, such that t3't.
We denote by tps(t), the number of step used to go fromttot'
- For each I-term, we associate a set of 1-terms denoted by STE(t), and called the set of
essential subterms of t, by induction :

- If tisunsolvable, then STE(t)={ U}where U isanew symbol ;

- If tissolvable, and ly;...lym(y)ts...tr isits head normal form, then STE(t)={t}".
Theorem 1.1.3. If tisa normalizable I-term, then Tps(t)=tps(u).
Proof. Trivial. m

1.2. Properties of head reduction

Definitions.

- We define an equivalencerelation : on L by : u:v if and only if thereisat, such that
uY't, and v)'t. In particular, if t is solvable, then u:t if and only if u is solvable, and has
the same head normal form of t. If u isin head norma form, then t:u means u is the
head normal form of t.

- If tY't', we denote by n(t,t"), the number of stepsto gofromttot.

Theorem 1.2.1. If tY't', then for every uy,...,UrAL :
1) Thereis VAL, such that (t)uy...urYv, (t)uz...uY v, and n((t)uz...ur,v)= n((t)uz...ur,v)

10



+n(t,t).
2) tfua/Xa,..,ur/Xe] Y [ua/Xa,. ., Ur/Xr], @and n(t[ui/Xq,...Ur/Xe] ' ua/Xa, .. .U/ ] )= n(t,t').

Proof. See[7]. ®

Remarks.
- 1) shows that to make the head reduction of (t)uy...up, it is equivalent (same result,

and same number of steps) to make some steps in the head reduction of t, and then
make the head reduction of (t')uy...un.

- 2) shows that to make the head reduction of t[ui/xa,...,un/Xp], it is equivalent (same

result, and same number of steps) to make some steps in the head reduction of t, and
then make the head reduction of t'[u1/X1,...,Un/Xn].

Thiswill be used everywhere without mention in the following.

Corollary 1.2.2. Let t,us,...,Un,V1,....VaAL. If (t{{u1/Xq,....Un/Xn])V1...Vm iS sOlvable, then
tissolvable.

Proof. Easy. B

Corollary 1.2.3. If t:t', then for every uy,...,uAL :
1) (Yug...up:(t)ug...ur.
2) tfua/Xa,..,U/x] it [u1/Xa,.. . Ur/X].

Proof. See[7]. ®

Corollary 1.2.4. Let t:pu, and u does not contain the variables xg,....Xn, then the left
reduction of t[ui/Xs,....un/Xn] is equivalent to the left reduction of t. This reduction is
independent of the I-terms uy, ...,uy which will never be evaluated.

Proof. See[7]. m

§ 2. Storage operators
2.1 Definition of storage operators

Definitions.
- A l-termtissaid essential if and only if it isb-equivalent to ab-normal closed 1-term.

11



- Let T be aclosed I-term, and t an essential 1-term. We say that T is a stor age oper ator
(shortened to o.m.m. for opérateur de mise en mémoire) for t if and only if there is
te:hyt, such that for every hept, (T)heXlf(f)te[ha/X1,...,hn/Xn], where Fu(t)={X1,....Xn,f},
and hy,...,hy arel-terms which depend on h.
- Let T beaclosed I-term, D a set of essential 1-terms. We say that T isan o.m.m for D
if and only if itisan o.m.m. for every tinD.

LemmaZ2.1.1. Tisanomm. for t if and only if there is a I-term t:p,t, such that for
every hept, (Thd:(Dt[h1/Xq,....hn/Xn], where Fv(t)={x1,...Xnf}, and hy,....hy are I-
terms which depend on h.

Pr oof.

1 Clear.
0 By corollary 1.2.2, (T)htissolvable. Let T' be its head normal form.

- If T'=Ifw, then w is the head normal form of (T)hyf, therefore w=(f)t{[h1/x1,...,hn/Xn],
therefore (T)he) If(F)te[h1/X1,...,hn/Xn].

- If T'=(v)T1... Ty ; we can choose ht, such that fFv(ht), v#f, therefore the head normal
form of (T)hf is(V)Tq... Tf=(F)te[h1/X1,...,hn/Xn]. A contradiction. ®

Remark. Let F be any I-term, and ht a I-term b-equivalent to taD. During the
computation of (F)ht, ht may be computed many times (for example, each time it comes
in head position). Insead of computing (F)ht, let us look at the head reduction of (T)htF.
Since it is (T)htf[F/f], by theorem 1.2.1, we shall first reduce (T)hf to its head normal
form, which is (f)tg[h1/X1,...,hn/Xn], and then compute (F)t{ c1/X1,...,cn/Xn, F/f] where
ci=hj[F/f]. By corollary 1.2.4, the computation has been decomposed into two parts, the
first being independent of F. Thisfirst part is essentially a computation of ht, the result
being t;, which is a kind of norma form of ht, because it only depends on the b-
equivalent class of ht : the substitutions made in t; have no computational importance,
sincet is essential. So, in the computation of (T)htF, ht is computed first, and the result
isgiven to F as an argument, T has stored the result, before giving it, as many times as
needed, to any function.

2.2 General forms of head normal form of a storage
oper ator

Proposition 2.2.1. If T isan o.m.m. for t, then T is solvable, and its head normal form
T has one of the following form : T'=In(n)T1... T, r=1, T=Inlf(n)T1... T, r=1, or

12



T'=Inlf(f)T1 where T1:p,t.

Corollary 2.2.3. If t is unsolvable, and T is an o.m.m. for t, then TYInlf(f)T1, and
T]_.'byt.

Proof. If TYIn(n)T1...Ty r=1 or TYInlf(n)T1...Ty r=1, then (T)t is unsolvable.
Therefore, by proposition 2.2.1, Ty Inlf(f)T1, and T1:, t. ®

Proof of proposition 2.2.1. If T isan o.m.m. for t, then there is al-term t:y,t, such that
for every he:pt, (T)he 1 (f)t[ur/ya,...,un/ynl, with Fv(t)={y1,...,yn,f}, and uy,...,uyarel-
terms wich depend on ht. Therefore, by corollary 1.2.2, T is solvable. Let T' its head
normal form. Since T isclosed, T' asoisclosed, and T'=IX1...IXm(Xi) T1... Ty r=1.
By theorem 1.2.1, (T)h¢Y If (F)ti[u1/y1,...,un/yn], thereforem =1 or 2.
- If m=1, then T'=In(n)T;... Ty r=1.
-1f m=2:
- If i=1, then T'=Inlf(n)T1... T, r=1.
- If i=2, then T'=Inlf(f)T1...T, r=1 Therefore If(f)T1[ht/n]... T\[ht/n]= ()t [urly1,
...,un/yn], therefore r=1, and T1[hi/n]=t{u1/y1,...,Un/Yn].
It remains to show that T1:pyt.

Lemma 2.2.4. Let X,y be two variables of the I-calculus.
1) If t{ (X)y/Z] 50U, then u=V[ (X)y/Z], and t5,qV.
2) If tisa closed I-term, and t[ (X)y/Z] 5pt, then t5,t.

Proof.

1) By induction on t.

- If tisavariable, it isimpossible.

- If t=Irw, then u=Ira, and w[(X)y/z]5y0a. By induction hypothesis, we have a=b[(x)y/Z],
and w5y,gb. Therefore if we take v=Irb, we get u=v[(x)y/z], and t5ygv.

- If t=(@)b, and u=(c)b where g (x)y/z]5y0c. By induction hypothesis, we have c=d[(x)y/
z], and a5,0d. Therefore if we take v=(d)b, we get u=v[(x)y/z], and t5,gv.

- If t=(@)b, and u=(a)c where b[(x)y/z]5y0cC. By induction hypothesis, we have c=d[(x)y/
z], and b5,0d. Therefore if we take v=(a)d, we get u=v[(x)y/z], and t5,gV.

- If t=(Ira)b, and u=a[(X)y/zZ][b[(X)y/z]/r]=a[b/r][(X)y/Z], then, if we take v=g[b/r], we
get u=v[(x)y/z], and t5yoVv.

2) By induction on the number of bp-reductions. We use 1) to prove t=u[(X)y/z], and
t5pu. Sincet is closed, then t=u and t5,t. ®

13



By lemma 2.2.4, we may assume that t; does not contain a (yj)y;j 1=i,j=nas subterm.

Lemma 2.2.5. Let d,t ty,...tnh be I-terms, and s1,...,sp substitutions, such that :
Fv(d)={X1,...Xn} "{a1,...ar}, FV()={y1,...ym}"{b1,....bk}, and for all 1<ij=m(y;)y; is
not a subterm of ¢. If for all 1<i<nand for every hj:tj, there are hy,..., hi-1,hj+1,
...hp,U1,...,Um, such that d[s1(h1)/X1,....sn(hn)/Xn] =t{U1/Y1,....Um/Yml , then there are wy,
..Wm, such that d=t[wi/y1,...,.Wm/Yn -

Proof. By induction ond and t.
It is clear that we may assume that any variable Xi,...,Xn (resp. y1,...,.ym) appears at
most onceind (resp. t).
- If d=aq, then ag=t[u1/y1,...,Um/ym], therefore t=y1, and uy=aq or t=b=ay.
- If d=x1, then s1(h1)=t[u1/y1,...,.Un/Ym].
- If t=by, then s1(h1) isavariable, that isimpossible if we take h1=(Ixt1)x.
- If t=y1, then d=t[Xx1/y1].
- If t=Ixt', then s1(h1) begins by I, that isimpossible if we take h1=(Ixt1)x.
- If t=(u)v :
- If t=(...(((Ixa)b)vy)...)vr, then s1(hy) begins with r+1 (, that is impossible if we
take h1=(...(((Ix11X2...IXn+2t1)X1)X2)... )Vh+2.
- If t=(...((b1)Vv1)...)vr, then that isimpossible if we take hy=(Ixt1)X.
- 1f t=(...((y2)v1)...)vr and r=2, then s1(h1) begins by at least r (, that isimpossible
If we take hy=(Ixt1)x. Therefore r=1 and t=(y1)v1.
The l-term v can not begin by 1. (it suffices to take h1=(Ixt1)(Ixx)x)
The l-term v can not begin by (. (it suffiesto take h1=(Ixt1)Ixx)
Therefore vy isavariable.
If vi=by, then that isimpossible if we take hp=(Ixt1)(IxXx)X.
If vi=y2, then that isimpossible because in this case we have t=(y1)y2.
- If d=Ixu, then :
- If t=by, then Ig(d)=1, that isimpossible.
- If t=y1, then d=t[Ixuly1].
- If t=Ixt', then u[s1(h1)/Xq,...,sn(hn)/Xn]=t'[U1/y1,...,Uumlym], and we use the
induction hypothesis
- If t=(u)v, then d begins by (, that isimpossible.
- If d=(u)v, then :
- If t=by, then Ig(d)=1, that isimpossible.
- If t=y1, then d=t[(u)v/y1].
- If t=Ixt', then d begins by 1, that isimpossible.

14



- If t=(a)b, then u[s1(h1)/X1,...,sn(hn)/Xn]=a[u1/y1,...,.UmYm], and
V[s1(h1)/X1,...,sn(hn)/Xn]=b[u1/y1,...,Um/ym], and we use the induction hypothesis. B

By lemma 2.2.5, there are wi,...,wm, such that Ti=t{wai/X1,....Wn/Xn], we have
T1:pyt. ® (of proposition 2.2.1)

2.3 Examples of storage operators

2.3.1 Theprojections

For al O<i=n, let P=Ix1..IxnX; (the ith projection among n). Let P, be the set of
projections.

Define T=In(n) If(f)PIf(f)P... If(f)P, and T=Inlf(n) (f)PP... (f)P.

Tand Tare two o.m.m. for Pp.

Let h:,Pl<i=nthen h} P.

Behaviour of T:

Thf:(h) If(f)PIf(F)P... 1f (f)Pf:(P) Lf(F)PIf(F)P... 1f () Pf: (1f (f) P)f:
(fP.

It is easy to check that tps(Thf)=Tps(h)+n+2. ®

Behaviour of T:
Thf:(h) (f)PP... (F)Pf:(P) (f)PP... (f)Pf:(f)P.
It is easy to check that tps(Thf)=Tps(h)+n+2. ®

2.3.2TheChurch integers

For n=0, we define the Church integer n=IfIx(f)"x. Let N be the set of Church integers.
Let s=Inlflx(f)((n)f)x. It is easy to check that s is a I-term for the successor. Define
T=In(n)Gd where G=Ixly(x)lz(y)(s)z, and d=If(f)0 ;

T=Inlf(n)F f 0 where F=Ixly(x)(s)y.

Tand Tare o.m.m. for N.

Let hn:n, then hpY1gIX(9)th-1, th-k>.(Q)tn-k-1 1=k=nl, tg) X.

Behaviour of T:
(T)hnf:(hn)Gdf:(G)tn-1[G/g,d/X]f:(th-1[ G/g,d/x])1z(f)(s)z.
We define a sequence of 1-terms (tj) 1<i<n:
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t1=1z(f)(g)z, and for al 1<k=nl let tx+1=12(tk)(S)z.

We prove (by induction on k) that for all 1<k<=nwe have (T)hnf:(th-k[ G/g,d/X])tk.
For k=1 itistrue.

Assume that istrue for k, and prove it for k+1.
(Dhnf:(tn-k[G/9,d/X])tk:(C)tn-k-1[G/9,d/X] tk:tn-k-1[G/9,d/X])1 (1K) (8) 2=
(tn-k-1[G/g,d/X])tk+1.

Therefore, in particular, for k=n we have (T)hnf:(to[ G/g,d/X])tn=(d)tn:(tn)0.

We prove (by induction on k) that for all 1<k=nwe have ty:1z(f)(s)kz.

For k=1 itistrue.

Assume that istrue for k, and prove it for k+1.

tk+1=12(tk) (9)Z:1z(12(F) (9)K2) (8) :1z(F) (8)k H1z.

Therefore, in particular, for k=n we have ty:1z(f)(s)"z and (T)hnf:(1z(f)(s)"2)0: (f)(s)"0.
It is easy to check that tps((T)hnf)=Tps(hp)+3n+4. &

Behaviour of T:

(Mhnf:(hn)FFO:(F)tn-1[F/9,f/X]0:(tn-1[F/g,f/X])(5)0.

We prove (by induction on k) that for all 1<k<nwe have
(Thnf:(tn-k[F/9,f/x])(9)K0.

For k=1itistrue.

Assume that istrue for k, and prove it for k+1.

(T)hnf:(tn-k[F/g,f/X])(9)K0: (F)tnk-1[F/g,f/x] (8)0:tn-k-1[F/g,f/x]) (8)<+10.
Therefore, in particular, for k=n we have (T)hnf:(to[F/g,f/x])(s)"0=(f)(5)"0.
It is easy to check that tps((T)hnf)=Tps(hp)+2n+4. &

2.3.3 Therecursiveintegers

For n=0, we define the recursive integer by :=Iflxx and =IfIx(f). Let be the set of
recursive integers. Let =Inlflx(f)n. It is easy to check that is al-term for the successor.
Define  T=(Y)H where Y=(IxIf(f)(x)xf)IxIf(F)(x)xf,  H=Ixly((y)1z(G)(x)z)d,
G=Ixly(x)1z(y)()z, and d=If(f) ;

T=In(n)rtr where t=1dlf(f) , and r=lylz(G)(y)ztz.

Tand Tare o.m.m. for .

Let hp:y, then :

if n=0, hnY.Iglxx, and if n=0, hnY 1gIx(g)hn-1 where hp-1:y,.

Behaviour of T:
We prove (by induction on n) that ((Y)H)hn:1f(f)(O".
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If n=0, then ((Y)H)ho:((H)(Y)H)ho:((hg)1z(G)((Y)H)z)d:d=If(f) .

If n=0, then ((Y)H)hn:((H)(Y)H)hn:((hn)1z(G)((Y)H)2)d:
(1Z(G)((Y)H)Dhn-1[12(G)((Y)H)Z/9,d/x]:(G)((Y)H)hn-1[12(GC)((Y )H)Z/g,d/x]:
(((Y)H)hn-1[12(C)((Y)H)Z/g,d/x])1z(f)()z.

Since hp-1:p, then hn-1[12(G)((Y)H)z/g,d/X]:, and, by induction hypothesis, ((Y)H)hp-
1If(FO-L.

Therefore ((Y)H)hn:If (1 (F)OM-D)1z(F)( ) z:1f(F) ().

It is easy to check that tps((T))hnf)=Tps(hy)+10n+7. A

Behaviour of T:

We prove (by induction on n) that (hp)rtr:1f(f)()N.

If n=0, then (hg)rtr:(t)r:1f(f).

If =0, then (hp)rtr:(r)hnp-1[1/9,t/X]r:(G) (hn-1[r/g,t/X] )rtr:
1f((hn-2[r/g,t/x])rtr)lz(f)( )z.

Since hp-1:p, then hp-1[1r/g,t/X]:p, and, by induction hypothesis,
hp-1[r/g,t/X]rtr:1f(F) )n-1.

Therefore (hp)rtr:1f (1 (F) )"-D)1z(f) ) z:1f (F)ON.

It iseasy to check that tps((T))hnf)=Tps(hp)+7n+5. B

2.3.4 Thefinitelists

Let U be a set of essential 1-terms. We define the set of the finite lists of objects of U,
Lu={1fIx((Fud)((Fup)...((Flun)x where naN, ujaU}.

Let nil=Ixlyy, cons=Ixlylfla((f)x)((y)f)a and cons=Ixlylfla((y)f)((f)x)a. It is easy to
check that cons and cons' are two 1-terms for the concatenation.

Let Ty be an o.m.m. for U.

Define T=In(n)Hd where H=Ixlylz((Ty)x)lu(y)lv(z)((cons)u)v , and d=If(f)nil ;
T=Inlf(n)K f nil where K=Ixlylu((Ty)x)lv(y)(cons)v)u.

Tand Tare o.m.m. for L.

Let hn:pIfIX((F)un) ((Fuz)... ((Fun)x, then :

hpYlgix(g)vaty, Vaipul, 6 (Q)Vivati+1, Vit 1ipUi+1 ISISnHL, th) X.

Ty is an omm. for U, therefore for al 1<i=n, there is tj;puj, such that
(Tu)vilH/g,d/x] X1 (F)si(ti).

Behaviour of T:

(T)hnf:(hp)HAf:(H)v1[H/g,d/x]t1[H/g,d/X]f:
((Tu)va[H/g,dix])lu(ta[H/g,d/Xx])Iv(F)((cons))u)v: (If (F)s1(ta))lu(t[H/g,d/x])Iv(f)
((cons))u)v:(t1[H/g,d/x])v(f)((cons))s1(t1))v.
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We define a sequence of 1-terms (dj)1<ij<n: d1=Iv(f)((cons))si(t1))v, and for 1<k=nl
Let dk+1=1v(dk)((cons))sk+1(tk+1))V-

We prove (by induction on k) that for all 1<k<nwe have (T)hnf:(tx[H/g,d/x])dk.
For k=1 itistrue.

Assume that istrue for k, and prove it for k+1.
(Mhnf:(tk[H/9,d/x])dk:(H)vk+1[H/9,d/X]tk+1[H/g,d/x] dk
((Tu)vk+1[H/g,d/X])u(tk+1[H/g,d/x])Iv(dk)((cons))u)v:

(A (F)sk+2(tk+D)U(tk+2[H/9,d/X])Iv(dk)((cons))u)v:
(tk+1[H/9,d/x])Iv(dk)((cans))sk+1(tk+1))V=(tk+1[H/g,d/X])dk+1.

Therefore, in particular, for k=n we have (T)hnf:(tn[H/g,d/X])dn=(d)dn:(dn)nil.
We prove (by induction on k) that for all 1<k<nwe have
di:Iv(f)((cans)sa(t1))((cans)sa(t2)). . ((cons)sk(tk))v-

For k=1 itistrue.

Assume that istrue for k, and prove it for k+1.

dk+1=Iv(dk)((cans))sk+1(tk+1))V:

1z(lv(f)((cons)sa(t1)) ((cons)s2(t2)). .. ((cons)sk(tk))V)(((cons))sk+1(tk+1))V:
Iv(f)((cons)sa(t1))((cons)sa(t2)). .. (cons)sk(tk))v)(((cons))sk+1(tk+1))V-
Therefore, in particular, for k=n we have

dn:lv(f)((cans)si(t))((cons)s2(t2)) - - ((cans)sn(tn))v

and (T)hnf:(lv(f)((cons)sa(t1))((cons)s(t2)). .. (cons)sn(tn))nil:
(F)((cons)s1(ta))((cons)s2(t2)). .. ((cons)sn(tn))nil=(f)s({ ((cons)ta) ((cons)to)...
((cons)tn)nil}).

It is easy to check that if tps(Tyvi)=Tps(vi)+Di, then tps((T)hnf)=Tps(hp)+6Nn+4  +

Behaviour of T:

(T)hnf:(hp)K f nil:(K)vq[K/g,f/X]ta[K/g,fix]nil:((Tu)va[K/g,f/x])Iv(t1[K/g,f/X])
((cons)v)nil:(1f(f)s1(to))Iv(ta[K/g,f/x])((cons))v)nil:
(ta[K/g,f/x])((cans))s1(t))nil.

We prove (by induction on k) that for all 1<k<nwe have
(Dhnf:(tk[F/g,f/x])((cons)sk(ti)) ((cons)sk-1(tk-1)). - . (cons)s1(ta)nil.

For k=1itistrue.

Assume that istrue for k, and prove it for k+1.
(Dhnf:(tk[K/g,f/Xx])((cons)sk(t)).- .. (cons)sa(t))nil:
(K)Vi+1[K/g,f/X]ti+1[K/g,f/x] ((cons)sk(ty)).- .. ((cons)sa(ta))nil:
((Tu)vk+a[K/g,fIX])Iv(tk+1[K/g,f/x])((cans))v)((cans)sk(tk)) .- - (cons)si(ta))nil:
(U (F)sk+2(tk+ D))V (tk+1[K/g,f/X])((cons))v) ((cons))v)((cons)sk(tk)). .-
((cons)sa(ta))nil: (tk+1[F/g,f/x])((cans)sk+1(tk+1)) - - ((cons)sa(ta))nil.

Therefore, in particular, for k=n we have
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(Dhnf:(tn[K/g,f/X])((cons)sn(tn)). .. ((cons)s1(ty))nil=
(F)((cons)sn(tn)). .. ((cons)sa(ta))nil=(f)s({ ((cons)tn). .. ((cons)to)nil} ).
It is easy to check that if tps(Tyvi)=Tps(vj)+Dj, then tps((T)hnf)=Tps(hp)+5n+4  +

8§ 3. Thedirected I-calculus

3.1 Thel[]-terms

Definitions.

. If L is the set of simple I-terms (L without a-equivalence), having V as set of
variables, then the set of terms of simple directed 1-calculus, denoted by L[], is
defined in the following way :

- If xaV, then xaL[] ;

- If xaV, and uaL[], then IxuaL[] ;

- If uaL[], and vaL[], then (U)vaL[] ;

- If taL isab-normal 1-term, such that Fv(t)[{X1,...,Xn}, and ay,...,anAL[], then [t]<as/
X1,...,@n/Xp>AL[].

A 1[]-term of the form [t]<ai/X1,...,an/Xn> iSsaid abox directed by t (we also say that t
isthedirector of the box).

This notation represents, intuitively, the 1-term t where the free variables xj,...,xn will
be replaced by ay,...,an.

We extend the definition of the a-equivalence by :
[u]l<aa/X1,....an/Xn>:a[VI<D1ly1,....bmlym> if and only if there are permutations P, and
Pm, O=r=inf(n,m), and new variables zy,...,z, such that :

- Fv(u)={x,...,x} and Fv(V)={y,...,y},

- u[za/X,...,.ze/X] V[ Zaly, - ..z lY].

- agbl<i=r.

. The set of terms of the directed 1-calculus, denoted by L[], and also called I[]-terms,
isdefined by L[]=L[]/:a.

. We will note <a/x> the substitution <aj/X1,...,an/Xn>. The substitution <ay/X1,...,an/
Xn,b1/Y1,....bm/ym> is denoted by <a/x,b/y>, and the substitution <aj[u1/y1,...,um/ym]/
X1,..,@n[U1/Y1,...,Uun/Ym]/Xn> is denoted by <a[u1/y1,...,Um/ym]/X>.

. For every u,us,...,unaL[], we extend the definitions of Fv(u) and u[u1/ys,...,Un/Ym]
by :

- Fv([t]<a/x>)=Fv(a)=.

- [tl<a/x>[ualys, ..., umlym]=[t]<alu1ly1,...,umlym]/x>, after a suitable renaming of the
bounded variables of a,...,a,that are freein uq,...,Un.
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3.2 Theb[]-reduction

Definitions.

. A 1[]-term of the form (Ixu)v is called b-redex ; u[v/x] is called its contractum.
A 1[]-term of the form [t]<a/x> is called []-redex ; its contractum R is defined by

inductionont :
- If t=x; 1<i=n,then R=g; ;
- If t=Ixu, then R=ly[u]<a,/x,y/x> where yFv(a) ;
- If t=(u)v, then R=([u]<a/x>)[Vv]<a/x>.
. We define abinary relation 50 by :
t5pot’ if and only if t' is obtained by contracting ab-redex of t.
More precisely :
- If tisavariable, t5,ot' isfalsefor al t';
- If t=Ixu, then t50t" if and only if t'=Ixu’, and uSLeU' ;
- If t=(V)u, then t5ot' if and only if
t'=(v)u' with u5peu' or
t'=(v')u with v5pov' or
v=Ixw, and t'=w[u/X] ;
- If t=[u]<alx>, then t50t" if and only if
ai5p0ai, XjAFv(u) 1<i=n,and t'=[u]<a1/X1,...,8-1/Xi-1,8i/Xi,8i+1/Xj+1,
. We define a binary relation 5jo by :
t5pot' if and only if t' is obtained by contracting a[]-redex of t.
More precisely :
- If tisavariable, t5ot' isfalsefor al t';
- If t=Ixu, then t5jet' if and only if t'=Ixu’, and u5jeu’ ;
- If t=(v)u, then t5jot" if and only if
t'=(v)u' with u5pjou’ or
t'=(v")u with v5pjov';
- If t =[u]<a/x>, then t5pot" if and only if
t' is the contractum of t or

oo Xp>.

850, XiAFv(u) 1=i=n,and t'=[u]<ay/X1,...,8-1/Xi-1,8i/Xi,8+1/X+1,...,8n/Xn>

. We define abinary relation 510 0n L[] by tSpot' or t5pot'.

Therefore t5ypot' if anf only if t' is obtained by contracting ab[]-redex of t.

. We define the b-conver sion (resp. the []-conversion, resp. the b[]-conversion) as the

reflexive and transitive closure of 5y, (resp.5po, resp. Sy[j0)-
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We have therefore t5pt' (resp. tt', resp. t5ppt') if and only if there is a sequence
to=t,t1,...,tn-1,tn=t", such that tjSyoti+1 (resp. tiSpoti+1, resp. tiSp[joti+1) for 1<i=n-.
Itisclear that if t5ppt', then Fv(t')[Fu(t).

. A l[]-term t issaid b[]-normal, if it does not contain any redex.

A 1[]-term tis said b[]-normalizable, if thereisab[]-normal I[]-term t', such that t5yt'.
A 1[]-term t is said b[]-strongly nor malizable, if there is a no infinite sequence to=t,t,
..o»tn,..., such that t;5ypoti+1 for i=0.

Lemma 3.2.1. tisb[]-normal if and only if taL, and t is b-normal.
Proof. Clear. m

Lemme 3.2.2. A[]-reduction always terminates.

Proof. Otherwise, there is an infinite sequence to,ty, ... ,tn,..., such that tj5potj+1 for i=0.
For each 1[]-term t, we associate an integer b(t) by inductionont :
- If t=x, then b(t)=0;
- If t=Ixu, then b(t)=b(u) ;
- If t=(u)v, then b(t)=b(u)+b(v) ;
- If t=[u]<a/x>, then :
- If u=x; 1<i=n,then b(t)=b(g)+1;
- If u=Ixv, then b(t)=b([v]<a/x,y/x>)+1 yFv(a) ;
- If u=(v)w, then b(t)=b([v]<a/x>)+b([w]<a/x>)+1.

Lemma 3.2.3.

1) b(t)=0if and only if taL.

2) If b(a))=b(a'j) 1<i=n,then
b([u]<a/x>)=b([u]<ai/X1,...8i-1/%i-1,&'i/Xi,8j+ 1/Xi+1,- - »an/Xn>).

3) If b(aj)>b(a’j), and xjaAFv(u) 1<i=n,then
b([u]<a/x>)>b([u]<ai/X1,...&i-1/%i-1,&'i/Xi,8j+ 1/Xi+1,- - »an/Xn>).

Proof. By induction on t. (resp. u) for 1) (resp 2), 3)). ®

Lemma 3.2.4. If t 5pot', then b(t)>b(t').

Proof. By induction on t. The only interesting caseis t=[u]<a/x>. Then :
- If u=x; 1=<i=n,then t'=g;, and b(t)=b(gj)+1>b(t").

- If u=lxv, then t'=[u]<a/x,y/x> yFv(a), therefore, by lemma 3.2.3,

21



b(t)=b([u]<a/x,y/x>)+1>b(t").

- If u=(v)w, then t'=([v]<a/x>)[w]<a/x>, and b(t)=b([v]<a/x>)+b([w]<a/x>)+1>b(t").

- If g5p0ai, xiaAFv(u) 1<i=n, and t'=[u]<ai/X1,...,8-1/Xi-1,8i/Xi,8+1/Xi+1,-..,an/Xr>). By
induction hypothesis, we have b(g)>b(aj), therefore, by lemma 3.2.3, b(t)>b(t"). ®

Therefore, by lemma 3.2.4, there is an infinite sequence b(tp),b(t1),...,b(tn),..., such that
b(tj)>b(tj+1) for i=0. A contradiction. ®m (of lemma 3.2.2)

Definition. For each I[]-term t, we associate al-term I(t) by inductionon't :
- If t=x, then I(t)=x ;

- If t=Ixu, then I (t)=IxI(u) ;

- If t=(u)v, then [(O)=(I(u))I(V) ;

- If t=[u]<a/x>, then I (t)=u[l (a1)/X1,...,l (@n)/Xn].

Itis clear that for taL[], Fv(t)=Fv(I(t)).

Theorem 3.25. t is b[]-strongly normalizable if and only if I(t) is strongly
normalizable.

Theorem 3.2.6 (Church-Rosser theorem). Assume to5p[;t1, and to5,;to, then thereisa
t3, such that t15pt3 and t25p)t3.

Proof of theorem 3.2.5.
1If I(t) is not strongly normalizable, then there is an infinite sequence to=I(t),tg,...,tn,

..., such that tj5,otj+1 for al i=0.

Lemma 3.2.7. If t5pt', then [(t)=I(t').

Proof. By inductionont. ®

Lemma 3.2.8.

1) [u]<a/x>5pu[an/X1,...,an/Xn] -

2) If uisp Vi I=i=nthen u[uy/Xa,...Un/Xn] S[UlV/XL,. . . V/Xn] -
Proof. By inductionon u. ®

Lemma 3.2.9. If tisa I[]-term, then t5(;I(t).

Proof. By induction on t. The only interesting case is t=[u]<a/x>.
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By lemma 3.2.8, [u]<a/x>5pju[ai/X1,...,an/Xn]. By induction hypothesis, we have
g5l (a) 1=i=ntherefore, by lemma 3.2.8, t5u[l(a1)/X1, ...l (@n)/Xn] =I(t). B

By lemma 3.2.9, t5jl(t), therefore t is not b[]-strongly normalizable. A contradiction.
m (of 1 theorem 3.2.5).

0 (theorem 3.2.5) If t is not b[]-strongly normalizable then there is an infinite sequence
to=t,t1,...,tn,..., such that tj5yotj+1 or tj5jotj+1 for i=0.

Lemma 3.2.10. [(u[v/X])=1(u)[1(v)/X].
Proof. By inductiononu. ®

Lemma 3.2.11. If u5,gv, then [(u)550l(V).

Proof. By induction on u. The only non-trivial case is u=(Ixt)w : we then have
v=t[w/x], therefore, by lemma 3.2.10, [(u)=(1xI(t))I(wW)5u0 I (D)[I(W)/x]=I(v). =

Coroallary 3.2.12. If u5p[)v, then [(u)5pl(v).

Proof. Uselemmas 3.2.7 and 3.2.11. m

By lemma 3.2.2, and lemma 3.2.11, tthere is an infinite sequence t'o=I(t),t',...,t',...,
such that tj5yoti+1 for al i=0, therefore I(t) is not strongly normalizable.

A contradiction. ®m (of 0 theorem 3.2.5)

Proof of theorem 3.2.6. If to5yjts, and to5Syta, then, by corollary 3.2.12, I(tp)5yl(ty), and
[(to)5pl(t2). Therefore, by the Church-Rosser theorem of I-calculus, there is a t3, such
that I(t1)5pt3, and I(t2)5pt3, therefore, by lemma 3.2.9, t15,t3, and to5;tz. B

Remarks.

- By the Church-Rosser theorem, the b[]-normal form is unique.

- We define the b[]-equivalence (denoted by :y[1), as the symetric closure of 5 ; In
other words : t:yjt' if there are to=t,ty,...,th=t" with tj5ppoti+1 Or tj+15p[0ti O<i=nl. By
the Church-Rosser theorem : t:,jt' if and only if there isal[]-term u, such that t5,;u and
t'Spppu, and alf]-term t is b[]-normalizable if and only if there is ab[]-normal 1[]-term u
such that t:pju.
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3.3 Theb[]-left reduction

Definitions.

- A sequence of symbols of the form (1 or [ corresponds to a redex. We may then define
the leftmost b-redex and the leftmost []-redex of t. If t' is the 1[]-term obtained by
contracting this redex, we say that :

t givest' by bo-left reduction (resp. by [Jo-left reduction, resp. by b[]o-left reduction),
and write by tY. ¥ pot' (resp. ty ¥ jot', resp. tyYppot'), if it isab-redex (resp. a[]-redex,
resp. ab-redex or a[]-redex ).

- We say that t reduces to t' by b-left reduction (resp. []-left reduction, resp. b[]-left
reduction), and we write ty.Ypt' (resp. tyyt', resp. tyYpt') if and only if t' is
obtained from t by a sequence of bg-l€eft reductions (resp. of []o-left reductions, resp. of
b[]o-l€ft reductions).

- A l[]-term t is said b[]-left normalizable if and only if there isab[]-normal 1[]-term t',
such that ty Yt

Theorem 3.3.1. uisb[]-left normalizable if and only if I(u) is left normalizable.

Theorem 3.3.2 (nor malization theorem). uis b[]-normalizable if and only if uis b[]-
left normalizable.

Pr oof of theorem 3.3.1.
1 Uselemmas 3.2.7 and 3.3.3.

Lemma 3.3.3.
1) If Risthe leftmost b-redex of u, then I(R) is the leftmost redex of 1(u).
2) If uxY.pov, then I(u) X X0l (V).

Pr oof.
1) Clear.

2) By induction on u. The only non-trivial case is u=(Ixt)w : then we have v=t[w/x],
then, by lemma 3.2.10, [(u)=(IxI(t))I(W)X Y ol ) [1(w)/X]= I(t[w/Xx]). =

0If not, there is an infinite sequence of I[]-terms up=u,uy,...,Un,..., such that
Ui Y. ' boUi+1 Or Ui} Y joui+1 for i=0. Therefore, by lemmas 3.2.2, 3.2.7, and 3.3.3, thereis
an infinite sequence of I[]-terms vo=I(u),v1,...,Vp,..., such that vi} > ovij+1 for i=0,
therefore I(u) is not left normalizable. A contradiction. ®
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Pr oof of theorem 3.3.2.

0 Clear.

1 If uisb[]-normalizable, then I(u) is normalizable (same proof as theorem 3.3.1 1). By
the normalization theorem of 1-calculus, 1(u) is left normalizable, therefore, by theorem
3.3.1, uisb[]-left normalizable. m

3.4 Theb[]-head reduction

Proposition 3.4.1. Every I[]-term t can be - uniquely - written as Ix;...Ixn(R)t1...tm
n,m=0, R being a variable or a redex

Proof. By inductionon t. ®

Definitions.

- Let t be al[]-term, then, by proposition 3.4.1, t=Ixj...IxXpn(R)t1...tm.

If Risavariable, we say that t isab[]-head normal form.

If Risaredex, we say that R isthe head redex of t.

If t' isthe 1[]-term obtained from t by contracting its head redex, we say that :

t gives t' by bgp-head reduction (resp. by []o-head reduction, resp. by b[]o-head
reduction), and we write tY ot (resp. tY[lot', resp. tYpllot'), if the head redex is a b-
redex (resp. a[]-redex, resp. ab-redex or a[]-redex).

- We say that t reduces to t' by b-head reduction (resp. []-head reduction, resp. b[]-
head reduction), and we write tYpt' (resp. tYt', resp. tYb[t') if and only if t'is
obtained from t by a sequence of bp-head reduction (resp. []o-head reduction, resp. b[]o-
head reduction).

A b[]-head reduction is, in particular, ab[]-left reduction.

- If tYy0t', we denote by n(t,t'), the number of stepsto gofromttot'.

- A I[]-term t is said b[]-solvable if and only if for every I[]-term u, there are variables
X1,...,Xk, and I[]-terms uy, ..., uk,V1,...,vi K,I=0, such that (t[u1/x1,...,uk/Xk])V1...VI wppu.

Theorem 3.4.2. If ty,;t', then for every ug,...,urAL[] :

1) ThereisvaL, such that (t)uz...urYp Vv, (t')us...urYpv, and n((t)us...ur,v)= n((t')us...
Ur,V)+n(t,t).

2) tur/Xy,... . u/X ] YpptTua/Xs,...ue/xe],  and  n(tfuy/Xa,...,Ue/Xe] tTua/Xq,...,u/x] )=
n(tt").

Remarks.
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- 1) shows that to make the b[]-head reduction of (t)u;...un, it is equivalent (same
result, and same number of steps) to make some steps in the b[]-head reduction of t, and
then make the b[]-head reduction of (t')uj...un.

- 2) shows that to make the b[]-head reduction of t[u1/X1,...,un/Xp], it IS equivaent

(same result, and same number of steps) to make some steps in the b[]-head reduction
of t, and then make the b[]-head reduction of tTu1/X1,...,Un/Xn].

Corollary 3.4.3. Let t,uy,...,un,Vv1,....vmAL[] . If the b[]-head reduction of (t[u1/xa,...,un/
Xn])V1...vmterminates, then the b[]-head reduction of t terminates.

Proof. Usetheorem 3.4.2. m

Theorem 3.4.4 (resolution theorem). The following conditions are equivalent :
1) tisb[]-solvable;

2) the b[]-head reduction of t terminates;

3) tisb[]-equivalent to a b[]-head normal form.

Proof of theorem 3.4.2. It is enough to do the proof for one step of reduction.
1) By induction onr ; it is enough to do the proof for r=1. Then t=Ixj...1Xp(R)t1...tm,

and t'=Ixs...IXp(R)t1...tm where R' is the contractum of R.

If n=0, then (t)u=(R)t1...tmu, and (t)u=(R)t1...tmu, therefore (t)uyyv, where v=(t')u.

If n=1, then one step of b[]-head reduction of (t)u gives Ixo...IXn(R)t1...tm (Where
w=w[u/x1] for every waL[]). One step of b[]-head reduction of (t)u gives Ixz...
IXn(R)t1. . .tm.

Lemma 3.4.5. If R aredex, R its contractum, and us,...,.uyAL[], then Rluilys,...,uny
Yml isaredex, and R[u1/ys,....Un/ym] iSits contractum.

Proof. If Risab-redex, then R=(Ixu)v, and R'=u[Vv/X].
R[ua/y1,...,um/ym]=(IxXu[u1/y1,....Um/Ym])V[u1/y1,....umlym] IS a b-redex, and its
contractum isu[ua/y1,...,Um/Yml[V[U1/y1,...,Um/Ym]/X]=R'[u1/y1,...,.Un/Ym].
If Risal[]-redex, then R=[t]<a/x>:

- If t=x;j 1=<i=n,then R'=g. R[u1/y1,...,Uum/ym]=[t]<alui/y1,...,um/ym]/x> is a []-redex,
and its contractum isg[u1/y1,...,Um/Ym]=R[u1/y1,...,Uum/Ym].
- If t=Ixu, then R'=ly[u]<a/x,y/x> where yFv(a).

R[u1/y1,...,umlym]=[Ixu]<aluilys,...,umlym]/x> is a []-redex, and its contractum is
ly[u]<a/x,y/x>[u1ly1,...,.Um/ym]=R'[u1ly1,...,Um/ym] where yFv(a)"
- If t=(u)v, then R'=([u] <a/x>)[v]<a/x>.
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R[u1/y1,...,umlym]=([u]<a/x>)[v]<aluily1,....Umlym]/x> is a []-redex, and its
contractum is (Ju]<a/x>)[v]<a/x>[u1/y1,...,Um/Ym]=R[u1/y1,...,.Un/ym]. ®

By lemma 3.4.5, (t)uypv, and (t)uypv where v=Ixo...IXp(R)t1. .. tm.
2) Same proof as1). m

Proof of theorem 3.4.4.
1)12) If t is b[]-solvable, then there are variables x1,...,Xk, and terms uy,...,Uk,V1,...,V|

(k,1=0), such that (t[u1/Xa,...,Uk/Xk])V1...Vi;pplxX, therefore, by the Church-Rosser
theorem, (t[ui/xq,...,uk/Xk])V1...viXplxx, therefore, by corollary 3.4.3, the b[]-head
reduction of t terminates.

2)13) Clear.

3)11) Assume tiylx1...1Xn(Y )t1...tm, and let u be alf]-term :

- If y=x; 1=i=nthen ((()X1...Xj-1)ly1...lymU)Xj+1...Xnppu Where yjFv(u) 1<j=m.

- If y=x 1=i=n,then (t[ly1...lymu/y])X1...Xn:ppiu Where yjFv(u) 1<j=m.

Thereforet isb[]-solvable.

Lemma 3.4.6. If u),ov, then (U)ol (V).

Proof. Same proof aslemma 3.4.5. &

Theoreme 3.4.7. uisb[]-solvable if and only if I(u) is solvable.
Proof.

1 Uselemmas 3.2.7 and 3.4.6.
0 Otherwise there is an infinite sequence of I[]-terms ug=u,us,...,Up,..., such that

Ui Y poUi+1 Or Uiy joui+1 for i=0. Therefore, by lemmas 3.2.7, 3.4.6, and 3.2.2, there is an
infinite sequence of 1[]-terms vo=I(u),v1,...,Vn,..., such that v;¥ ovj+1 for i=0, therefore
[(u) isunsolvable. A contradiction. ®

8 4. An equivalent definition for storage operators

Theorem 4.1. Let t be a closed b-normal I-term, and T a closed I-term. T isan o.m.m.
for tif and only if thereis a I-term ti:p,,t, such that

T e (Dl [ta] <@r/X1>/y1,....[ tml <@m/Xm>lyml .

To prove this theorem we need some definitions
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Definition. Let t be ab-normal 1-term, and u al[]-term. We say that u is directed by t
if and only if the directors of boxes of u are subterms of t.

More precisely u isdirected by t if and only if :

- If u=x, then uisdirected by t ;

- If u=Ixv, then uisdirected by t if and only if visdirected by t ;

- If u=(v)w, thenuisdirected by t if and only if vand w are directed by t ;

- If u=[v]<a/x>, then u is directed by t if and only if v is a subterm de t, and for al
1<i=ng; is directed by t.

Lemma4.2.

1) If uand v are directed by t, then u[v/x] isdirected by t.
2) If uisdirected by t, and u5[jv, then visdirected by t.

Proof. By inductiononu. ®

Definition. Let t be a b-normal I-term. A t-special application h is a function from
ST(t) to L which satisfies the following properties:

-h(X)Yx;

- h(Ixu) ¥ 1xh(u) ;

- h((U)v) X (h(u))h(v).

Lemma4.3. If hisat-special application, then, for every uaST(t), h(u):u.

Proof. by inductionon u. ®

Lemmad4.4. Let t be a b-normal I-term, and uaST(t). For every hy:pu, there is a t-
special application h, such that h(u)=hy,.

Proof. Let vaST(t) ; we define h(v) asfollows:
- If vaST(u), h(v) is defined by induction on li(v)=lg(u)-lg(v), and we check that
h(V):pv.
- If li(v)=0, then v=u. Take h(v)=hy, we have h(v):,V.
- If li(v)=1,then v isa proper subterm of u :
- If there is an X, such that 1xvaST(u) then by induction hypothesis, we have
h(Ixv):plxv, therefore h(Ixv)Y Ixhy where hy:,v. Take h(v)=hy, we have h(v):yv.

- If there is waST(t), such that (v)waST(t) then by induction hypothesis, we have
h((V)w):p(v)w. Since t is b-normal, then h((v)w)3 (hy)hy where hy:p,v and hyy:pw.
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Take h(v)=hy, we have h(v):,v.
- If there is waST(t), such that (w)vaST(t) then by induction hypothesis, we have
h((w)v):p(w)v. Since t is b-normal, then h((w)v)Y (hw)hy where hy:,v, and hyy:pw.
Take h(v)=hy, we have h(v):,v.

- If uaST(v)\{ v}, take h(v) the l-term v where u is replaced by h(u), we have h(v):,v.

- Otherwise, we put h(v)=v.

By construction, h is at-special application. B

Definition. Let t be a b-normal I-term, and h a t-special application. The t-special
substitution S is the function from the set of 1[]-terms directed by t into L. defined by

induction :

- If u=x, then S,(u)=x;

- If u=Ixv, then S, (u)=lyS;(v[y/x]) where yFv(h(t)) ;

- If u=(v)w, then Sp(u)=(Sh(v))Sh(w) ;

- If u=[v]<a/x>, then S,(u)=h(V)[Sh(a1)/X1,...,Sh(@n)/Xn].

A t-specia substitution is the function S;, associated to ab-normal 1-term t, and some t-
specia application h.

It iseasy to seethat if u does not contain boxes, then S, (u)=u.

Lemma4.5. If yi,....ymFVv(h(t)), then
Sh(ulvalys. .. Vmlyml) =S Su(VDY1,.. . Sh(Vm)lym] .

Proof. By inductionon u. ®

Lemma 4.6. $(u):p 1(u).

Proof. By inductionon u. ®

Lemma4.7. If uyp v, then S,(u):S(v).

Proof. It is enough to do the proof for one step of reduction.
Let u=Ix1...Ixp(R)us...um, and v=Ix1...1xp(R)U1...um where R' is the contractum of
redex R :

If R=(Ixa)b, then R'=g[b/x].
Sh((Ixa)b)=(lySn(aly/x]))Sh(b) X Sh(@ly/xD[Sh(P)/y]=Sn(@)[y/X][Sn(b)/y]
=$1(@)[Sh(b)/X], therefore, by lemma 4.5, S,((Ixa)b)Y S, (ab/x]).

If R=[u]<a/x>:
- If u=x 1=i=nthen R'=g;, and $,(R)=$,(R).
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- If u=Ixv, then R'=ly[v]<a/x,y/x> where yFv(a).

Sh(R)=h(U[Sh(a1)/X1,. -, Sh(@n)/xn] Z1Xh(V)[Sh(a1)/X1,. .., Sn(@n)/Xn] =
1zh(V)[Sh(a1)/X1,- . .,Sh(an)/Xn,2/X] where zFv(h(t))"Fv(a), therefore
Sh(R)XSh(R).

- If u=(c)d, then R'=([c]<a/x>)[d]<a/x>
Sh(R)=h(u)[Sh(a0)/X1,..,Sh(@n)/Xn] Z(h(C))h(d)[Sh(ar)/X1,...,Sh(@n)/xn]=
(h(0)[Sn(ar)/xa,....Sh(@n)/xn])h(d)[Sh(ae)/X1,. . .,Sh(@n)/Xnl,

therefore S,(R)Y. Sy(R'). m

Corollary 4.8. uisb[]-solvableif and only if S,(u) is solvable.

Pr oof.
1 Uselemmad4.7.
0 Sy(u) is solvable, therefore, by lemma 4.6, I(u) is solvable, therefore, by theorem

3.4.7, uisb[]-solvable. m

Definition. We say that al[]-term t is good if and only if there is a l-term u, such that
t=u[[t1]<ai/X1>/y1,...,[tm]<@m/Xm>/ym], and for al 1<i=mif ai=ayj.....an,, then g is
good 1<j=n.

Itisclear that we have:

- X isgood;

- If Ixtisgood, then t isgood ;

- (u)visgoodif and only if uand v are good ;

- [w]<a/x>isgood if and only if g isgood 1<i<n.

Example. The I[]-term [x1]<x/x1> is good, but the 1[]-term 1x[x1]<x/x1> is not. Indeed,
the variable x becomes bounded, and so we can not find a l-term u, such that Ix[x1]<x/
X1>= U[[t]<a/x>ly].

Lemma4.9. If t,vq,...,vy are good, then t[vi/ys,...,/lyr] is good.
Proof. By inductionont. ®

Definitions.

- A []'-redex is al[]-term of the form ([ly1...lym(y)u1...uf<a/x>)vi...vm. Its
contractum R is defined by : R=(b)[ui]<a/x,vly>...[uf]<a/x,v/y> where b=vj if y=y;
l<i=m,and b=g if y=x; 1<i=n.

Itiseasy to seethat if Risa[]'-redex, and R' its contractum, then RY.,[jR'".
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Let t=IX1...I1Xn(R)t1...tm where R is a []'-redex. If t' is the I[]-term obtained from t by
contracting the []'-redex R, we say that t givest' by a[]'o-head reduction, and we write
tZ[]'ot'.

We say that t reducesto t' by []'-head reduction, and we write ty't" if and only if t'is
obtained from t by a sequence of []'o-head reductions.

- If t' isthe I[]-term obtained from t by contracting its head redex (b-redex or []'-redex),
we say that t givest' by b[]'o-head reduction, and we write t}p[1'ot".

We say that t reducesto t' by b[]'-head reduction, and we write tYb['t' if and only if t'
is obtained from t by a sequence of b[]'o-head reductions.

- A head reduction tY,t' is said complete if and only if for every I[]-term u, if t'Ypu,

then t'=u.

Lemma 4.10.

1) If fisavariable, and t3,)(f)ug,...ur, then there is a sequence to=t,t1,...,tn= (fuy,...
Ur, such that tj Y pti+ 1 is complete or tY[]tj+1 O=i=n-l.

2) If moreover tisdirected by u, then every director of tj O<i<nis an element of STE(u).

Pr oof.

1) If typ(fu,...uy, then there is a sequence t=(vo)wo,(V1)W1,...,(Vm)Wm=(f)uz,... ur,
such that (Vi)wiYpo(Vi+1)Wi+1 or (Vi)WiXjo(Vi+)Wi+1 O=ismd. If (vi)wiXjo(Vi+1)Wi+1
O=i=ml, then (vi)wi=([ly1...lyp(y)d1...dg]<a/x>)b1...bp C1...Cs. Therefore there is j>i,
such that (vi)wiX[jo(vj)wj, therefore there is a sequence t=(v'g)w'o,(V'D)W'1, ...,
(Vi)W'k=(f)ug,...ur, such that (Vi)W'Xp(Vi+D)Wi+1 or (Vi)W X(VisDWi+1 O=i=skd.
Gathering consecutive b-reductions, it is clear that we can suppose that the b-reductions
(VW'Y p(V'i+1)W'i+1 are complete.

2) Easy. m

Lemma4.11. Let t be a good I[]-term.

1) If tYpt" then, t' is good.

2) If ty[1(a@)b, then (a)b is good.

3) If typ[1(Aus...ur, then ug,...,ur are good.

Proof. If t isgood, then there is al-term u, such that
t=u[[t1]<ai/X1>/y1,....[tm]<@m/Xm>/ym], and for al l=<i=mif gj=ayj,...,.ani, then g is
good 1<j=n.

1) It is enough to do the proof for one step of reduction. If tYot', then t'=u'[[t1]<ai/x1>/
Y1,-- - [tml<am/Xm>lym] where u} ou’, thereforet' is good.

2) It is enough do the proof for one step of reduction. For every 1[]-term u, denote by u"
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the I[]-term u[[t1]<ai/x1>1ly1, ... ,[tm]<am/Xm>/ym].

Itisclear that we may suppose that yiFv(a) 1=<ij=m.

If tY[10(@)b, then u=(yj)vi...vqwi...ws I=i=myt; =If1...1f¢(y)us...ur, and
@b={(c)z1...z7w1...wg} [[t1]<ar/x1>1y1,. .., [tm]<@m/Xm>lym.[ul] <ai/Xxi V" [f>yq,...,
[ur]<ai/xj,v" [f>/z;] where c=v; if y=f;j 1=i=q,and c=g); if y=X;; 1=i=m, 1=j=n, and
Z1,...,Zr are anew variables, therefore, by lemma4.9, (a)b is good.

3) Uselemma4.10, and 1) and 2). &

Proof of theorem 4.1.
LIf T is an omm. for t, then there is dgp,t, such that for every hipt, there is a

substitution s, such that ThifY (f)s(dt). I(T[t]f)=Ttf is solvable, therefore, by theorem
3.4.7, T[t]f is b[]-solvable, and T[t]fY,(f)t'. By lemma 4.4, let h be a t-special
application, such that h(t)=ht. Then S;(t")=s(d¢). T[t]f is a good 1[]-term, therefore, by
lemma 4.11, t' is good, therefore t'=t[[t1]<ai/X1>/y1,....[tm]<am/Xm>/ym] Where t; is a
1-term. Therefore S, (t')=ti[h1/y1,....,hm/ym] where hi=h(ti)[Sy(ai,1)/Xi 1,- - - ,Su(@,mi)/Xi mi]
1=<i=mtherefore, by lemmas 2.2.4, 2-6, and 4.3, tt=s'(dy), therefore ty:pyt.

0 Assume that T[t]fyp(tl[ta] <ar/x1>/y1,....[tm]<@m/Xm>/ym], and ti:pyt. Let hept. By
lemma 4.4, let h be a t-specia application, such that h(t)=ht. By lemma 4.7, we have
SH(T[t]f)=Thef X (F)t[h1/y1,...,hm/ym]. Therefore T isan o.m.m. for t. ®

Examples.
- Tisan o.m.m. for Pp. Indeed,

TIPIfXo([PDIF(F)P... I (F)PEY [1o(If (F)P)F X po(f) Pl=<i=n.

- Tisan o.m.m. for N. Indeed,

Tn]f Xpo([0])FFOY [o((F)[(x1) ™ X2 <F/x1,f/x2>)0F ([ (x1) " 1x2] <F/x1,f/x2>)(5)0.

T ro((FL(x)"2x2]<Fixa,f/x2>)(8)0Xn([ (X1)"-2x2]<F/xa,f/x2>)(8)20% 0. - Xp  ([X2]<F/
x1,f/x2>)(8)"0Y:[10(f) (8)"0.

8 5. Properties of storage operators

5.1 Storage oper ator s and b-equivalence
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Theorem 5.1.1. Let t be a closed b-normal I-term, T and T' be closed I-terms. If
Tisano.mm. for t,and T':, T, then T also isan o.m.m. for t.

Proof. On the set of good I[]-terms, we define an equivalencerelation g by :

If t=u[[t1]<ai/X1>/y1,...,[tm]<am/Xm>ym] where u is a I-term, then tgt' if and only if
t'=u[t1]<a'1/X1>ly1,....[tm]<a m/Xm>lym] where uu', and for al l<is=mif a=ayj,
~...anij, then a'j=a'y j,....an i, and g igdj i 1<j=n.

It isclear that if 1X1...1Xp(f)us...umgt (f is avariable), then t=Ix;...Ixp(f)u'1...U'm where
uigu'j O<i=m.

Lemma5.1.2. If tgt', and vigV'j 1=<i<r,then t[vi/y1,...,.Vi/Vr] gt' [V 1/Y1,.. V' iYr] .

Proof. By inductionont. ®

Lemma5.1.3. Let t be a good I[]-term.

1) If tYpt" iscomplete, and tgT, then for someT : t'gT', and TY , T' is complete.

2) If ty[10(c)d, and tgT, then tor someT" with the same b[]-head normal formas T :
(cdgT.

3) If tYp[y(fur...ur, and tgT, then tor someT : (fuz...urgT', and Ty, T

Proof. If t isgood, then there is al-term u, such that
t=u[[t1]<ai/x1>/y1,....[tm]<@m/Xm>Iym] where aj=ay j,...,an; i 1<i=n.

1) If tYpt' is complete, then t'=u'[[t1]<ai/X1>1y1,...,[tm]<@m/Xm>/ym] where u' is the
head normal form of u. If tgT, then T=U[[t1]<a'1/X1>/y1,...,[tm]<@ m/Xm>Iym] where
upU, aj=ay,,....an,, and g,igaj,i 1=<j=n. Let U' be the head normal form of U.

Let T'=U'[[t1]<a 1/X1>lY1,....[tm]<a@ m/Xm>/ym]. It is clear that we have t'gT', and
TY,T'iscomplete.

2) For every I[]-term u, we denote by u" the I[]-term u[[t1]<ai/X1>/ly1,..., [tm]<am/Xm>/
ym].

Itisclear that mat suppose that yjFv(a)) 1=<ij=m.

If tY.[170(c)d, then u=(yj)v1...vqwi...ws 1=i=myt; =If1...1f¢(y)us...ur, and
(Qd={(0)z1...zw1...wg} [[ta] <ar/X1>/y1,...,[tm] <@m/Xm>Iym,[ut] <aj/xi,v" [f>[z1,...,
[ur]<ai/xj,v" [f>/z;] where b=v;j if y=f; 1=i=q,and b=g); if y=X;; 1=<i=m,and 1<j=n, and
Z1,...,Zr @re anew variables.

If tgT, then T=U[[t1]<a'1/X1>/y1,...,[tm]<& m/Xm>lym] where u:yU, aj=d1,...,anj and
g,igdj, 1=j=n. Since u:,U, then UY(yj)c1...Cqd1...ds where vi:,¢i 1=<i=q, and wj:,dj
l<j=s

For every I[]-term u, we denote by u™ the I[]-term [[t1]<a'1/X1>/y1,..., [tm]<@ m/Xm>/
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Let T'={(b)z1...z/d1...dg [[t1]<@ 1/X1>/Y1,...,[tm]<@ m/Xm>Iym,[u1]<a'i/xj,c'" [f> Iz3,...,
[ur]<a'i/xj,c'"' [f>/z;] where b'=c; if y=f; 1=i=qg,and b'=a] if y=Xj ; 1=i=m,and 1l<j=n.
Itisclear that T and T' have the same b[]-head normal form, and, by lemma5.1.2, t'gT".
3) Usel), 2), and lemma 4.10. m

If T isan o.m.m. for t, then, by theorem 4.1,

TIHF Y0 (Dul[ta]<ar/xa>ly1,....[tm]<am/Xm>/ym], and tepgt. If T T, then Tt fgT[t]f,

therefore, by 3) of lemma5.1.3,
THf Yo Oriltad<a /x>y, [tml<@ mXm>lym], and t'ptipyt. Therefore, by

theorem 4.1, T'isan o.m.m. for t. m (of theorem 5.1.1)

5.2 Decidability

Theorem 5.2.1. If Xisanon trivial set of closed I-terms stable by b-equivalence, then
Xisnot recursive.

Proof. See[2], [5], and [14]. ®
Theorem 5.2.2. The set of o.m.m. for a set of closed b-normal I-termsis not recursive.
Proof. Usetheorems5.1.1and 5.2.1. m

Theorem 5.2.3. The sat of oom.m. for a finite set of closed b-normal I-terms is
recursively enumerable.

Proof. Usetheorem4.1. m

5.3 Storage oper ator s and y-equivalence

Theorem 5.3.1. Let t be a closed b-normal [-term, and T be closed I-term.
If Tisano.m.m. for t, and t5yt', then T alsoisan o.m.m. for t'.

Remark. The theorem 5.3.1 isno more true if we replace t5,t' by t: t'. Indeed,
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if we take t=Ixx, t'=Ixlylz((x)y)z, and T=In(n)lf(f)Ixx, then :

- t'5yt, therefore t:, t'.

- For every I-term u such that u:pt, (T)uY 1f (f)Ixx, therefore T isan o.m.m. for t.
- (Mt'fY.1z((f)Ixx)z, therefore T isnot an o.m.m. for t'.

Proof of theorem 5.3.1. On the set L[], we define the binary relation ¢ as the least
relation satisfying :

- fct;

- If tct', then Ixtclxt';

- If ucu’, and vev', then (u)ve(u)Vv',

- If t5yXij, and gicdj 1=<i=n,then [t]<a/x>ca :

- If t5yt', and gjcdj 1=<i<n,then [t]<a/x>c[t']<a'/x>.

Itisclear that :

- If IX1...1Xp(Ug)u1...umct, then t=Ix1...Ixp(U'0)U'1...U'm Where ujcu'j O<i=m.

- Let t be agood 1[]-term, therefore there is al-term u, such that
t=u[[t1]<ai/X1>/y1,....[tm]<@m/Xm>/ym], and for dl l<i=mif aj=ayj,....an;, then g is
good 1<j=n. If tct', then it is easy to check that t'=u[c1/y1,...,Cnlym] Where ¢i=[t'{]<a'i/
Xi> with ti5,t', g ica;ji 1=i=m, 1<j=n, or ¢i=aj; 1<j=nwith tj5,Xj; and g icaj; 1=<i=m,

1<j=n.

Lemma 5.3.2. If ucu’, and vjcVj 1<i=n,then:
u[V1/X1,..Vn/Xn] € U'[V'1/X1,...V' n/Xn] -

Proof. By induction on u. ®

LemmaS5.3.3. If u=Ixy...Xn(Y)u1...UmbdV, then v=Ix1.. .Xnp-r(Y)U'1...U'mr Where uj5,uj
1<j=m, Um s5,Xn-s O=s=r1, and xp-s#ydoes not appear in uy,...Umr.

Proof. By induction on the number n of yo-reductionsto go fromutov.

n=0: clear.

If n=1, then USyW5y0V, therefore w=Ix1...IXp-r(Y)U'1...Um-r Where UjSyU] 1<j=mH, Um-
$DyXn-s O=s=r-l, and xn-s#ydoes not appear in the u,...Umr. Since wsyov, then v=Ix;...
Xp-r(Y)U'1...U"k...Um-r Where U'k5yU"k, OF Um-r=Xn-r, Xn-r2Ydoes not appear in the ug,
e o,Umer-1, and v=IXg.. . IXp-r-1(Y)U'1. . .U'm-r-1 @S required. |

Lemma 5.3.4.
1) IftY pot', and tcT, then for somet' : t'cT, and TY 0T .
2) If ty[yrot', and tcT, then for somet' : t'cT', and TY[j0T".
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3) If typ[pt', and tcT, then for somet' : t'cT', and T[T

Proof.
1) If tYpot, then t=Ix1...I1xp(IXU)VL]...tm, and t'=IX1... IXp(U[V/X])t1...tm. If tcT, then

T=IX1... IXp(IXU)V'T'...t'm where ucu', vev', and tict'j 1<i=m.

Let T'=IX1... IXp(UTV'/X]t'1...t'm. [tisclear that TY 0T ', and, by lemma5.3.2, t'cT".

2) If tyot', thent=ly1...lym([1z1...1zk(y)u1... uf]<a/x>vy...vkwi...ws, and
t'=ly1...lym(b)[us]<a/x,viz>...[uf]<a/x,v/iz>W1...ws Where b=v; if y=y; 1<i=m,and b=5;
if y=x; 1<j=n.AssumetcT.

- If lz1...1zk(y)u1...u5yy, then k=r, U5,z 1=<i=m, and zj#=y=x l<j=n, then
T=ly1...lym@@j)v'1...VikW'1...W's where gjcaj, vicv'j 1=i=k, and wijcw'j 1=<i=s Let
T'=T. Itisclear that t'cT', and Ty [0T".

- If 1z1...1zk(y)u1...ur5¢121.. . 1Zk-| (Y)U'1... U Where U5 U’ 1<j<H, Ur-sDyZk-s
O=s<l1, and zk-s2y does not appear in the uj,...ur|, then T=ly1...lym([1z1...12«-
I(Y)U'1... Up]<a/x>Vv'1...Vkw'i...W's where vicv'j 1<i<k, and wjcw'j l<i<s Let
T'=ly1...lym(bj)[ur]<a /xVv'1/z1,... Vikilzk-1> ... [u<a' /xV'1/z1,... V'k-{Zk-1> V'm-l+1- -
V'k W'1...W'swhere b=V’ if y=y; 1=<i=m,and b=g; if y=x; 1<j=n.It is clear that t'cT", and
T[0T
3)Usel)and2). m

If T isan o.m.m. for t, then, by theorem 4.1, there is a I-term t:,t, such that T[t]fY ]
(Del[ta]<ar/x1>/y1,...,[tm]<am/Xm>/ym].

If t5,t', then T[t]fcT[t]f, therefore, by lemma5.3.4, T[t]fyy(f)t, and uf[t1]<ai/x1>/y1,
cooo[tm]<am/Xm>lym]ct’. Therefore there is a I-term t"t, such that t"gpipt, and
t'=t"{[[u1]<bi/z1>ly1,...,[um]<b;/zr>Iy,]. Therefore, by theorem 4.1, T is an o.m.m. for

t'. ®m (of theorem 5.3.1)

5.4. Storage operatorsfor a set of b-normal 1-terms

Theorem 5.4.1. Let uy,...,Un,V1,...,Vm be closed I-terms. Assume Ui, u; for i<j, thereisa
closed I-term T, such that (T)uj:pVvi 1<i=n.
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Proof. See[3]. ®

Theorem 5.4.2. Every finite set of b-normal I-terms having all distinct by-normal forms
has an o.m.m..

Proof. Let D={ty,...,tn} be such a set. By theorem 5.4.1, there is a closed I-term T',
such that Tt Pl<i=n, therefore for every hj:pti, T'hj:p,P, therefore T'hi}P. Let
T=In((T)n)If(F)ty...1f(Ftn. It iseasy to check that T isan o.m.m. for D. &

Theorem 5.4.3. Every finite set of b-normal [-terms has an o.m.m..

Remarks.

- The theorem 5.4.3 is no more true if we remove the hypothesis "the 1-terms of D are
b-normal”. If we take t1=Ixx, and to=(Ix(X)x)Ix(x)x, then D={t1,to} have no o.m.m..
Indeed, if T is an o.m.m. for tp, then, by corollary 2.2.3, T =Inlf(f)up where U2:pyt2,
therefore T isnot an o.m.m. for t.

- The theorem 5.4.3 isno more true if we remove the hypothesis "D isfinite". If we take
D the set of al Pi=1, then D have no o.m.m.. Indeed, if T isan o.m.m. for D, let T" its
head normal form. By proposition 2.2.1, T'=IXj...IXc(Xj)t1...th Where e=1 or 2, and, by
theorem 5.1.1, T' also isan o.m.m. for D. It is easy to prove that T' is not an o.m.m. for
the l-term P.

Proof of theorem 5.4.3. Let D={t3,...,tn} be afinite set of b-normal 1-terms. Gathering
the I-terms having the same by-normal form, we can write D=where Dj={t,... t} 1<i=m,
for al 1=<i=m,and 1<j,'sm, toy=tby, and for all 1<i,i'sm,tby=by.

Lemma 5.4.4. Let t,t' be b-normal I-terms. If to b, then there is a b-normal I-term u,
such that us,t, and ust'.

Proof. By induction on t and t'. If t:,t', then there is ab-normal 1-term v, such that t5,v,
and t'5yv. If v=Ix1...1Xn(Y)V1...Vm, then, by lemma5.3.3,

t=IX1... Xply1... lyk(Y)V'1...Vimu1... Uk, and t'=Ix1...IXply1.. dyr(Y)V'1...V'"m  Wi...wy
where V'i5yvj, V"iSyvj 1<i<m, UjSyY;j 1=j=k, yj=y does not appear in Vvi,...Vm, Wj5yY;j
1=j=r,and y;=ydoes not appear in v1,...vm. Assume that k=r. By induction hypothesis,
let & be ab-normal 1-term, such that g5,Vv'i, and g5yVv"j 1<i=m,and bj be a b-normal 1-
term, such that bj5,uj, and bj5,w; 1<j=k Let u=Ixy...Ixply1...lyr(y)as...ambz1...
bkWi+1...Wr. It is clear that uisab-normal 1-term, and that uSyt, and us,t'. m
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Any-bound for aset B={uy,...,um} isab-normal I-term u, such that us,u; 1<i=m.

Corollary 5.4.5. Every finite set B of b-normal I- terms having all the same y-normal
form has an y-bound.

Proof. By induction on the number of 1-terms of B using lemma5.4.4. ®

By corollary 5.4.4, let uj be a y-bound for D; 1<i=m. By theorem 5.4.2, the set {uj,
...,um} has an o.m.m., therefore, by theorem 5.3.1, D has an o.m.m.. B (of theorem
5.4.3)

5.5 Computation time of a storage oper ator

Lemma 5.5.1. Let (tj)1<i<nand (t'j)1<i<nbe sequences of I-terms, such that :
1) For all 1=i=nt;>'t.

2) For all 1<i=nd, ti=(U)Vi 1.. Vi,ri, 'i=(U'i)Vi 1.. Vi,ri, and U'iY Ui+ 1.

3) t'h=(f)v1...vy wherefisavariable.

Thent)'t'y, and tps(ty)=n(ty,t')=+.

Proof. By induction on n.

n=1: trivia

for n>2 : Let nj=n(t;,t'j) and mj=n(u’j,uj+1). By induction hypothesis, we have to)'t',, and
n(ta,t'h)=+.

u'1y up, therefore, by theorem 1.2.1, for some w, (U'1)V11...ViriYW, (U2V11...
vinyw, and  n((U1)va1...VLrwW)=n((Uva 1. Vi w)Hn(u'nu)= - n((u2vy ...
V1,r1,W)+my.

Thereforet'y)'t'y, and n(t'y,t'n)=n(t'y,w)+n(w,t'n). Thereforet1Y't'n, and
tps(ta)=n(ta,t'n)=n(ts,t')+n(t'r,w)+n(w,t'n)=n1+my++=+.m

Theorem 5.5.2. Let t be a closed b-normal I-term, and T a closed [-term.
If Tis an omum. for t, there are constants ATt and Brt, such that for every hi:pt,

tps(Thif)<Ar (Tps(ht)+ B t.

Proof.
If typ[t, denote by b(t,t’), the number of bo-reductions used in this reduction.

For every vaL[], we define D(v) by inductionon v :
- If [u]<a/x> is the head redex of v, then D(v)=u;
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- If not, D(v)=0 where o is a constant.
Let h be at-specia application. For every uaST (t)"{ o}, we define the integer n,(u) by :
- Nh(X)=nK(0)=0;
- np(Ixu)=n(h(Ixu),Ixh(u)) ;
- M((U)V)=n(h((u)v),(h(u))h(v)).
If Tisano.m.m. fort, then
Tl e Oullta<a/x1>ly1,. .. [tm] <am/Xm>/ym], and t:pyt. There is a sequence of 1[]-
terms to=T[t]f ta,....th=()te[[t1]<ar/X1>ly1,....[tm] <am/Xm>Iym], such that tj-1> ot or t;-
12 [joti 1=i=n.
Let At =Max{number of boxes directed by u and appearing in head position of t;
O=i=n,uAST(t)}, and BT t=b(to,tn).
Let ht:pt. By lemma4.4, let h be at-special application, such that h(t)=ht.
By the proof of lemma 4.7, and by lemma5.5.1, we have
tps(Thif)=b(to,tn)+ .
By theorem 1-3, Tps(ht)=ny(u), and then tps(Thf)<Ar (Tps(hy)+BT . B

Remark. By the proof of theorem 5.5.2, we have tps(Thif)=AT (Tps(hy)+BT if and

only if, for all uaST(t), AT =the number of boxes directed by u and appearing in head
position of tj O<i=n.
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