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CONSTRUCTING STRONGLY EQUIVALENT NONISOMORPHIC

MODELS FOR UNSUPERSTABLE THEORIES, PART A

Tapani Hyttinen and Saharon Shelah∗

Abstract

We study how equivalent nonisomorphic models an unsuperstable theory can
have. We measure the equivalence by Ehrenfeucht-Fraisse games. This paper con-
tinues the work started in [HT].

1. Introduction

In [HT] we looked how equivalent nonisomorphic models first-order theories
can have i.e. we tried to strengthen S.Shelah’s nonstructure theorems. We used
Ehrenfeucht-Fraisse games to measure the equivalence (see Definition 2.2 below). If
the theory is unstable or it has OTOP or it is superstable with DOP then we were
able to prove maximal results by assuming strong cardinal assumptions. We showed
that if λ<λ = λ then there is a model A of the theory such that |A| = λ and for
all λ+, λ-trees t there is a model B such that |B| = λ , A 6∼= B and ∃ has a winning
strategy in the Ehrenfeucht-Fraisse game G2

t (A,B) .
By assuming only that the theory is unsuperstable we were not able to say much

if we tried to measure the equivalence by the length of Ehrenfeucht-Fraisse games in
which ∃ has a winning strategy. But if instead, we measured the equivalence by the
length of Ehrenfeucht-Fraisse games in which ∀ does not have a winning strategy,
then we were able to get rather strong results.

In this paper we look the unsuperstable case again. We measure the equivalence
by the length of Ehrenfeucht-Fraisse games in which ∃ has a winning strategy. We
study λ+, κ+ 1-trees (see Definition 2.1) and give a rather complete answer to the
question: how equivalent nonisomorphic λ+, κ+1-trees can there be? In Chapter 3
we show that if λ = µ+ , cf(µ) = µ , κ = cf(κ) ≤ µ and λ<κ = λ then there are
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λ+, κ+ 1-trees I0 and I1 such that |I0| ∪ |I1| ≤ λκ , I0 6∼= I1 and

I0 ≡λ
µ×κ I1

(see Definition 2.2 and Definition 2.4 (iii)). Instead of two such trees it is possible
to get 2λ such trees.

In chapter 4 we show that if in addition λ ∈ I[λ] then the result of Chapter 3
is best possible.

As in [HT], this implies that essentially the same is true also for the models of
the canonical example of unsuperstable theories.

In [HS] we will prove the results of chapter 3 for unsuperstable theories in
general.

This paper was born during the first author’s visit to the second author at
Rutgers University. The first author wishes to express his gratitude to Rutgers
University for the hospitality shown to him during the visit.

2. Basic definitions

In this chapter we define the basic concepts we shall use.

2.1 Definition. Let λ be a cardinal and α an ordinal. Let t be a tree (i.e.
for all x ∈ t , the set {y ∈ t| y < x} is well-ordered by the ordering of t). If x, y ∈ t

and {z ∈ t | z < x} = {z ∈ t | z < y} , then we denote x ∼ y , and the equivalence
class of x for ∼ we denote [x] . By a λ, α -tree t we mean a tree which satisfies:

(i) |[x]| < λ for every x ∈ t ;
(ii) there are no branches of length ≥ α in t ;
(iii) t has a unique root;
(iv) if x, y ∈ t , x and y have no immediate predecessors and x ∼ y , then

x = y .
If t satisfies only (i), (ii) and (iii) above, we say that t is a wide λ, α -tree.

Note that in a λ, α -tree each ascending sequence of a limit length has at most
one supremum, but in a wide λ, α -tree an ascending sequence may have more than
one supremum.

2.2 Definition. Let t be a tree and κ a cardinal. The Ehrenfeucht-Fraisse
game of length t between models A and B , Gκ

t (A,B) , is the following. At each
move α :

(i) player ∀ chooses xα ∈ t , κα < κ and either aβα ∈ A , β < κα or bβα ∈ B ,
β < κα , we will denote this sequence of elements of A or B by Xα ;

(ii) if ∀ chose from A then ∃ chooses bβα ∈ B , β < κα , else ∃ chooses aβα ∈ A ,
β < κα , we will denote this sequence by Yα .

∀ must move so that (xβ)β≤α form a strictly increasing sequence in t . ∃ must move
so that {(aβγ , b

β
γ)|γ ≤ α, β < κγ} is a partial isomorphism from A to B . The player

who first has to break the rules loses.
We write A ≡κ

t B if ∃ has a winning strategy for Gκ
t (A,B) .

2.3 Remark. Notice that the Ehrenfeucht-Fraisse game Gκ
t (A,B) need not

be determined, i.e. it may happen that neither ∃ nor ∀ has a winning strategy for
Gκ

t (A,B) (see [MSV]).
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2.4 Definition. Let t and t′ be trees.
(i) If x ∈ t , then pred(x) denotes the sequence (xα)α<β of the predecessors of

x , excluding x itself, ordered by < . Alternatively, we consider pred(x) as a set.
The notation succ(x) denotes the set of immediate successors of x . If x, y ∈ t and
there is z , such that x, y ∈ succ(z) , then we say that x and y are brothers.

(ii) By t<α we mean the set

{x ∈ t| the order type of pred(x) is < α}.

Similarly we define t≤α .
(iii) If α and β are ordinals then by α + β and α × β we mean ordinal sum

and product (see [Je]). Notice that ordinals are also trees.

3. On nonstructure of trees of fixed height

In this chapter we will assume that λ = µ+ , cf(µ) = µ , κ = cf(κ) ≤ µ and
λ<κ = λ .

Let I+n = {η ∈ ≤κλ| η(0) = n} − {()} and I−n = {η ∈ <κλ| η(0) = n} − {()} ,
n = 0, 1. We consider these as trees ordered by initial segment relation. Because
for all δ ≤ κ , (I+n )<δ = (I−n )<δ (see Definition 2.4), we denote this set by I<δ

n and
similarly we define I≤δ

n = (I+n )≤δ for all δ < κ .
If η ∈ I+0 and ξ ∈ I+1 then we write ηR−ξ and ξR−η iff η(j) = ξ(j) for all

0 < j < min{length(η), length(ξ)} even. For all i < κ odd, we define Pi to be the
set of all η ∈ I−0 such that length(η) = i . Let P =

⋃
{Pi| i < κ, i odd}

3.1 Lemma. There is a partition {Sη| η ∈ P} of λ such that for all η ∈ P

(i) {δ ∈ Sη| cf(δ) = µ} is stationary;
(ii) if δ ∈ Sη and cf(δ) = µ then δ = sup(δ ∩ Sη) .

Proof. Because |P | = λ we can find a partition of {α < λ| cf(α) = µ} which
satisfies (i). Let this partition be {S′

ηγ
| γ < λ} , where {ηγ | γ < λ} is an enumeration

of P . Let {σγ | γ < λ} be an enumeration of {α < λ| cf(α) = µ} so that if σγ > σγ′

then γ > γ′ . We may assume that if δ ∈ S′
ηγ

, γ 6= 0, then δ > σγ . By induction on

α ≤ λ we define sets Sα
ηγ

. Let S0
η0

= S′
η0

∪ σ0 and for all γ > 0, S0
ηγ

= S′
ηγ

. If α is

limit ordinal and cf(α) ≥ µ , then we define Sα
ηγ

=
⋃

β<α Sβ
ηγ

for all γ < λ . Assume
α is successor or limit ordinal with cf(α) < µ . Let σ′

α = ∪δ<ασδ . Then we choose
Sα
ηγ

so that (a)-(f) below are satisfied:

(a)
⋃

δ<α Sδ
ηγ

⊆ Sα
ηγ

,
(b) Sα

ηγ
∩ Sα

ηγ′
= ∅ if γ 6= γ′ ,

(c) σα ⊆
⋃

γ<λ S
α
ηγ

,

(d) Sα
ηγ

− σα = S0
ηγ

− σα for all γ < λ ,
(e) if σα ∈ S′

ηγ
then σα = sup(σα ∩ Sα

ηγ
) ,

(f) if γ ≤ α then (σα − σ′
α) ∩ Sα

ηγ
6= ∅ .

Then clearly Sηγ
= Sλ

ηγ
, γ < λ , is a partition of λ and (i) is satisfied. We show

that also (ii) is satisfied: If σδ ∈ Sηγ
and δ is successor or limit with cf(δ) < µ

then by (e) σδ = sup(σδ ∩ Sηγ
) . Otherwise we know that σδ > σγ i.e. δ > γ and

sup {σβ | β < δ} = σδ . By (f) this implies that σδ = sup(σδ ∩ Sηγ
) .
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3.2 Definition. We define a relation R ⊆ (I+0 − I−0 ) × (I+1 − I−1 ) . Let
η ∈ I+0 − I−0 and ξ ∈ I+1 − I−1 . Then (η, ξ) ∈ R iff

(i) ηR−ξ ;
(ii) for every j < κ odd, η and ξ satisfy the following: for all ρ ∈ P , η(j) ∈ Sρ

iff ξ(j) ∈ Sρ and if η(j) 6∈ Sη↾j , then η(j) = ξ(j) ;
(iii) the set Wκ

η,ξ is bounded in κ , where Wκ
η,ξ is defined in the following way:

Let δ ≤ κ , η ∈ I+0 − I<δ
0 and ξ ∈ I+1 − I<δ

1 then

W δ
η,ξ = {j < δ| j odd and η(j) ∈ Sη↾j and

cf(η(j)) = µ and ξ(j) ≥ η(j)}.

In order to simplify the notation we write ηRξ and ξRη for (η, ξ) ∈ R . Notice
that by this we do not try to claim that the relation is symmetric, in fact it is
antisymmetric, if (η, ξ) ∈ R then always η ∈ I+0 − I−0 and ξ ∈ I+1 − I−1 . We also
take liberty to write W δ

ξ,η for W δ
η,ξ when it is convinient.

Our first goal in this chapter is to prove the following theorem. We will prove
it in a sequence of lemmas.

3.3 Theorem. If I0 and I1 are such that
(i) I−n ⊆ In ⊆ I+n , n = 0, 1

and
(ii) if ηRξ , η ∈ I+0 and ξ ∈ I+1 then η ∈ I0 iff ξ ∈ I1 ,

then I0 ≡λ
µ×κ I1 .

From now on in this chapter we assume that I0 and I1 satisfy (i) and (ii) above.

3.4 Definition. Let α < κ .
(i) Gα is the family of all partial functions f satisfying:
(a) f is a partial isomorphism from I0 to I1 ;
(b) dom(f) and rng(f) are closed under initial segments and for some β < λ

they are included in {η ∈ I+0 | for all j < κ, η(j) < β} and {ξ ∈ I+1 | for all j <

κ, ξ(j) < β} , respectively;
(c) if f(η) = ξ then ηR−ξ ;
(d) if η ∈ I0 , ξ ∈ I1 , f(η) = ξ and length(η) = j + 1 , j odd, then η and ξ

satisfy the following: for all ρ ∈ P , η(i) ∈ Sρ iff ξ(i) ∈ Sρ and if η(j) 6∈ Sη↾j , then
η(j) = ξ(j) ;

(e) assume η ∈ I+0 − I<δ
0 and {η ↾ γ| γ < δ} ⊆ dom(f) and let ξ =

⋃
γ<δ f(η ↾

γ) , then W δ
η,ξ has order type ≤ α ;

(f) if η ∈ dom(f) then {γ < λ| η ⌢ (γ) ∈ dom(f)} = {γ < λ| f(η) ⌢ (γ) ∈
rng(f)} is an ordinal.

(ii) We define Fα ⊆ Gα by replacing (f) above by
(f’) if η ∈ dom(f) then {γ < λ| η ⌢ (γ) ∈ dom(f)} = {γ < λ| f(η) ⌢ (γ) ∈

rng(f)} is an ordinal of cofinality < µ .

3.5 Definition. For f, g ∈ Gα we write f ≤ g if f ⊆ g and if γ < δ ≤ κ ,
η ∈ I+0 − I<δ

0 , η ↾ γ ∈ dom(f) , η ↾ (γ + 1) 6∈ dom(f) , η ↾ j ∈ dom(g) for all j < δ

and ξ =
⋃

j<δ g(η ↾ j) , then W
γ
η,ξ = W δ

η,ξ .
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Notice that f ≤ g is a transitive relation.

3.6 Remark. Let f ∈ Gα .
(i) We define f by

dom(f) = dom(f) ∪ {η ∈ I0| η ↾ γ ∈ dom(f) for all γ < length(η)

and length(η) is limit}

and if η ∈ dom(f)− dom(f) then

f(η) =
⋃

γ<length(η)

f(η ↾ γ).

(ii) If f ∈ Fα then f ∈ Fα and if f ∈ Gα then f ∈ Gα .

3.7 Lemma. Assume α < κ , δ ≤ µ , fi ∈ Fα for all i < δ and fi ≤ fj for all
i < j < δ .

(i)
⋃

i<δ fi ∈ Gα .
(ii) If δ < µ then

⋃
i<δ fi ∈ Fα and fj ≤

⋃
i<δ fi for all j < δ .

Proof. Follows immediately from the definitions.

3.8 Lemma. If δ < κ , fi ∈ Gi for all i < δ and fi ⊆ fj for all i < j < δ

then ⋃

i<δ

fi ∈ Gδ.

Proof. Follows immediately from the definitions.

3.9 Lemma. If f ∈ Fα and A ⊆ I0 ∪ I1 , |A| < λ , then there is g ∈ Fα such
that f ≤ g and A ⊆ dom(g) ∪ rng(g) .

Proof. Let η ∈ dom(f) and let

{i < λ| η ⌢ (i) ∈ dom(f)} = {i < λ| f(η) ⌢ (i) ∈ rng(f)} = δ,

cf(δ) < µ , and let β > δ . We show first that there are fηβ ∈ Fα and γ ≥ β such
that fηβ ≥ f , cf(γ) < µ and

{i < λ| η ⌢ (i) ∈ dom(fηβ)} = {i < λ| f(η) ⌢ (i) ∈ rng(fηβ)} = γ.

Let length(η) = j . If j is even it is trivial to find fηβ and γ . So we assume
that j is odd. We choose γ ≥ β so that cf(γ) < µ . For any i ∈ γ − δ satisfying:

(i) cf(i) = µ

and
(ii) i ∈ Sη ,

we choose ji ∈ i − δ so that ji ∈ Sη , cf(ji) < µ and if i 6= i′ then ji 6= ji′ . These
ji exist because sup i ∩ Sη = i and i 6= δ .

Then we define fηβ(η ⌢ (i)) = f(η) ⌢ (ji) and fηβ(η ⌢ (ji)) = f(η) ⌢ (i) .
For all other i ∈ γ − δ we let fηβ(η ⌢ (i)) = f(η) ⌢ (i) . It is easy to see that
fηβ ∈ Fα and fηβ ≥ f .
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It is easy to see that we can choose ηi ∈ I0 and βi < λ , i < µ , so that the
following functions are well-defined:

(i) go = f ;
(ii) gi+1 = (gi)

ηiβi ;
(iii) gi = (

⋃
j<i gj), if i is limit;

and A ⊆ dom(
⋃

i<µ gi) ∪ rng(
⋃

i<µ gi) . Furthermore we can choose ηi and βi so
that if i 6= i′ then ηi 6= ηi′ . Then g =

⋃
i<µ gi is as wanted.

3.10 Lemma. If f ∈ Gα , then there is g ∈ Fα+1 such that f ⊆ g .

Proof. Essentially as the proof of Lemma 3.9.
Theorem 3.3 follows now easily from the lemmas above.
In the rest of this chapter we prove that there are trees I0 and I1 which satisfy

the assumptions of Theorem 3.3 and are not isomorphic. For this we use the following
Black Box. We define H<κ+(λ) to be the smallest set H such that

(i) λ ⊆ H

and
(ii) if x ⊆ H and |x| ≤ κ then x ∈ H .

3.11 Theorem. ([Sh3] Lemma 6.5) There is W = {(M
α
, ηα)| α < α(∗)} such

that:
(i) M

α
= (Mα

i | i ≤ κ) is an increasing continuous elementary chain of models
belonging to H<κ+(λ) and ηα ∈ κλ is increasing;

(ii) Mα
i ∩ κ+ is an ordinal, κ + 1 ⊆ Mα

i , Mα
i ∈ H<κ+(ηα(i)) , (Mα

j | j ≤ i) ∈
Mα

i+1 and ηα ↾ i ∈ Mα
i+1 ;

(iii) In the following game, G(κ, λ,W ) , player ∀ does not have winning strategy:
The play lasts κ moves, in the i-th move ∀ chooses a model Mi ∈ H<κ+(λ) and
then ∃ chooses γi < λ . ∀ must choose models Mi , i < κ , so that (Mi| i ≤ κ)
is an increasing continuous elementary chain of models, Mi ∩ κ+ is an ordinal,
κ + 1 ⊆ Mi and (Mj| j ≤ i) ∈ Mi+1 . In the end ∃ wins the play if for some
α < α(∗) , ηα = (γi| i < κ) and Mi = Mα

i for all i < κ ;
(iv) ηα 6= ηβ for α 6= β .

Notice that in the game above ∀ can choose the similarity type of models freely
as long as other requirements are satisfied.

We define I0 and I1 with help of W . We do this by defining Jα , ¬Jα , Kα

and ¬Kα by induction on α < α(∗) so that Jα ∩ ¬Jα = ∅ and Kα ∩ ¬Kα = ∅ and
then letting I0 = I−0 ∪

⋃
α<α(∗) Jα and I1 = I−1 ∪

⋃
α<α(∗)Kα . We assume that we

have well-ordered I+0 − I−0 .
We say that α < α(∗) is active, if there is η ∈ I+0 − I−0 such that α and η

satisfy (i)-(vii) or (i)-(v), (vi’) and (vii’) below.
(i) For all i ≤ κ , the similarity type of Mα

i is {∈, I−0 , I−1 , g} where ∈ and g

are two-ary relation symbols and I−0 and I−1 are unary relation symbols;
(ii) for all i ≤ κ ,

Mα
i ↾ {∈, I−0 , I−1 } ≺ (H<κ+(λ),∈, I−0 , I−1 );

(iii) for all i < κ , η ↾ i ∈ Mα
i+1 ;
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(iv) for all i ≤ κ , Mα
i |= ”g is an isomorphism from I−0 to I−1 ”;

(v) for all ω ≤ i < κ , if i = γ + 2k for some γ limit and k < ω then
η(i) = ηα(γ + k) , and for all i < ω , if i = 2k + 2 then η(i) = ηα(k) ;

let
ξ =

⋃

i<κ

gα(η ↾ i),

where gα is the interpretation of g in Mα
κ ,

(vi) ηR−ξ

(vi’) η R−6 ξ

(vii) for all i < κ odd, η(i) satisfies:
(a) cf(η(i)) = µ and η(i) ∈ Sη↾i ;
(b) Mα

κ |= ”the set {η ↾ i ⌢ (j)| j < η(i)}∪ {g(η ↾ i) ⌢ (j)| j < η(i)} is closed
under g and g−1”

(vii’) there is jη < κ such that for all i > jη odd the following holds:
(a) if i = γ + 4n+ 1 for some limit ordinal γ and n ∈ ω then ξ(i) ∈ Sη↾i

(b) if i = γ + 4n + 3 for some limit ordinal γ and n ∈ ω then η(i) ∈ Sη↾i ,
cf(η(i)) = µ and ξ(i) ≥ η(i) .

If α is active and there exists such η that α and η satisfy (i)-(vii) above, then
we define ηα to be the least such η ∈ I+0 − I−0 in the well-ordering of I+0 − I−0 .
Otherwise we let ηα to be the least η ∈ I+0 − I−0 in the well-ordering of I+0 − I−0
such that α and η satisfy (i)-(v), (vi’) and (vii’) above. Let

ξα =
⋃

i<κ

gα(ηα ↾ i),

where gα is the interpretation of g in Mα
κ . If α is active and ηα R−6 ξα then let

jα = jηα
.

Let R be the transitive and reflexive closure of R .

3.12 Lemma. If γ is active then ηγ R6 ξγ .

Proof. Clearly we may assume that ηγR
−ξγ . For a contradiction assume, that

there are ρ0, ..., ρn such that ρ0 = ηγ , ρn = ξγ , for all m < n , ρmRρm+1 and for
all k < m ≤ n , ρk 6= ρm . We choose i < κ so that

(α) i is odd;
(β ) for all k < m ≤ n , ρk ↾ i 6= ρm ↾ i ;
(γ ) for all m < n , Wκ

ρm,ρm+1
⊆ i .

Because ηγ(i) ∈ Sηγ↾i and cf(ηγ(i)) = µ , ρ1(i) < ρ0(i) and ρ1(i) ∈ Sηγ↾i . By the
definition of R , ρ2(i) ∈ Sηγ↾i . By (β ) above ρ2(i) = ρ1(i) and ρ3(i) = ρ2(i) . We
can continue this and get ρn(i) = ... = ρ1(i) . So ηγ(i) > g(ηγ ↾ (i + 1))(i) which
contradicts with (vii)(b) in the definition of active.

3.13 Lemma. Let α and β be active, α 6= β , ξαRξβ and ηα R−6 ξα then
ηβR

−ξβ .

Proof. For a contradiction assume ηβ R−6 ξβ . By (vii’) (a) in the definition
of active we can find i < κ odd such that ξα(i) ∈ Sηα↾i and ξβ(i) ∈ Sηβ↾i . By
Definition 3.2 (ii) this implies ξα R6 ξβ , a contradiction.
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3.14 Lemma. Let α and β be active.
(i) If α 6= β then ηα R6 ηβ .
(ii) If ηαR

−ξα then for all active γ , ηα R6 ξγ .

Proof. (i) By (vii) (a) and (or) (vii’) (b) in the definition of active there is
i < κ odd such that ηα(i) ∈ Sηα↾i , ηβ(i) ∈ Sηβ↾i and ηα ↾ i 6= ηβ ↾ i . By Definition
3.2 (ii) this implies ηα R6 ηβ .

(ii) If γ = α the claim follows immediately from Lemma 3.12. So assume γ 6= α .
We may also assume ηαR

−ξγ , because otherwise we have proved the claim. Then
ηγ R−6 ξγ . By (vii) (a) and (vii’) (a) in the definition of active we can find i < κ

odd such that ηα(i) ∈ Sηα↾i , ξγ(i) ∈ Sηγ↾i and ηα ↾ i 6= ηγ ↾ i . As above this implies
ηα R6 ξγ .

3.15 Lemma. Let α and β be active. If ηαRξβ then there is lαβ < κ such
that for all i > lαβ , i = γ + 4k + 3 , γ limit and k ∈ ω , ηα(i) > ξβ(i) .

Proof. By Lemma 3.14 (ii) we may assume ηα R−6 ξα . For a contradiction
assume, that there are ρ0, ..., ρn such that ρ0 = ηα , ρn = ξβ , for all m < n ,
ρmRρm+1 and for all k < m ≤ n , ρk 6= ρm . We choose lαβ < κ so that

(α) jηα
< lαβ ;

(β ) for all k < m ≤ n , ρk ↾ i 6= ρm ↾ i ;
(γ ) for all m < n , Wκ

ρm,ρm+1
⊆ i .

Let i > lαβ , i = γ + 4k + 3, γ limit and k ∈ ω . Because ηα(i) ∈ Sηα↾i and
cf(ηα(i)) = µ , ρ1(i) < ρ0(i) and ρ1(i) ∈ Sηα↾i . By the definition of R , ρ2(i) ∈
Sηα↾i . By (β ) above ρ2(i) = ρ1(i) and ρ3(i) = ρ2(i) . We can continue this and get
ρn(i) = ... = ρ1(i) . So ηα(i) > ξβ(i) .

3.16 Lemma. There does not exist a sequence (τ0, ...τn) , n ∈ ω , n ≥ 3 , such
that

(i) for all m ≤ n there is active α such that τm = ηα or τm = ξα ,
(ii) for all m < n either
(a) τmRτm+1

or
(b) there is active α such that τm = ηα and τm+1 = ξα or τm = ξα and

τm+1 = ηα

and at least case (b) exist in the sequence,
(iii) τ0 = τn ,
(iv) for all m,m′ < n if m 6= m′ then τm 6= τm′

Proof. For a contradiction assume that such sequence exists. By (ii) (b) we
may choose the sequence so that for some α , τ0 = ξα and τ1 = ηα . Then by (iv)
and because n ≥ 3, τ1Rτ2 . By Lemma 3.12 ηα R6 ξα and so we may drop elements
from the sequence so that (i)-(iv) remain true, there are still at least 4 elements in
the sequence and

(*) if m < n− 1 and τmRτm+1 then τm+1 R6 τm+2 .
By induction on m < n we show that if τm R6 τm+1 then τm+1Rτm+2 and if

τm = ηβ or τm = ξβ for some β then ηβ R−6 ξβ . Above we showed that ηαRτ2 .
By Lemma 3.14 (i) τ2 = ξβ for some active β . By Lemma 3.14 (ii) ηα R−6 ξα .

8



Then by (*) above τ3 = ηβ . By (iv) and Lemma 3.14 (i) τ4 = ξγ for some active γ ,
γ 6= β and ηβRξγ . By Lemma 3.14 (ii) ηβ R−6 ξβ . We can continue this and get
the claim.

So there are active α0, ..., αm such that the sequence is of the following form:

(ξα0
, ηα0

, ξα1
, ηα1

, ..., ηαm
, ξα0

).

We choose i < κ so that for all k ≤ m , i > jαk
, for all k < m , i > lαkαk+1

,
i > lαmα0

and i = γ + 4p + 3 for some limit γ and p ∈ ω . By (vii’)(b) ξαo
(i) ≥

ηα0
(i) . By Lemma 3.15 ηα0

(i) > ξα1
(i) . We can continue this and finally we get

ηαm
(i) > ξα0

(i) . So ξα0
(i) > ξα0

(i) , a contradiction.
We define now Jα , ¬Jα , Kα and ¬Kα by induction on α < α(∗) . We say that

(Jα,¬Jα, Kα,¬Kα) is closed if
(i) Jα ∪Kα and ¬Jα ∪ ¬Kα are closed under R ,
(ii) if β is active then ηβ ∈ Jα iff ξβ ∈ ¬Kα and ηβ ∈ ¬Jα iff ξβ ∈ Kα ,
(iii) Jα ∩ ¬Jα = ∅ and Kα ∩ ¬Kα = ∅ .
We assume that for all β < α we have defined Jβ , ¬Jβ , Kβ and ¬Kβ so that

(Jβ ,¬Jβ, Kβ,¬Kβ) is closed.
If α is not active or for some β < α , ηα ∈ Jβ ∪¬Jβ then we let Jα =

⋃
β<α Jβ ,

¬Jα =
⋃

β<α ¬Jβ , Kα =
⋃

β<α Kβ and ¬Kα =
⋃

β<α ¬Kβ .
If α is active and for all β < α , ηα 6∈ Jβ ∪¬Jβ then we let (Jα,¬Jα, Kα,¬Kα)

be such that it is closed and Jα ⊇ {ηα} ∪
⋃

β<α Jβ , ¬Jα ⊇
⋃

β<α ¬Jβ , Kα ⊇⋃
β<α Kβ and ¬Kα ⊇

⋃
β<α ¬Kβ . We prove the existence of these set by defining

sets J i
α , ¬J

i
α , K

i
α and ¬Ki

α by induction on i < |α(∗)|+ .
We let J0

α = {ηα} ∪
⋃

β<α Jβ , ¬J
0
α =

⋃
β<α ¬Jβ , K

0
α =

⋃
β<α Kβ and ¬K0

α =⋃
β<α ¬Kβ . If i < |α(∗)|+ is limit we let J i

α =
⋃

j<i J
j
α and similarly for the other

sets. If i = j + 1 and odd then we let the sets J i
β , ¬J

i
β , K

i
β and ¬Ki

β be the least

sets so that J i
α ⊇ Jj

α , ¬J i
α ⊇ ¬Jj

α , Ki
α ⊇ Kj

α , ¬Ki
α ⊇ ¬Kj

α and J i
α ∪ Ki

α and
¬J i

α ∪ ¬Ki
α are closed under R . If i = j + 1 and even then if there is not active γ

such that
(1) ηγ ∈ Jj

α and ξγ 6∈ ¬Kj
α or

(2) ηγ ∈ ¬Jj
α and ξγ 6∈ Kj

α or
(3) ξγ ∈ Kj

α and ηγ 6∈ ¬Jj
α or

(4) ξγ ∈ ¬Kj
α and ηγ 6∈ Jj

α

then we let J i
α = Jj

α and similarly for the other sets. Otherwise we let γ be the
least such ordinal and define

case (1): J i
α = Jj

α , ¬J
i
α = ¬Jj

α , K
i
α = Kj

α and ¬Kj
α ∪ {ξγ} ;

case (2): J i
α = Jj

α , ¬J
i
α = ¬Jj

α , K
i
α = Kj

α ∪ {ξγ} and ¬Kj
α ;

case (3): J i
α = Jj

α , ¬J
i
α = ¬Jj

α ∪ {ηγ} , K
i
α = Kj

α and ¬Kj
α ;

case (4): J i
α = Jj

α ∪ {ηγ} , ¬J
i
α = ¬Jj

α , K
i
α = Kj

α and ¬Kj
α .

Finally we define Jα =
⋃

i<|α(∗)|+ J i
α and similarly for the other sets. If these

sets are not as required then for some i = j+1 < |α(∗)|+ even we have defined f.ex.
¬Ki

α = ¬Kj
α ∪ {ξγ} while ξγ belongs already to Kj

α . If i is the least such ordinal
then we can easily find a circle such that it contradicts Lemma 3.16.

So the sets Jα , ¬Jα , Kα and ¬Kα exist.
We define I0 = I−0 ∪

⋃
α<α(∗) Jα and I1 = I−1 ∪

⋃
α<α(∗)Kα .
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3.17 Lemma. I0 6∼= I1 .

Proof. For a contradiction assume g : I0 → I1 is an isomorphism. By Theorem
3.11 (iii) there exists an active α < α(∗) such that for all i ≤ κ ,

Mα
i ≺ (H<κ+(λ),∈, I−0 , I−1 , g).

But then ηα ∈ I0 iff ξα 6∈ I1 and g(ηα) = ξα , which contradicts the assumption
that g is an isomorphism.

3.18 Conclusion. Assume λ = µ+ , cf(µ) = µ , κ = cf(κ) ≤ µ and λ<κ = λ .
Then there are λ+, κ+ 1 -trees I0 and I1 such that I0 6∼= I1 and

I0 ≡λ
µ×κ I1.

If λκ = λ then I0 and I1 are of cardinality λ .

Notice that if we replace Theorem 3.11 with a slightly stronger black box (see
[Sh3]), we can, instead of two λ+, κ-trees, get 2λ λ+, κ-trees such that any two of
them satisfy Conclusion 3.18.

4. On structure of trees of fixed height

In this chapter we will show that trees of fixed height are isomorphic if they are
equivalent up to some relatively small tree. This implies that essentially the same is
true for the models of the canonical example of unsuperstable theories (see [HT]).

4.1 Definition. ([Sh1]) Let λ be a regular cardinal. We define I[λ] to be the
set of A ⊆ λ such that there exist a cub E ⊆ λ and P = {Pα| α < λ} satisfying

(i) Pα is a set of subsets of α and |Pα| < λ ;
(ii) for all limit δ ∈ A ∩E such that cf(δ) < δ , there exists C ⊆ δ such that
(a) the order type of C is < δ and sup C = δ ;
(b) C ∩ α ∈

⋃
β<δ Pβ for all α < δ .

Notice that for example ω1 ∈ I[ω1] : Let E ⊂ ω1 be the set of all limit ordinals
< ω1 and P = {Pα| α < λ} such that Pα = {B ⊆ α| |B| < ω} . Then (i) and (ii)
above are satisfied. For further properties of I[λ] see [Sh1].

4.2 Definition. Let λ be a regular cardinal and t a λ+, λ-tree of cardinality
λ . Let {xi| i < λ} be an enumeration of t and let t′ be a subtree of t . Then S[t′]
is the set of those limit ordinals δ < λ which satisfy the following condition (*):

(*) {xi ∈ t′| i < δ} contains a branch of length δ .

From now on we assume that when ever we talk about a tree t , we have fixed
an enumeration {xi| i < |t|} for it. We assume that the enumeration is such that if
xi < xj then i < j .

4.3 Definition. Let λ and κ be regular cardinals, κ < λ and t a λ+, λ-
tree of cardinality λ . Let {xi| i < λ} be the enumeration of t . We say that t is
λ, κ-large if t satisfies the following condition: There are sets Eξ , ξ ≤ κ , such that

(i) Eξ ⊆ t and if ξ 6= ξ′ then Eξ ∩ Eξ′ = ∅ ;

10



(ii) for ξ < δ and x ∈ Eδ there is a unique y ∈ Eξ such that y < x ;
(iii) if δ ≤ κ is limit, xξ ∈ Eξ for all ξ < δ and (xξ)ξ<δ is increasing then there

is y ∈ Eδ such that xξ < y for all ξ < δ ;
(iv) if ξ < κ , x ∈ Eξ then we write

tx = {y ∈ t| x ≤ y and there is z ∈ Eξ+1 such that y < z}

and require than there exists a set Θ of regular cardinals < λ such that
(a) S[tx] ∪ {δ < λ| cf(δ) < δ, cf(δ) ∈ Θ} contains a cub set (in λ);
(b) {δ < λ| cf(δ) < δ, cf(δ) ∈ Θ, δ 6∈ S[tx]} ∈ I[λ] ;
(c) for δ ∈ Θ there is y ∈ tx such that the order type of {z| x ≤ z < y} is δ ;
(v) if γ = β + 1 < κ , (xξ)ξ<δ is an increasing sequence in t , x0 ∈ Eβ and for

all ξ < δ there is yξ ∈ Eγ such that xξ < yξ , then there is y ∈ Eγ such that xξ < y

for all ξ < δ .

Notice that if λ = µ+ , λ ∈ I[λ] and κ < λ is regular then µ × κ + 1 is a
λ, κ-large λ+, λ-tree. If λ is weakly compact then there is no λ, κ-large λ+, λ-trees.

The proof of the theorem below is a modification of the proof of related result in
[HT]. The most conspicuous difference is the use of elementary submodels of H(λ∗) .
They are used only to make it easier to define the closures needed in the proof.

4.4 Theorem. Let λ and κ be regular cardinals, κ < λ and I0 and I1 be
λ+, κ+ 1 -trees. Assume t is a λ, κ-large λ+, λ-tree of cardinality λ . Then

I0 ≡λ
t I1 ⇔ I0 ∼= I1.

Proof. Without loss of generality we may assume that I0 and I1 are such that
if x, y ∈ I0 (∈ I1 ), they have no immediate predecessors, x ∼ y and pred(x) is of
power < κ then x = y .

Let ρ be a winning strategy of ∃ in Gλ
t (I0, I1) . We define by induction on

α ≤ κ the following:
(i) an isomorphism fα from I

≤α
0 onto I

≤α
1 ;

(ii) for each x ∈ I
≤α
0 ∪ I

≤α
1 we define an initial segment Rx = ((ai, Xi, Yi))i≤β

of a play in Gλ
t (I0, I1) , such that x ∈

⋃
i≤β(rng(Xi)∪rng(Yi)) , rng(Xi)∪rng(Yi) ⊆

I
≤α
0 ∪ I

≤α
1 for all i < β , ∃ has used ρ and if x is not a leaf then for some δ < κ

there is ax ∈ Eδ such that ai ≤ ax for all i < β . Furthermore we require that if
x < x′ then Rx is an initial segment of Rx′ and for each x ∈ I

≤α
0 fα(x) is the

element ∃ has chosen to be the image of x in Rx .
If we can do this we have clearly proved the theorem. The cases α = 0 and α

is limit are trivial. So we assume that α = γ + 1.
Let z ∈ I

≤γ
0 − ∪δ<γI

≤δ
0 . Clearly it is enough to define fα ↾ succ(z) and Rx

for all x ∈ succ(z) so that fα ↾ succ(z) is onto succ(fγ(z)) . Let y = fγ(z) and
let n : λ → t be the function that gives the enumeration of t , t = {n(i)| i < λ}
(see the assumption after Definition 4.2). Let Rz = ((ai, Xi, Yi))i≤β . By induction
assumption there is az ∈ Eδ , δ < κ , such that ai < az for all i ≤ β . Let E and
P = {Pi| i < λ} be the sets which show that

{δ < λ| cf(δ) < δ, cf(δ) ∈ Θ, δ 6∈ S[taz
]} ∈ I[λ].
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Let λ∗ be large enough, say (i10(λ))
+ . We choose Ai , i < λ , so that

(a) |Ai| < λ and Ai ≺ (H(λ∗),∈, I0, I1, t, <0, <1, <) , where <0 denotes the
ordering of I0 , <1 denotes the ordering of I1 and < denotes the ordering of t ;

(b) ρ, n, (Eξ| ξ ≤ κ), E, (Pi| i < λ), Rz, λ, β, az ∈ A0 , κ+ 1 ⊆ A0 and i ⊆ Ai ;
(c) Ai ≺ Aj if i < j and Ai = ∪j<iAj if i limit;
(d) for all i ≤ β , dom(Xi) ∈ A0 (see Definition 2.2);
(e) Ai ∩ λ is ordinal, Ai ∈ Ai+1 and Ai ∩ λ ∈ Ai+1 ;
(f) succ(z) ∪ succ(y) ⊆

⋃
i<λ Ai ;

(g) if x ∈ t ∩Ai , y ∈ t and y < x , then y ∈ Ai .
Let

C ⊆ S[taz
] ∪ {δ < λ| cf(δ) < δ and cf(δ) ∈ Θ}

be cub. We may assume that for all c ∈ C , Ac ∩ λ = c and c ∈ E .
For all i < λ we define by induction ci ∈ C and fα ↾ (succ(z) ∩ Aci) . If i is

limit then ci =
⋃

j<i cj and fα ↾ (succ(z) ∩ Aci) is already defined.
Assume that we have defined ci and fα ↾ (succ(z) ∩ Aci) as wanted and

rng(fα ↾ (succ(z) ∩ Aci)) = succ(y) ∩Aci .

Let us define ci+1 and

fα ↾ (succ(z) ∩ (Aci+1
−Aci)).

Now either ci ∈ S[taz
] or ci ∈ {δ < λ| cf(δ) < δ and cf(δ) ∈ Θ} .

(1) ci ∈ S[taz
] : Let B ∈ Aci+1 be a branch in

S[taz
] ∩ Aci = {n(j)| j < ci}

of length ci . Let h ∈ Aci be a one-one function from (succ(z) ∪ succ(y)) ∩ Aci to
Aci ∩ λ . We let the players continue the play Rz so that in the next ci moves ∀
chooses the sets {h−1(δ)} , δ < ci , from I0∪I1 and from t he chooses elements of B .
We let ∃ follow ρ . If B′ is an initial segment of B then B′ = {y ∈ t| az ≤ y < x}
for some x ∈ B . So B′ ∈ Aci , which implies that every initial segment of the play
belongs to Aci . Because Aci is closed under ρ , all the elements ∃ chooses are from
Aci . It is also easy to see that this play belongs to Aγ for all γ > ci .

By Definition 4.3 (v) we can find a ∈ Eδ+1 ∩Aci+1 , such that a is larger than
any element b ∈ t chosen by ∀ in the play above. Let

C′ ⊆ S[ta] ∪ {δ < λ| cf(δ) < δ and cf(δ) ∈ Θ}

be cub. Let ci+1 ∈ C ∩ C′ be such that ci+1 > ci . Then a ∈ Aci+1
. Now either

ci+1 ∈ S[ta] or ci+1 ∈ {δ < λ| cf(δ) < δ and cf(δ) ∈ Θ} . In the first case we let
∀ play the elements (succ(z) ∪ succ(y)) ∩ Aci+1

as above. So let us assume that
ci+1 6∈ S[ta] and ci+1 ∈ {δ < λ| cf(δ) < δ and cf(δ) ∈ Θ} . Especially then

(∗) ci+1 ∈ E ∩ {δ < λ| cf(δ) < δ, cf(δ) ∈ Θ, δ 6∈ S[ta]}.
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Let h′ ∈ Aci+1
be a one-one function from (succ(z)∪succ(y))∩Aci+1

to ci+1 =
Aci+1

∩ λ . Let
D′ ⊆ ci+1

be a set such that for all ξ < ci+1 , ξ ∩ D′ ∈
⋃

j<ci+1
Pj , sup D′ = ci+1 and the

order type of D′ is cf(ci+1) . The existence of this set follows from (*) above. Let
D = {dj | j < cf(ci+1)} be the closure of D′ in ci+1 . Because cf(ci+1) ∈ Aci+1

, it
is easy to see that in ta ∩Aci+1

there is a branch B of length cf(ci+1) . We let the
players continue the play above so that in the next cf(ci+1) moves ∀ chooses the
sets {h′−1(k)| k < dj} from I0 ∪ I1 , j < cf(ci+1) , and from t he chooses elements
of B . We let ∃ follow ρ .

Because
⋃

i<ci+1
Pi ⊆ Aci+1

, every initial segment of this play is in Aci+1
and

so all elements chosen by ∃ from I0 ∪ I1 are from Aci+1
. Then by using the moves

of ∃ we can define
fα ↾ (succ(z) ∩ (Aci+1

−Aci)).

For each x ∈ succ(z) ∩ (Aci+1
−Aci) , Rx will be the play defined above.

(2) ci 6∈ S[taz
] : Now we first let ∀ play the elements of (succ(z)∪succ(y))∩Aci

as in the second half of the case (1) and then continue as above. Notice that in
this case (also) we have to define the first cf(ci) moves so that the play belongs to
Aci+1

. We can guarantee this by choosing D′ ⊆ ci so that D′ ∈ Aci+1 .

4.5 Remark. Let λ = µ+ and κ < λ regular. Let I0 and I1 be λ+, κ + 1 -
trees. Assume λ ∈ I[λ] . Above we proved that if α = µ× κ+ 1 then

(∗) I0 ≡λ
α I1 ⇔ I0 ∼= I1.

In Chapter 3 we showed that if µ is regular then this is best possible. But if µ is
not regular then we can get better results.

If κ < cf(µ) < µ then (*) is true if α = µ and if κ = cf(µ) < µ then (*) is
true if α = µ+ 1 . This can be proved as Theorem 4.4.
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