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6 A NOTE ON LASCAR STRONG TYPES IN SIMPLE THEORIES

BYUNGHAN KIM

July 25, 1996

Abstract. Let T be a countable, small simple theory. In this paper, we prove for
such T , the notion of Lascar strong type coincides with the notion of strong type,
over an arbitrary set.

§1. Introduction. We recall from [S1] and [S2] that a type p divides over a set
A if there are a formula ϕ(x̄, ȳ) ∈ L and an A-indiscernible sequence 〈āi|i ∈ ω〉 such
that p ⊢ ϕ(x̄, ā0), and {ϕ(x̄, āi)|i ∈ ω} is inconsistent. p forks over A if there are
formulas ϕ0(x̄, ā0), ..., ϕn(x̄, ān) such that p ⊢

∨
0≤i≤n ϕi(x̄, āi), and ϕi(x̄, āi) divides

over A for each i. A first order theory T is said to be simple if , for any complete type
p ∈ S(B), p does not fork over some set A(⊆ B) with |A| ≤ |T |. We also recall that
T is unstable if there are a formula ϕ(x̄, ȳ) and tuples āi (i ∈ ω) such that |= ϕ(āi, āj)
if and only if i ≤ j ∈ ω. T is said to be stable if T is not unstable. It is well known
that every stable theory is simple.
In [K1], it was proved that for simple T , the notion of forking is equivalent to that

of dividing, and nonforking satisfies the following axioms.
(i) (Symmetry ) tp(ā/Ab̄) does not fork over A if and only if tp(b̄/Aā) does not fork

over A.
(ii) (Transitivity ) Let A ⊆ B ⊆ C. Then tp(ā/C) does not fork over A if and only

if tp(ā/B) does not fork over A and tp(ā/C) does not fork over B.
(iii) (Extension ) ([S2]) Let p be a complete type in S(A). For any set B(⊇ A), p

has a nonforking extension q in S(B).
(iv) (Local Character ) For any complete type p over B, there is a subset A of B

such that |A| ≤ |T | and p does not fork over A.
(v) (Finite Character ) Let A ⊆ B. Then tp(ā/B) does not fork over A if and only

if for each finite tuple b̄ ∈ B, tp(ā/Ab̄) does not fork over A.
In [KP], it was also shown that for simple T , nonforking satisfies the following

additional axiom.
(vi) (The Independence Theorem over a model) Suppose that, for some model M ,

tp(ā/Mb̄) does not fork over M , and p ∈ S(M). Let p1 ∈ S(Mā) and p2 ∈ S(Mb̄)
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2 BYUNGHAN KIM

be nonforking extensions of p. Then p has a nonforking extension p3 ∈ S(Māb̄) such
that p1 ∪ p2 ⊆ p3.
Moreover, it was shown conversely that any theory equipped with an abstract

relation between complete types and sets satisfying all the axioms (i) to (vi), must be
simple, and the relation must be nonforking. This characterization of simple theories
is a generalization of well known analogous fact on stable theories with axioms (i) to
(v) and the uniqueness axiom.
(vi)′ (Uniqueness) Let A ⊆ B, and p ∈ S(A). If either A is a model, or an

algebraically closed set in Ceq, then p has a unique nonforking extension in S(B).
For stable T , the Independence Theorem over an algebraically closed set ( in Ceq)

obviously follows from the uniqueness axiom. (But the Independence Theorem does
not hold over an arbitrary set. An equivalence relation having finitely many infinite
equivalence classes trivially supplies a counterexample.) Therefore it is natural to ask
for simple T , whether the Independence Theorem holds over an algebraically closed
set in Ceq. It is equivalent to ask whether the Independence Theorem holds for strong
types. This issue will be discussed in this paper.

In fact, in [KP], the Independence Theorem for Lascar strong types was proved
(for simple T ), instead of strong types (Theorem 4). Here we recall the definition of
Lascar strong type.

Definition 1. (i) By AutfA(C) we mean the subgroup of Aut(C) generated by
{f ∈ Aut(C)|f ∈ AutM(C) for some model M ⊇ A}.
(ii) Let ā, b̄ be tuples of the same length. We say that Lstp(ā/A) = Lstp(b̄/A) (ā

and b̄ have the same Lascar strong type over A) if there is f ∈ AutfA(C) such that
f(ā) = b̄.

We can think of the Lascar strong type over A as simply the specification of an
orbit under AutfA(C). Actually, Lstp(ā/A) =Lstp(b̄/A) if and only if there are
tuples ā = ā0, ā1, ..., ān = b̄ and models M1,M2, ..,Mn, each containing A, such that
tp(āi−1/Mi) = tp(āi/Mi) for each i = 1, .., n. It follows that Lstp(ā/A) = Lstp(b̄/A)
implies stp(ā/A) = stp(b̄/A), for any T . Moreover, for stable T , the Lascar strong
type of ā over A is the same as the strong type of ā over A, because ā, b̄ realize the
same strong type over A if and only if ā, b̄ realize the same type over a some model
M containing A. But, two notions are different in general. (See Example 12.)

Now let us state some preliminary facts from [KP].

Proposition 2. Assume that T is simple. For any A ⊆ B and ā, there is b̄ such that

Lstp(ā/A) = Lstp(b̄/A) and tp(b̄/B) does not fork over A.

Proposition 3. Let T be simple. Suppose that Lstp(ā/A) = Lstp(b̄/A) and

tp(ā/Ab̄) does not fork over A. Then there is M ⊇ A such that tp(āb̄/M) does not

fork over A, and tp(ā/M) = tp(b̄/M).
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Theorem 4. Assume T to be simple. Suppose A,B,C, d̄, ē satisfy

(i) A ⊆ B, A ⊆ C, {B,C} is A-independent,
(ii) tp(d̄/B) does not fork over A, and tp(ē/C) does not fork over A,
(iii) Lstp(d̄/A) = Lstp(ē/A).

Then there is ā such that tp(ā/B∪C) extends both tp(d̄/B) and tp(ē/C), tp(ā/B∪C)
does not fork over A, and Lstp(ā/A) = Lstp(d̄/A)(= Lstp(ē/A)).

The following proposition (in [K2]) is an easy consequence of the Independence
Theorem over a model.

Proposition 5. Let T be simple. Let {āi|i ∈ κ} be M-independent and p ∈ S(M).
Suppose that pi ∈ S(Māi) is a nonforking extension of p for each i ∈ κ, then ∪{pi|i ∈
κ} is consistent and does not fork over M .

In this paper, we summarize basic facts on Lascar strong types, and further in-
vestigate Lascar strong types and the Independence Theorem for simple theories. In
particular we show that, for a countable small simple theory T , the notion of Las-
car strong type is equivalent to that of strong type. This implies, in such T , the
Independence Theorem holds over any algebraically closed sets in Ceq.

The notation follows usual conventions. T is a complete theory with no finite
models in a first order language L. p, q denote types, possibly partial. We work in
a huge κ̄-saturated model C as usual. Sets A,B,C, .. are subsets of C and models
M,N, .. are elementary submodels of C whose cardinalities are strictly less than κ̄.
For simple T , a family of sets {Ci|i ∈ I} is A-independent if for every i ∈ I and
c̄i ∈ Ci, tp(c̄i/A ∪

⋃
{Cj|j 6= i, j ∈ I}) does not fork over A. A sequence I is said to

be a Morley sequence (of p ∈ S(A)) if I is A-indiscernible and A-independent, ( and
I is a sequence of tuples realizing p). Finally we note that if there is no restriction
on T , then T is arbitrary.

§2. Lascar strong types in simple theories. Recall that an equivalence
relation E (on Cn, not necessarily definable,) is said to be bounded if it has strictly
less than κ̄ many equivalence classes. Also, for a set A, E is said to be A-invariant,
if E(ā, b̄) implies E(f(ā), f(b̄)) for any A-automorphism f .

Fact 6. ([KP]) Suppose E is an A-invariant bounded equivalence relation on n-tuples.

Let I be an infinite A-indiscernible sequence of n-tuples. Then E(ā, b̄) for all ā, b̄ ∈ I.

Fact 7. ([La2] or [KP]) Lstp(x̄/A) = Lstp(ȳ/A) is an A-invariant bounded equiva-

lence relation. (The number of classes is ≤ 2|T |+|A|.)

Proposition 8. Let T be simple, and A be a set. The following are equivalent.

(1) For any ā, b̄, Lstp(ā/A) = Lstp(b̄/A) if and only if tp(ā/A) = tp(b̄/A).
(2) The Independence Theorem holds over A.
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(3) Suppose that tp(ā0/A) = tp(ā1/A) and tp(ā1/Aā0) does not fork over A. Then

there is a Morley sequence I = 〈āi|i < ω〉 of tp(ā0/A).
(4) Suppose that tp(ā0/A) = tp(ā1/A) and tp(ā1/Aā0) does not fork over A. Then

there is an A-indiscernible sequence I = 〈āi|i < ω〉.

Proof. (1)→(2) Theorem 4.
(2)→(3)→(4) Suppose that the Independence Theorem holds over A, and tp(ā1/Aā0)

does not fork over A, where ā1 |= tp(ā0/A). We claim the following.

Claim There is a sequence I = 〈āi|i < ω〉 such that for each n < ω,

(i) tp(ā0ā1/A) = tp(āiāj/A) for each i < j ≤ n,
(ii) {āi|i ≤ n} is A-independent.

Proof of Claim. Obviously (i), (ii) hold for n = 1. Suppose that (i), (ii) hold for
n with 〈ā0, ...ān〉. Let ān+1 be a tuple realizing a nonforking extension of p(x̄, ā0) =
tp(ā1/Aā0) over Aā0...ān containing ∪i≤np(x̄, āi) (cf. Proposition 5). Then 〈ā0, ...ān+1〉
satisfies (i), (ii) for n + 1. Hence the claim follows.

Now applying Ramsey’s Theorem, we may assume that I in the claim isA-indiscernible.
(4)→(1) Assume (4) holds. Suppose that tp(ā/A) = tp(b̄/A). Now there is

c̄ |= tp(ā/A) such that tp(c̄/Aāb̄) does not fork over A. Then (4) says, there are
A-indiscernible sequences I, J such that c̄, ā ∈ I, c̄, b̄ ∈ J. Hence by Fact 6,7,
Lstp(ā/A) = Lstp(c̄/A) = Lstp(b̄/A).

Corollary 9. Let T be simple. The following are equivalent.

(1) The Lascar strong type over A is the same as the strong type over A.
(2) The Independence Theorem holds for strong types over A (cf. Theorem 4).
(3) Suppose that stp(ā0/A) = stp(ā1/A) and tp(ā1/Aā0) does not fork over A. Then

there is an A-indiscernible sequence (possibly a Morley sequence) I = 〈āi|i < ω〉 of

tp(ā0/A).

Definition 10. Let A be a set, and let ā, b̄ be tuples such that tp(ā/A) = tp(b̄/A). We
define dA(ā, b̄) to be the least natural number n(≥ 1) such that: there are sequences
I1, I2, ..., In and tuples ā = ā0, ā1, ..., ān = b̄ such that ā⌢i−1Ii and ā⌢i Ii are both A-
indiscernible for each 1 ≤ i ≤ n. (If there is no such n < ω, then we write dA(ā, b̄) =
∞.)

The following proposition says that equality of Lascar strong types is a conjunction
of all bounded equivalence relations (whereas, equality of strong types is a conjunction
of all definable finite equivalence relations.) A version of the proposition is already
given in [KP] and [La3].

Proposition 11. The following are equivalent.

(1) Lstp(ā/A) = Lstp(b̄/A).
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(2) dA(ā, b̄) < ω.
(3) |= E(ā, b̄) for any A-invariant bounded equivalence relation E.

Proof. (1)→(2) Suppose that for some model M ⊇ A, tp(ā/M) = tp(b̄/M). It
suffices to show dA(ā, b̄) = 1. (The general case proceeds by induction.)
Let p= tp(ā/M). Then there is a sequence 〈āi : i < ω〉 such that tp(āi/Māb̄ā0...āi−1)

is a coheir of p, and is realized by āi+1, for i < ω. Then each of 〈ā, ā0, ā1, ....〉 and
〈b̄, ā0, ā1, ....〉 is an infinite M-indiscernible sequence. Hence dA(ā, b̄) = 1.
(2)→(3) Suppose dA(ā, b̄) = 1 (for n, use induction), witnessed by I. Then by Fact

6, for any A-invariant bounded equivalence relation E, E(ā, c̄) and E(c̄, b̄) for some
(any) c̄ ∈ I. Hence E(ā, b̄).
(3)→(1) By Fact 7.

Example 12. (Due to Poizat [La1]) Let us construct a model, where Lascar strong
type is different from strong type . The model consists of disjoint union of (R,+, <)
and the unit circle C. Also there are the additive group action of R on C identifying
C with R/2π ; and a ternary relation U(x, y, z) such that: U(x, y, z) iff x, y ∈ C,
z ∈ R, and the length of the shorter arc from x to y is < z. We note that for each
n > 0, there is a number kn, so that whenever there are kn distinct points in C, then
two of them should realize U(x, y, n−1).
Now let E be the equivalence relation (on C) defined by the conjunction of formulas

∧
0<n∈ω U(x, y, n

−1). By the Erdös-Rado Theorem, it is easy to see that the number of
E-classes is 2ω. But it can also be checked that for any b, d ∈ C, stp(b/R) = stp(d/R).
Therefore Lascar strong type is different from strong type, (over R).

Surprisingly, for simple T , equality of Lascar strong types turns out to be ∞-
definable (i.e. type definable). Let us discuss this.

Proposition 13. Let T be simple. Then Lstp(ā/A) = Lstp(b̄/A) if and only if

dA(ā, b̄) ≤ 2.

Proof. It suffices to show that Lstp(ā/A) = Lstp(b̄/A) implies dA(ā, b̄) ≤ 2. (The
other direction already holds, by Proposition 11.) If Lstp(ā/A) = Lstp(b̄/A), then
Proposition 2 says there is c̄ such that Lstp(c̄/A) = Lstp(ā/A) and tp(c̄/Aāb̄) does
not fork over A. We claim that dA(c̄, ā) = dA(c̄, b̄) = 1: By Proposition 3, there
is a model M ⊇ A such that tp(c̄/M) = tp(ā/M). Hence dA(c̄, ā) = 1. (See the
proof of Proposition 11.(1)→(2).) For the same reason, dA(c̄, b̄) = 1. Therefore,
dA(ā, b̄) ≤ dA(ā, c̄) + dA(c̄, b̄) = 2.

The previous proposition depends on Proposition 3. In Proposition 3, the A-
independence of ā, b̄ is necessary. (If T is stable, then it does not need to be.) For
consider the following example.
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Example 14. Let us construct a model. The universe of the model consists of a
disjoint union of countable sets P and Q, where P is a disjoint union of countable sets
U, V with a set isomorphism f : U → V . Now there is a binary relation R between P
and Q, so that V ∪Q with R forms the bipartite random graph, and if x ∈ U, y ∈ Q
then R(x, y) iff ¬R(f(x), y). Now L = {P,Q,R} (U, V, f are not in the language
!). Then it is routine to prove that the theory T of the model admits quantifier
elimination for 1-formulas (but a formula ∀z ∈ Q(xRz ↔ ¬yRz) is not quantifier
eliminable), and this shows every 1-formula does not have the tree property. Hence T
is simple (cf. [S1, 4.2.(3)]). In T , it can be seen that for any set A, the Lascar strong
type over A is the same as the type over A (cf. Theorem 20). Now let a ∈ U and
b ∈ V such that f(a) = b. Then, as tp(a) = tp(b), Lstp(a) = Lstp(b), but {a, b} is not
independent over the empty set. In fact, for any model M , tp(a/M) 6= tp(b/M) : We
note that {R(a,M), R(b,M)} forms a partition of Q(M). Hence for some c ∈ Q(M),
R(a, c) and ¬R(b, c). This means tp(a/M) 6= tp(b/M).
We further note that d(a, b) = 1: Let us rewrite U = 〈a = a0, a1, a2, ...〉. Then U

and 〈b, a1, a2, ...〉 are both φ-indiscernible.

Theorem 15. Let T be simple. Then for each set A, there is a partial type rA(x̄, ȳ)
over A such that Lstp(ā/A) = Lstp(b̄/A) if and only if |= rA(ā, b̄). Moreover for each

A, |= rA(x̄, ȳ) ↔
∧
{rc̄(x̄, ȳ)|c̄ ⊆ A, c̄ finite}.

Proof. By Proposition 13, we take rA(x̄, ȳ) to be a set of formulas over A saying
dA(x̄, ȳ) ≤ 2. (rA(x̄, ȳ) says there are x̄1, x̄2, ..., ȳ1, ȳ2, ..., and z̄ such that 〈x̄, x̄1, x̄2, ...〉, 〈z̄, x̄1, x̄2, ...〉
and 〈z̄, ȳ1, ȳ2, ...〉, 〈ȳ, ȳ1, ȳ2, ...〉 are all A-indiscernible sequences.)
Now by compactness, dA(x̄, ȳ) ≤ 2 if and only if dc̄(x̄, ȳ) ≤ 2 for all finite c̄ ⊆ A.

Hence the second assertion follows.

Corollary 16. Assume T to be simple. Then Lstp(ā/A) = Lstp(b̄/A) if and only if

for all finite c̄ ⊆ A, Lstp(ā/c̄) = Lstp(b̄/c̄).

Proposition 17. For simple T , and a set A, the following are equivalent.

(1) For any ā, b̄, Lstp(ā/A) = Lstp(b̄/A) if and only if stp(ā/A) = stp(b̄/A).
(2) Assume that E(x̄, ȳ) is an ∞-definable (i.e. type definable) bounded equivalence

relation over A. Then E ′(x̄, ȳ) ⊢ E(x̄, ȳ) for some E ′(x̄, ȳ) = {Ei(x̄, ȳ)|i ∈ I}, where
each formula Ei(x̄, ȳ) over A defines a finite equivalence relation.

Proof. (1)→(2) Assume (1) holds. Let us take E ′ which defines equality of strong
types over A, (i.e. E ′ is a conjunction of all definable finite equivalence relations
over A.) As the Lascar strong type over A is the same as the strong type over A, by
Proposition 11, E ′(x̄, ȳ) ⊢ E(x̄, ȳ).
(2)→(1) Assume (2) holds. Let rA(x̄, ȳ) define equality of Lascar strong types

over A (Theorem 15). Then E ′(x̄, ȳ) ⊢ rA(x̄, ȳ) for some E ′(x̄, ȳ) = {Ei(x̄, ȳ)|i ∈
I}, where each formula Ei(x̄, ȳ) over A defines a finite equivalence relation. Hence
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stp(ā/A) = stp(b̄/A) implies Lstp(ā/A) = Lstp(b̄/A). On the other hand, we already
know Lstp(ā/A) = Lstp(b̄/A) implies stp(ā/A) = stp(b̄/A).

Example 18. (Pillay and Poizat [PPo]) Even in stable T , an ∞-definable bounded
equivalence relation need not be equivalent to a conjunction of finite definable equiv-
alence relations: The model M consists of the universe Q, and unary predicates
Ua = {x ∈ Q|x ≤ a} (a ∈ Q). For each a ∈ Q, let us consider the following types
(over the empty set),
(i) type a+ determined by {Ub(x)|a < b ∈ Q} ∪ {¬Ub(x)|a ≮ b ∈ Q},
(ii) type a− determined by {Ub(x)|a ≤ b ∈ Q} ∪ {¬Ub(x)|a � b ∈ Q}.

Now let E be the equivalence relation defined by the conjunction of the formulas
(Ua(x) → Ub(y))∧ (Ua(y) → Ub(x)) for a < b. It is easy to see, for each a ∈ Q, (type
a+)∪(type a−) consists of an E-class.
Now if E were a conjunction of (finite) definable equivalence relations Ei (over

φ), then, for given i, each of (type a+)∪(type a−) should be contained in one of the
Ei-classes. Quantifier elimination shows, then Ei has to be trivial. ( Note that Ei can
not be of the form Ua(x) ↔ Ua(y).) Therefore, E is not a conjunction of definable
equivalence relations.

§3. Main theorems. For the rest of this paper, T will be countable.

Proposition 19. (Pillay, Poizat [PPo]) Let T be small (i.e. |S(T )| ≤ ω), and let

E(x̄, ȳ) be an ∞-definable equivalence relation over φ. Suppose that E is coarser than

equality of n-types over φ, (i.e. for any n-tuples ā, b̄, tp(ā) = tp(b̄) implies E(ā, b̄)).
Then, there are formulas Ei(x̄, ȳ) ∈ L (i ∈ ω), each of which defines an equivalence

relation, such that

E(x̄, ȳ) ↔
∧
i∈ω Ei(x̄, ȳ).

Proof. Suppose that ¬E(ā, b̄), and p(x̄) = tp(ā), q(ȳ) = tp(b̄). As E is coarser than
equality of types, p(x̄) ∪ q(ȳ) ⊢ ¬E(x̄, ȳ). Hence we can choose ϕ(x̄) ∈ p(x̄), ψ(ȳ) ∈
q(ȳ) such that, first, ϕ(x̄) ∧ ψ(ȳ) ⊢ ¬E(x̄, ȳ) and secondly, the set X , defined by
¬(ϕ(x̄)∨ψ(x̄)), has minimum Cantor-Bendixson rank and degree. We claim X = φ:
If not, then CB(X) = (α, n). Now there is p′(ȳ) ∈ S(φ) containing ¬(ϕ(ȳ)∨ψ(ȳ))

such that the CB-rank of p′(ȳ) is α. Let c̄ |= p′(ȳ). Then either ¬E(ā, c̄) or ¬E(b̄, c̄).
Without loss of generality, we assume ¬E(ā, c̄). Then in exactly the same manner,
we obtain σ(ȳ) ∈ p′(ȳ) such that ϕ(x̄) ∧ σ(ȳ) ⊢ ¬E(x̄, ȳ). Now it can be seen that
CB(¬(ϕ(x̄)∨ (σ(ȳ)∨ψ(ȳ)))) < (α, n). This contradicts the choice of ϕ and ψ. Hence
the claim follows.
Now we note that {ϕ(x̄), ψ(x̄)} forms a partition of a (saturated) modelM . Let us

rewrite ϕ(x̄) as ϕāb̄(x̄). It follows that E(x̄, ȳ) is a conjunction of formulas ϕāb̄(x̄) ↔
ϕāb̄(ȳ), for āb̄ ∈ M with ¬E(ā, b̄).
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Theorem 20. Let T be simple, and small. Then Lascar strong type is the same as

strong type, over any set A.

Proof. We note that stp(ā/A) = stp(b̄/A) if and only if for all finite c̄ ⊆ A,
stp(ā/c̄) = stp(b̄/c̄). Hence, by Corollary 16, it suffices to prove the theorem for
finite A. Moreover, if A is finite, then as TA is again small, we may assume A = φ.
Now, there is a type r(x̄, ȳ), which defines Lascar strong types (over φ.) Suppose
that stp(c̄) = stp(d̄). We want to show Lstp(c̄) = Lstp(d̄).

Claim Let p(x̄) = tp(c̄). Then there are formulas Ri(x̄, ȳ) ∈ L (i ∈ ω), each of which

defines an equivalence relation, such that

p(x̄) ∪ p(ȳ) ∪ r(x̄, ȳ) ↔ p(x̄) ∪ p(ȳ) ∪ {Ri(x̄, ȳ)|i ∈ ω} (1).

Proof of Claim For the proof of this claim, we borrow the technique Lascar used to
prove his result on “∧-basic subgroup” ([La3]).
Now let E(x̄, ȳ) be an equivalence relation over c̄ defined as E(x̄, ȳ) iff ∃z̄(tp(c̄x̄) =

tp(z̄ȳ) ∧ r(c̄, z̄)). Then if tp(ā/c̄) = tp(b̄/c̄), then obviously E(ā, b̄). Hence by the
preceding proposition,

E(x̄, ȳ) ↔
∧
i∈ω Ei(x̄, ȳ; c̄) (*)

for some formulas Ei(x̄, ȳ; c̄) over c̄, each of which defines an equivalence relation.
Now, for each i ∈ ω, let

Ri(x̄, ȳ) ≡ ∀ū(Ei(ū, x̄, x̄) ↔ Ei(ū, ȳ, ȳ)).

We claim that formulas Ri(x̄, ȳ) are the desired formulas: It suffices to show p(ȳ) |=
r(c̄, ȳ) ↔ ∧i∈ωRi(c̄, ȳ). Suppose that ā |= p(x̄). Now let r(c̄, ā). Then, by (*)
and the definition of E(x̄, ȳ), if tp(āū) = tp(c̄ū′), then Ei(ū, ū

′; c̄) for each i. Hence
Ei(ū, c̄, c̄) ↔ Ei(ū

′, c̄, c̄) ↔ Ei(ū, ā, ā). Therefore Ri(c̄, ā) for each i ∈ ω.
Conversely, if Ri(c̄, ā) for each i, then as Ei(ā, ā, ā), Ei(ā, c̄, c̄) for each i. Thus

E(ā, c̄) and r(ā, c̄). �

Let us continue to prove the theorem. Now, for each i ∈ ω and each formula ψ(x̄) in
p(x̄),

(ψ(x̄) ∧ ψ(ȳ) ∧ Ri(x̄, ȳ)) ∨ (¬ψ(x̄) ∧ ¬ψ(ȳ))
let
= Rψ

i (x̄, ȳ)

defines an equivalence relation. We note that, each equivalence class of Rψ
i is either

¬ψ(x̄), or ψ(x̄)∧ (an equivalence class of Ri). Moreover, for each i ∈ ω, there is some
formula ϕi(x̄) in p(x̄) such that Rϕi

i (x̄, ȳ) defines a finite equivalence relation. ( If
not, then by (1), r(x̄, ȳ) can not be bounded; a contradiction.) Now,

p(x̄) ∪ p(ȳ) ∪ {Rϕi

i (x̄, ȳ)|i ∈ ω} → {ϕi(x̄) ∧ ϕi(ȳ) ∧R
ϕi

i (x̄, ȳ)|i ∈ ω}

→ {ϕi(x̄) ∧ ϕi(ȳ) ∧Ri(x̄, ȳ)|i ∈ ω}. (2)
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Finally, since stp(c̄) = stp(d̄), p(c̄) ∪ p(d̄) ∪ {Rϕi

i (c̄, d̄)|i ∈ ω}. Hence, by (2),
{Ri(c̄, d̄)|i ∈ ω}, and by (1), r(c̄, d̄). Therefore Lstp(c̄) = Lstp(d̄).

Theorem 20 recovers the fact that the Independent Theorem holds over an alge-
braically closed set (in Ceq) in any smoothly approximable structures ([CH], [KaLM]).

Corollary 21. If T is simple and ω-categorical, then Lascar strong type is the same

as strong type, over any set.

For a final remark, we define terminology from [PPo]. For each ∞-definable equiv-
alence relation E(x̄, ȳ) over A, we write E∗(x̄, ȳ) for a corresponding equivalence
relation such that,

|= E∗(ā, b̄) iff there is b̄′ such that b̄′ |= tp(b̄/A) and |= E(ā, b̄′).

It is easy to check that, E∗ is again an ∞-definable equivalence relation over A, and
is coarser than equality of types over A.
Pillay and Poizat ([PPo]) proved that for any T , an ∞-definable equivalence rela-

tion E(x̄, ȳ) over A is equivalent to a conjunction of definable equivalence relations
over A if and only if, so are E∗(x̄, ȳ) and each restriction of E(x̄, ȳ) to each n-type
p ∈ S(A). Now if T is small, then for given E (over φ), E∗ is already equivalent to
a conjunction of definable equivalence relations (Theorem 19). Moreover, by exactly
the same argument in the proof of Claim in Theorem 20, so is each restriction of E
to each p ∈ S(φ). Hence we obtain the following theorem. This theorem also proves
Theorem 20.

Theorem 22. Let T be small, and let A be a finite set. Then any ∞-definable

equivalence relation over A is equivalent to a conjunction of definable equivalence

relations over A.
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