Kolmogorov complexity and symmetric relational structures

W.L. Fouché \& P.H. Potgieter
Department of Quantitative Management, University of South Africa
PO Box 392, Unisarand 0003, Pretoria, South Africa
e-mail: \{fouchwl,potgiph\}@unisa.ac.za

November 11, 2018

Abstract

We study partitions of Fraïssé limits of classes of finite relational structures where the partitions are encoded by infinite binary strings which are random in the sense of KolmogorovChaitin.

1 Introduction

This paper follows on [5] where a study was made of the properties of combinatorial configurations which are encoded or generated by infinite binary strings which are random in the sense of Kolmogorov-Chaitin [14, 2] (to be referred to as KC-strings). We shall study countable homogeneous structures from this point of view. A relational structure X is homogeneous if any isomorphism $f: A \rightarrow B$ between finite substructures of X can be extended to an automorphism of X. This is perhaps the strongest symmetry condition one can impose on a relational structure. Our aim is to depict various situations where this kind of symmetry will be seen to be preserved by an arbitrary KC-string. Our work is based on Fraïssé's well-known characterisation of countable homogeneous structures [7].

A well-known example of a countable homogeneous structure is the random graph R of Rado 17. We now illustrate some of the results of this paper with respect to the graph R. For a finite graph β, write $[R, \beta]$ for the set of copies of β in R. We call a subset Y of $[R, \beta]$ a β organisation when Y is exactly the set of all copies of β in some subgraph R^{\prime} of R, where R^{\prime} is isomorphic to R. Now, R has a simple recursive representation of the form (ω, E) where E is a recursive subset of the set of 2 -subsets of ω. This implies that one can find a recursive enumeration $\left(\beta_{j} \mid j<\omega\right)$, without repetition, of the set $[R, \beta]$. Let $\varepsilon=\prod_{j=0}^{\infty} \varepsilon_{j}$ be a KC-string. If we define a 2 -colouring $\chi_{\varepsilon}:[R, \beta] \rightarrow\{0,1\}$ by giving each β_{j} the colour ε_{j}, it will be shown that there always exists a monochromatic β-organisation Y_{ε}. Moreover, one can compute the β-organisation Y_{ε} from ε by means of a simple greedy algorithm. In this way, a KC-string has two aspects: (i) as a random partition of the copies of β in R, and (ii) as a generator of a β-organisation in R which is monochromatic under this partition. The symmetric structure R is reflected (or preserved) by each KC-string in two distinct ways.

Similar results will be established for many other homogeneous structures. The main result is formulated in Section 2 and proved in Section 3, In Section 4 we apply this theory to the Fraïssé limits of what we shall call ranked diagrams. It is also shown how a KC-string can be used to generate the Fraïssé limit in this case.

2 Preliminaries

The composition of two functions f and g, denoted by $f g$, is defined by $f g(x)=f(g(x))$. The set of non-negative integers is denoted by ω. We view the elements of ω as finite ordinals, so that $n<\omega$ denotes the set $\{0,1, \ldots, n-1\}$. The cardinality of a finite set A is denoted by $|A|$. We write \mathcal{N} for the product space $\{0,1\}^{\omega}$. The set of words over the alphabet $\{0,1\}$ is denoted by $\{0,1\}^{*}$. If $\alpha=\alpha_{0} \alpha_{1} \alpha_{2} \ldots$ is in \mathcal{N} and $n<\omega$, we write $\bar{\alpha}(n)$ for the binary word $\prod_{j<n} \alpha_{j}$. We use the usual recursion-theoretic terminology $\Sigma_{r}^{0}, \Pi_{r}^{0}$ and Δ_{r}^{0} for the description of the arithmetical subsets of $\omega^{k} \times \mathcal{N}^{\ell}$ - see [10], for example. We write λ for the Lebesgue measure on \mathcal{N}. This is the unique probability measure that assigns the value $\frac{1}{2}$ to each of the events $A_{i}=\left\{\alpha \in \mathcal{N} \mid \alpha_{i}=1\right\}$ and under which the events A_{i} are statistically independent.

A prefix algorithm is a partial recursive function f from $\{0,1\}^{*}$ to $\{0,1\}^{*}$ whose domain is prefix-free, i.e. if $u, v \in \operatorname{dom} f$ then neither is an initial segment of the other. It is well-known (and easy to prove) that there is an effective enumeration of prefix algorithms and, therefore, that there is some universal prefix algorithm U. For $s \in\{0,1\}^{*}$ let $H(s)$, the Kolmogorov-complexity of s, be the length of a shortest "program" $p \in\{0,1\}^{*}$, such that $U(p)=s$. (For the history and underlying intuition of these notions, the reader is referred to [20]. See also [15], 2], [9] or [8].) An infinite binary string ε is said to be Kolmogorov-Chaitin complex (KC-complex) if and only if

$$
\exists m \forall n H(\bar{\varepsilon}(n)) \geq n-m .
$$

The set of KC-complex strings does not depend on the choice of the universal prefix algorithm U and has λ-measure one. We denote this set by $K C$ and refer to the elements as KC-strings. We shall make frequent use of the following result.

Theorem 1. [6] If X is a Π_{2}^{0}-subset of \mathcal{N} and $\lambda(X)=1$, then X contains every $K C$-string ε.
The proof of this result is based on Martin-Löf's description [16] of the set $K C$.
In the sequel, \mathcal{L} will stand for the signature of a relational structure. Moreover, \mathcal{L} will always be finite and the arities of the relational symbols will all be ≥ 1. This has the implication that the empty set carries a unique \mathcal{L}-structure. The definitions that follow were introduced by Fraïssé 7 in 1954. (For a general discussion of the results to be summarised, the reader is also referred to Hodges [11, Chapter 7).

The age of an \mathcal{L}-structure X, written $\operatorname{Age}(X)$, is the class of all finite \mathcal{L}-structures (defined on finite ordinals) which can be embedded as \mathcal{L}-structures into X. The structure X is homogeneous (some authors say ultrahomogeneous) if, given any isomorphism $f: A \rightarrow B$ between finite substructures of X, there is an automorphism g of X whose restriction to A is f. The following result is due to Fraïssé. (See [11, Chapter 7, for a proof.)

Proposition 1. The countable \mathcal{L}-structure X is homogeneous if and only if, for $A, B \in \operatorname{Age}(X)$ and embeddings $f: A \rightarrow B, h: A \rightarrow X$, there is an embedding $g: B \rightarrow X$ such that $h=g f$. It suffices to require this when $|B|=|A|+1$.

A class \mathbf{K} of finite \mathcal{L}-structures has the amalgamation property if, for structures A, B_{1}, B_{2} in \mathbf{K} and embeddings $f_{i}: A \rightarrow B_{i}(i=1,2)$ there is a structure C in \mathbf{K} and there are embeddings $g_{i}: B_{i} \rightarrow C(i=1,2)$, such that $g_{1} f_{1}=g_{2} f_{2}$.

Suppose \mathbf{K} is a countable class of finite \mathcal{L}-structures, the domains of which are finite ordinals such that

1. if A is a finite \mathcal{L}-structure defined on some finite ordinal, if $B \in \mathbf{K}$ and if there is an embedding of A into B, then $A \in \mathbf{K}$;
2. the class \mathbf{K} has the amalgamation property.

Then, Fraïssé showed that there is a countable homogeneous structure X such that Age $(X)=\mathbf{K}$. Moreover, X is unique up to isomorphism. The unique X is called the Fraïssé limit of \mathbf{K}. We also recall that, conversely, the age \mathbf{K} of a countable homogeneous structure has properties (i) and (ii).

In our study of partitions of a homogeneous structure X we shall require its age to be dense in X in the following sense: If $A, B \in \operatorname{Age}(X)$ and $i: A \rightarrow B$ is an embedding, then there exist $C \in \operatorname{Age}(X)$ and embeddings $f_{1}, f_{2}: B \rightarrow C$ such that $f_{1} i=f_{2} i$ and $\operatorname{Im} f_{1} \cap \operatorname{Im} f_{2}=\operatorname{Im} f_{1} i=\operatorname{Im} f_{2} i$. The Fraïssé limit of finite graphs (the random graph of Rado [17) and the Fraïssé limit of ranked diagrams (see Section (4) are examples of homogeneous structures with dense ages. For any n, a disjoint union of countably many copies of the finite complete graph K_{n} is an example of a homogeneous structure whose age is not dense. (The complement of this structure does have a dense age.) The following combinatorial lemma plays a central role in the proof of Theorem 2

Lemma 1. Suppose X is a countable homogeneous structure with a dense age. If U, V are disjoint subsets of X, then there is a sequence $\left(V_{i} \mid i<\omega\right)$ of pairwise disjoint subsets of X such that $U \cap V_{i}=\emptyset$ and $U \cup V_{i}$ and $U \cup V$ inherit isomorphic \mathcal{L}-structures from X, for all $i<\omega$.

Proof. Set $V_{0}=V$ and suppose pairwise disjoint V_{0}, \ldots, V_{k-1} have been constructed with $U \cap V_{i}=\emptyset$ and $U \cup V_{i}$ isomorphic to $U \cup V$ for all $i<k$. Set $W=\bigcup_{i<k} V_{i}$. Choose $A, B \in \operatorname{Age}(X)$ with $A \subset B$ so that A is isomorphic to $U \subset X$ via an isomorphism which extends to an isomorphism of B to $U \cup W \subset X$. Since $\operatorname{Age}(X)$ is dense in X, there exist $C \in \operatorname{Age}(X)$ and embeddings $f_{1}, f_{2}: B \rightarrow C$ such that $A \subset C$ and f_{1}, f_{2} are both the identity on A, while $\operatorname{Im} f_{1}$ and $\operatorname{Im} f_{2}$ will have exactly the elements of A in common.

For $i \in\{1,2\}$, let A_{i} be the complement of A in $\operatorname{Im} f_{1}$. Then $A_{1} \cap A_{2}=\emptyset$ but $A \cup A_{i}$ is isomorphic to B and hence also to $U \cup W \subset X$. Moreover, $A \cap A_{i}=\emptyset$. Let α be an isomorphism (e.g. the one from the construction of A and B above) from B onto $U \cup W \subset X$ that maps A onto U. By Proposition there is an embedding β such that the following diagram commutes.

We can write $\operatorname{Im} \beta=U \cup W \cup W^{\prime}$ with $U \cup W^{\prime}$ isomorphic to $U \cup W$ and $(U \cup W) \cap W^{\prime}=\emptyset$. Let V_{k} be any subset of W^{\prime} such that $U \cup V_{k}$ is isomorphic to $U \cup V$. (Such as exists by the isomorphism of $U \cup W$ with $U \cup W^{\prime}$.) The sequence ($V_{i} \mid i<\omega$) constructed in this way has the required properties.

A recursive representation of a countable \mathcal{L}-structure X is a bijection $\phi: \mathrm{X} \rightarrow \omega$ such that, for each $R \in \mathcal{L}$, if the arity of R is n, then the relation R^{ϕ} defined on ω^{n} by

$$
R^{\phi}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leftrightarrow R\left(\phi^{-1}\left(x_{1}\right), \ldots, \phi^{-1}\left(x_{n}\right)\right)
$$

is recursive. If we identify the underlying set of X with ω via ϕ and each R with R^{ϕ} we call the resulting structure a recursive \mathcal{L}-structure.

If X is countable and homogeneous and if $\operatorname{Age}(X)$ has an enumeration $A_{0}, A_{1}, A_{2}, \ldots$, possibly with repetition, with the property that there is a recursive procedure that yields, for each $i<\omega$, and $R \in \mathcal{L}$, the underlying set $n(i)$ of A_{i} together with the interpretation of R in $n(i)$, then we call $\left(A_{i} \mid i<\omega\right)$ a recursive enumeration of $\operatorname{Age}(X)$. It follows from the construction of Fraïssé limits from their ages, as discussed in [11 (p329) that one can construct a recursive representation of X from a recursive enumeration of its ages. (Conversely, it is trivial to derive a recursive enumeration
of $\operatorname{Age}(X)$ from a recursive representation of X.) It is therefore not difficult to find recursive representations for Fraïssé limits of classes \mathbf{K} from recursive enumerations of their members.

Let X be a countable, homogeneous structure with a recursive representation ϕ. For $\beta \in$ Age (X), let $[X, \beta]$ be the set of copies (images under embeddings) of β in X. Suppose, in addition, that X has a dense age. We can use ϕ to find a recursive enumeration $\beta_{0}, \beta_{1}, \ldots$, without repetition, of the set $[X, \beta]$. The density of $\operatorname{Age}(X)$ in X ensures that $[X, \beta]$ is infinite (see Lemma 1) and the representation ϕ can be used to decide whether a given finite subset of X inherits a structure isomorphic to β.

If α is an infinite binary string then α induces a 2 -colouring χ_{α} of $[X, \beta]$ where χ_{α} assigns to the i-th copy β_{i} of β in X the colour α_{i}, the i-th bit of α. The main theorem of the paper can now be formulated.

Theorem 2. Let X be a recursive homogeneous structure with a dense age. For each $\beta \in \operatorname{Age}(X)$ and each KC-string ε, there exists an embedding $\nu: X \rightarrow X$ such that $\chi_{\varepsilon}\left(\beta^{\prime}\right)=1$ for each $\beta^{\prime} \in[\nu(X), \beta]$. In addition, ν can be so constructed that it is recursive relative to ε.

One can think of the mappings $\chi_{\alpha}:[X, \beta] \rightarrow 2$ as random partitions. It follows from Theorem 2 that when $[X, \beta]$ is subjected to a random partitioning then, with probability 1 , one can find copies X_{0}, X_{1} of X in X such that χ_{α} is of colour i on $\left[X_{i}, \beta\right](i=0,1)$. This is because α is in $K C$ with probability 1 . Moreover, when α is a KC-string, we can effectively generate, relative to α, the automorphic copies X_{0} and X_{1} of X. The proof of the theorem appears in Section 3

Recall that Ramsey's Theorem [18] says that for $X=K_{\omega}$, the complete graph on the natural numbers, for $\beta=K_{n}$, the complete graph on n points, and ε an arbitrary binary sequence, there exists an embedding $\nu: X \rightarrow X$ such that $[\nu(X), \beta]$ is monochromatic under the 2-colouring of $[X, \beta]$ induced by ε. E. Specker [19] has observed that there exists a recursive sequence ε such that, for the colouring of [X, K_{2}] induced by ε, there exists no recursive copy X^{\prime} of X such that [X^{\prime}, K_{2}] is monochromatic. This has been further refined by C.G. Jockusch 12 who showed that there exists a recursive sequence ε such that, for the colouring of $\left[X, K_{n}\right]$ induced by ε, there is no Σ_{n}^{0} copy X^{\prime} of X for which $\left[X^{\prime}, \beta\right.$] is monochromatic. However, for any recursive ε, there always exists a Π_{n}^{0} copy X^{\prime} of X for which $\left[X^{\prime}, \beta\right]$ is monochromatic. It follows, however, from Theorem 2 that when ε is a KC-string, one can find a monochromatic X^{\prime} which is recursive in ε. This emphasises that Jockusch's results exploit the non-random nature of recursive partitions.

3 Complex partitions of Fraïssé limits

In the following we will denote the class of all finite subsets of a set Y by Fin Y. If $w \in \operatorname{Fin} \omega$ we denote the largest element of w by $\max w$. If w is empty, then $\max w=-1$. If $n \in \omega$, then by $w n$ we mean $w \cup\{n\}$. We write $v<w$ if there is a $t \neq \emptyset$ with $w=v \cup t$ and $\max v<\min t$.
Definition 1. Let Y be a countably infinite set. An encoding of Y is a function $\pi: \operatorname{Fin} \omega \rightarrow \operatorname{Fin} Y$ such that
(i) $\pi(\emptyset)=\emptyset$ and for some $w_{0} \in \operatorname{Fin} \omega$,

$$
\begin{equation*}
\pi\left(w_{0}\right) \neq \emptyset \tag{1}
\end{equation*}
$$

(ii) whenever $n>m>\max w$

$$
\begin{equation*}
\pi(w n) \cap \pi(w m)=\pi(w) ; \tag{2}
\end{equation*}
$$

(iii) for each w with $\pi(w) \neq \emptyset$,

$$
\begin{equation*}
\sum 2^{-|\pi(w k) \backslash \pi(w)|}=\infty \tag{3}
\end{equation*}
$$

where the summation is over all $k>\max w$ such that $\pi(w k) \neq \pi(w)$.

Definition 2. An encoding π is called effective relative to a bijection $\sigma: \omega \rightarrow Y$ when there exist a recursive binary relation R_{σ} and a recursive function f, such that, for $i \in \omega$ and $w \in \operatorname{Fin} \omega$,
(i) $R_{\sigma}(i, w) \leftrightarrow \sigma(i) \in \pi(w)$,
and also
(ii) $f(w)=|\pi(w)|$.

These definitions have been adapted from [5]. The next theorem is a generalization of Theorem A of (5).

Theorem 3. If the encoding $\pi: \operatorname{Fin} \omega \rightarrow \operatorname{Fin} Y$ is effective relative to σ and if $\varepsilon \in K C$, then there exists a strictly increasing sequence

$$
w_{1}<w_{2}<w_{3}<\ldots
$$

in $\operatorname{Fin} \omega$ such that

$$
\varepsilon(j)=1 \text { whenever } \sigma(j) \in \bigcup_{n \geq 1} \pi\left(w_{n}\right) .
$$

There exists an oracle computation of this sequence from ε.
Proof. Let π be an encoding which is effective relative to σ, as defined above. Apply (11) to fix $w_{0}=v_{0} k \in \operatorname{Fin} \omega$, where $k=\max w_{0}$, such that $\pi\left(v_{0}\right)=\emptyset$ but $\pi\left(v_{0} k\right) \neq \emptyset$.

Let ε be in $K C$. We construct a strictly increasing sequence in Fin ω by induction so that for each n

$$
w_{0}<w_{1}<\ldots<w_{n} \text { and } \varepsilon(j)=1 \text { for all } \sigma(j) \in \bigcup_{k=1}^{n} \pi\left(w_{k}\right)
$$

The construction will be recursive in ε. This will suffice to prove the theorem.
Suppose $n \geq 0$ and w_{0}, \ldots, w_{n} have been constructed. For every $k>\max w_{n}$, we define $B_{k} \subseteq \mathcal{N}$ by:

$$
\alpha \in B_{k} \leftrightarrow(\forall j)\left[\sigma(j) \in \pi\left(w_{n} k\right) \backslash \pi\left(w_{n}\right) \rightarrow \alpha_{j}=1\right] .
$$

By Definition $2 R_{\sigma}(i, w)$ and the function $w \mapsto|\pi(w)|$ are both recursive, so there exists a total recursive function $\psi: \omega \rightarrow \omega$ such that $j \leq \psi(k)$ whenever $\sigma(j) \in \pi\left(w_{n} k\right)$. The function ψ could, for example, compute the largest j so that $\sigma(j) \in \pi\left(w_{n} k\right)$ when w_{n} and k have been given. Now,

$$
\alpha \in B_{k} \leftrightarrow(\forall j \leq \psi(k))\left[R_{\sigma}\left(j, w_{n} k\right) \wedge \neg R_{\sigma}\left(j, w_{n}\right) \rightarrow \alpha_{j}=1\right] .
$$

It now follows that the relation $\alpha \in B_{k}$ is recursive in k and α.
We shall define a sequence $X_{0}, X_{1}, X_{2}, \ldots$ of statistically independent random variables on the probability space $(\mathcal{N}, \Sigma, \lambda)$ where Σ is the collection of Borel subsets of \mathcal{N} and λ the Lebesgue measure, as before. Let $X_{i}(\alpha)=\alpha_{i}$ for $\alpha \in \mathcal{N}$ and $i \in \omega$. If $k>\ell>\max w_{n}$ and both $\pi\left(w_{n} k\right) \neq \pi\left(w_{n}\right)$ and $\pi\left(w_{n} \ell\right) \neq \pi\left(w_{n}\right)$, then the events B_{k} and B_{ℓ} are statistically independent. To see this, note that B_{k} belongs to the σ-algebra generated by

$$
\left\{X_{j} \mid \sigma(j) \in \pi\left(w_{n} k\right) \backslash \pi\left(w_{n}\right)\right\},
$$

and B_{ℓ} belongs to the σ-algebra generated by

$$
\left\{X_{j} \mid \sigma(j) \in \pi\left(w_{n} \ell\right) \backslash \pi\left(w_{n}\right)\right\} .
$$

Independence follows from the fact that $\pi\left(w_{n} k\right) \cap \pi\left(w_{n} \ell\right)=\pi\left(w_{n}\right)$.
Since the probability

$$
P\left(\alpha \in B_{k}\right)=2^{-\left|\pi\left(w_{n} k\right) \backslash \pi\left(w_{n}\right)\right|}
$$

and we know, by (3), that the sum of the probabilities of these independent events diverges, it follows from the second Borel-Cantelli lemma that the event B_{k}, with $\pi\left(w_{n} k\right) \neq \pi\left(w_{n}\right)$, occurs infinitely often with probability 1 . In particular, if we define B by

$$
\alpha \in B \leftrightarrow \exists k\left(k>\max w_{n} \wedge \pi\left(w_{n} k\right) \neq \pi\left(w_{n}\right) \wedge \alpha \in B_{k}\right)
$$

then $\lambda(B)=1$. But B is a Σ_{1}^{0}-set and $\Sigma_{1}^{0} \subset \Pi_{2}^{0}$, so it follows directly from Theorem that $\varepsilon \in B$. Choose the smallest $k>\max w_{n}$ for which $\pi\left(w_{n} k\right) \neq \pi\left(w_{n}\right)$ and such that $\varepsilon \in B_{k}$. Set $w_{n+1}=w_{n} k$. Then $\varepsilon(j)=1$ for all j with $\sigma(j) \in \cup_{\ell \leq n+1} \pi\left(w_{\ell}\right)$. Every step - including this last one - is effective relative to ε.

We now proceed to prove the main theorem of the paper (Theorem (2).
Proof. Let X be a recursive homogeneous structure with a dense age. There is a universal procedure that yields, for finite subsets U, V of X with $U \cap V=\emptyset$ and each $k<\omega$ a set V_{k} such that the sequence $\left(V_{k} \mid k<\omega\right)$ is as in the conclusion of Lemma This is evident from the proof of Lemma since the inductive constructions of the V_{k} can be done recursively for a given recursive structure X.

Since X is recursive we can identify its domain with ω. Our aim is to construct a function $\mu: \operatorname{Fin} \omega \rightarrow \operatorname{Fin} \omega$ such that, for $w \in \operatorname{Fin} \omega$, there is an embedding $\nu(\omega)$ from the \mathcal{L}-structure on $|w| \subset X$ to an \mathcal{L}-structure $\mu(w) \subset X$ such that, for $k>\max w$, the embedding $\nu(w k)$ will be an extension of $\nu(w)$.

The construction will be such that if $n>m>\max w$ then

$$
\mu(w n) \cap \mu(w m)=\mu(w)
$$

and $\mu(w m)$ will always contain a copy of β which is not in $\mu(w)$. Finally, we shall ensure that that the embeddings $\nu(w)$ will depend recursively on w. The construction is as follows:
(1) Set $\mu(\emptyset)=\emptyset$ and $\nu(\emptyset)=\emptyset$.
(2) Assume $\mu(w), \nu(w)$ and $k>\max w$ are given. Construct V (which will be a finite set) such that $V \cap \mu(w)=\emptyset$ and if we set $Z=\mu(w) \cup V$ then Z contains a copy of $|w|+1$, extending the copy of $|w|$ in $\mu(w)$, and Z contains a copy of β not in $\mu(w)$. (Proposition $\mathbb{1}$ shows that we can extend $|w|$ and Lemma \square implies that there are infinitely many copies of β.) Next, construct a pairwise disjoint sequence $V_{0}, V_{1}, V_{2}, \ldots$ (again using Lemma I which are $^{\text {a }}$ all also disjoint from $\mu(w)$, such that if we set $Z_{j}=\mu(w) \cup V_{j}$ then Z_{j} is isomorphic to Z. Finally, set $\mu(w k)=Z_{k}$ and let $\nu(w k)$ be an embedding of $|w|+1$ into Z_{k} which extends $\nu(w)$.

Set $\pi(w)=[\mu(w), \beta]$. We now show that π is an encoding of $Y=[X, \beta]$ in the sense of Definition (1) By the construction we see immediately that π satisfies conditions (1) and (2) of Definition (1) In order to verify the condition (3), we note that if $n>\max w$ then $\pi(w n) \backslash \pi(w)$ is non-empty
and its size is independent of n (again by Step 2 of the construction). The divergence of the series follows.

Let $\beta_{0}, \beta_{1}, \ldots$ be an effective enumeration without repetition of Y. For $i<\omega$, set $\sigma(i)=\beta_{i}$. Note that, since we have an effective representation of X, the straight-forward (greedy!) algorithm for giving μ and π, respectively, shows that both are recursive. Since π is recursive, so is the mapping $w \mapsto|\pi(w)|$. Also, whether $[\sigma(i) \in \pi(w)]$ holds, can be determined by listing and comparing the elements of $\sigma(i)$ and $\mu(w)$, where μ is as above. Therefore, π, as defined, is effective relative to σ (in the sense of Definition (2).

Theorem 3 now gives an oracle computation of a strictly increasing sequence $w_{1}<w_{2}<w_{3}<\ldots$ from ε such that $\varepsilon(j)=1$ whenever $\sigma(j) \in \cup \pi\left(w_{n}\right)$. In other words, since $\mu\left(w_{n}\right)$ is increasing in n, if $\sigma(j) \subset \cup \mu\left(w_{n}\right)$ then $\varepsilon(j)=1$.

The embeddings $\nu\left(w_{n}\right):\left|w_{n}\right| \rightarrow \mu\left(w_{n}\right)$ are mutually compatible and thus define an embedding $\nu: X \rightarrow X$ such that $\operatorname{Im} \nu \subset \bigcup_{n} \mu\left(w_{n}\right)$. This embedding ν is the required embedding, which is indeed recursive relative to ε since $w \mapsto \nu(w)$ is recursive and the sequence $w_{1}<w_{2}<w_{3}<\ldots$ is recursive relative to ε.

4 Ranked diagrams

In [5] it was shown that partitioning the edges of the complete countable graph K_{ω} into two classes E_{0}, E_{1} by means of a KC-string ε yields two graphs $\left(\omega, E_{0}\right)$ and $\left(\omega, E_{1}\right)$ both of which are isomorphic to the Fraïssé limit of finite graphs. In this section we want to do the same for so-called ranked diagrams. These structures can be viewed as the Hasse diagrams of posets.

4.1 An \aleph_{0}-categorical first-order theory of ranked diagrams.

In the sequel, $\ell \geq 2$ is fixed. Let \mathcal{L} be the signature having ℓ unary relations, $L_{0} \ldots L_{\ell-1}$ (denoting the levels of the ranked diagram), and one binary relation, S (succession). The theory, $R D_{\ell}$, of ranked diagrams on ℓ levels (ℓ-diagrams), has the following three axioms :
(i) For all $x: L_{0}(x) \vee \ldots \vee L_{\ell-1}(x)$
(ii) For all x :

$$
\bigwedge_{0 \leq i<j<\ell} \neg\left[L_{i}(x) \wedge L_{j}(x)\right]
$$

(iii) For all x and y :

$$
S(x, y) \rightarrow \bigwedge_{i=0}^{\ell-2}\left[L_{i}(x) \rightarrow L_{i+1}(y)\right]
$$

The preceding axioms imply that there exists, for each x, a unique L_{i} such that $L_{i}(x)$ holds (or - in different notation $-x \in L_{i}$) and also that $S(x, y)$ can hold only if x and y are on adjacent levels, y being "above" x. A model of the theory $R D_{\ell}$ is an ℓ-diagram. (A special class of these diagrams, namely the k-layered posets, has been investigated in [1].)

We shall identify a class of countable ℓ-diagrams, having the property that each one of them also contains a copy of every other countable ℓ-diagram. This class is defined by an \aleph_{0}-categorical first-order theory consisting of the axioms of $R D_{\ell}$ as well as a collection of extension axioms similar to the extension axioms used by Compton [4] in his proof of the fact that the class of partial orders has a (labelled) first order 0-1 law. In view of the result of Kleitman and Rothschild

Figure 1: The extension axioms assert the existence of such a z for any $X, Y, X^{\prime}, Y^{\prime}, Z$.
[13], showing that a finite partial order will be ranked and of height 3 with labelled asymptotic probability 1 , it makes sense to investigate random partial orders via ℓ-diagrams.

We now single out those ℓ-diagrams that are not only models of $R D_{\ell}$ but also satisfy the following countable collection of axioms (indexed by the cardinalities of $X, Y, X^{\prime}, Y^{\prime}, Z$, for example):
(iv) (Extension Axioms) For each $i<\ell$ and configuration of non-negative integers, $\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)$, an axiom stating that when X, Y are disjoint subsets of L_{i+1}, Z is a subset of L_{i} and X^{\prime}, Y^{\prime} disjoint subsets of L_{i-1} such that $\left(|X|,|Y|,|Z|,\left|X^{\prime}\right|,\left|Y^{\prime}\right|\right)=\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)$ then, for some $z \in L_{i}$ such that $z \notin Z$, we have

$$
\begin{array}{lllll}
& S(z, x), & S\left(x^{\prime}, z\right), & \neg S(z, y) & \text { and } \neg S\left(y^{\prime}, z\right) \\
\text { for all } & x \in X, & x^{\prime} \in X^{\prime}, & y \in Y & \text { and } y^{\prime} \in Y^{\prime}
\end{array}
$$

respectively. (See Figure 1.) We think of L_{i-1}, respectively L_{i+1}, as a name for the empty set when $i=0$, respectively $i=\ell-1$.

These extension axioms guarantee that we can extend a given arbitrary finite configuration on levels $i-1, i, i+1$ in the required way (to a new ℓ-diagram) by just finding an appropriate z on level i. Axioms (i)-(iv) all together give a countable collection of first-order sentences in our language \mathcal{L}. These make up a theory T_{ℓ}. We shall call its countable models the generic ℓ-diagrams. Instances of the form $X=X^{\prime}=Y=Y^{\prime}=\emptyset$ of (iv) guarantee that in any model of T_{ℓ}, the unary relations L_{i} are modelled by infinite sets, so that any countably infinite model necessarily has infinitely many elements on each level.

4.2 Explicit construction of an generic ℓ-diagram.

We now give an example of how to construct a recursive object that represents a generic ℓ-diagram. A similar construction can be given for Rado's random graph [17. Let $A=\ell \times \omega$ be our underlying set and fix a collection

$$
p(i, n) \quad i \in \ell, \quad n<\omega
$$

of distinct odd primes. Now define the binary relation P_{ℓ} on $\ell \times \omega$ by

$$
(i, n) P_{\ell}(i+1, m) \quad \leftrightarrow \quad\left(\begin{array}{c}
m \neq 0 \text { and } p(i, n) \mid m \tag{4}\\
\text { OR } \\
n \neq 0 \text { and } p(i+1, m) \mid n
\end{array}\right) .
$$

In order to verify that $\left(A, P_{\ell}\right)$ is generic, we need to check the extension property (iv). We first assume $0<i<\ell-1$. Take any finite subsets

$$
X=\left\{\left(i+1, x_{0}\right), \ldots,\left(i+1, x_{p}\right)\right\}
$$

$$
\begin{aligned}
Y & =\left\{\left(i+1, y_{0}\right), \ldots,\left(i+1, y_{q}\right)\right\} \\
Z & =\left\{\left(i, z_{0}\right), \ldots,\left(i, z_{r}\right)\right\} \\
X^{\prime} & =\left\{\left(i-1, x_{0}^{\prime}\right), \ldots,\left(i-1, x_{s}^{\prime}\right)\right\} \\
Y^{\prime} & =\left\{\left(i-1, y_{0}^{\prime}\right), \ldots,\left(i-1, y_{t}^{\prime}\right)\right\}
\end{aligned}
$$

of $\ell \times \omega$ such that $X \cap Y=\emptyset=X^{\prime} \cap Y^{\prime}$. It is sufficient to show that there exists $z \notin\left\{0, z_{0}, \ldots, z_{r}\right\}$ so that

$$
\begin{array}{ll}
p\left(i+1, x_{k}\right) \mid z & , k \leq p \\
p\left(i-1, x_{k}^{\prime}\right) \mid z & , k \leq s \\
p\left(i+1, y_{k}\right) & \nless z \\
p\left(i-1, y_{k}^{\prime}\right) & , k z \\
, k \leq t
\end{array}
$$

and also

$$
\begin{array}{lllll}
p(i, z) & X y_{k} & \text { or } & y_{k}=0 & , k \leq q \\
p(i, z) & X y_{k}^{\prime} & \text { or } & y_{k}^{\prime}=0 & , k \leq t .
\end{array}
$$

This can be achieved by setting

$$
z=\left(\prod_{k \leq p} p\left(i+1, x_{k}\right)\right) \cdot\left(\prod_{k \leq s} p\left(i-1, x_{k}^{\prime}\right)\right) \cdot 2^{w}
$$

where w has been chosen sufficiently large to make $z \neq z_{0}, \ldots, z_{r}$ and for $p(i, z)$ not to divide any of the non-zero second components of elements of $Y \cup Y^{\prime}$. This determines a z with the required properties. The cases $i=0$ and $i=\ell-1$ are similarly dealt with.

4.3 Application of Theorem 2 to ranked diagrams.

Let X be a generic ℓ-diagram. If A is a finite ℓ-diagram and $f: A \rightarrow X$ any embedding, and if B is a ℓ-diagram with $|B|=|A|+1$ and $B \supset A$, then it follows directly from the extension axioms (iv) that f can be extended to an embedding of B into X. Since each singleton ℓ-diagram can be embedded into X, it thus follows upon induction that any finite ℓ-diagram can be embedded into X. Finally, it follows from Proposition \square that X is homogeneous. We conclude that X is the Fraïssé limit of finite ℓ-diagrams. We note that $\operatorname{Age}(X)$ is dense in X so that Theorem 2 also applies to generic ℓ-diagrams.

4.4 Binary sequences that generate generic ℓ-diagrams.

Fix some canonical recursive bijection

$$
\psi:(\ell-1) \times \omega \times \omega \rightarrow \omega .
$$

Given $\alpha \in \mathcal{N}$ we generate a ranked diagram S_{α} on the underlying set $A=\ell \times \omega$ by putting

$$
\begin{equation*}
(i, n) S_{\alpha}(i+1, m) \quad \text { whenever } \quad \alpha_{\psi(i, n, m)}=1 \tag{5}
\end{equation*}
$$

We would now like to know for which $\alpha \in \mathcal{N}$, the ranked diagram $\left(A, S_{\alpha}\right)$ generated by the binary sequence α is ℓ-generic, where $A=\ell \times \omega$, as before. Let

$$
G=\left\{\alpha \in \mathcal{N} \mid\left\langle A, S_{\alpha},\{0\} \times \omega, \ldots,\{\ell-1\} \times \omega\right\rangle \text { is a model for } T_{\ell}\right\} .
$$

The construction of S_{α}, as in equation (5), is already such that the axioms (i)-(iii) of T_{ℓ} are automatically satisfied for all α.

Let $P\left(\alpha, X, Y, Z, X^{\prime}, Y^{\prime}, z\right)$ stand for the predicate over $\mathcal{N} \times(\operatorname{Fin} A)^{5} \times A$ which states that $z \notin Z$ and

$$
S_{\alpha}(z, x), \quad S_{\alpha}\left(x^{\prime}, z\right), \quad \neg S_{\alpha}(z, y) \quad \text { and } \neg S_{\alpha}\left(y^{\prime}, z\right)
$$

holds, for all $x \in X, x^{\prime} \in X^{\prime}, y \in Y$ and $y^{\prime} \in Y^{\prime}$ respectively. If we identify Fin A with ω via a recursive bijection, then it is clear that P is a recursive predicate. Set $K_{i}=\{i\} \times \omega$ for $i<\ell$ and $K_{-1}=K_{\ell-1}=\emptyset$. Let $Q(\alpha)$ be the predicate

$$
\begin{gathered}
(\forall 0 \leq i<l)\left(\forall X \in \operatorname{Fin} K_{i+1}\right)\left(\forall Y \in \operatorname{Fin} K_{i+1}\right)\left(\forall Z \in \operatorname{Fin} K_{i}\right)\left(\forall X^{\prime} \in \operatorname{Fin} K_{i-1}\right) \\
\left(\forall Y^{\prime} \in \operatorname{Fin} K_{i-1}\right)\left(\exists z \in K_{i}\right)\left(X \cap Y=X^{\prime} \cap Y^{\prime}=\emptyset \rightarrow P\left(\alpha, X, Y, Z, X^{\prime}, Y^{\prime}, z\right)\right)
\end{gathered}
$$

which is to say that $Q(\alpha)$ holds if and only if α codes a generic ℓ-diagram. It is clear that Q is a Π_{2}^{0}-predicate. We have thus shown that

Lemma 2. G is a Π_{2}^{0}-set.
Let us now consider the probability that a uniformly randomly generated α will give an ℓ-generic RD on A, where our probability measure is the Lebesgue measure λ, as before.

Lemma 3. With probability 1, a sequence $\alpha \in \mathcal{N}$ defines a generic ℓ-diagram.
Proof. We have to show that $\lambda(G)=1$. Note that

$$
G=\bigcap \bigcup_{z \in K_{i}}\left\{\alpha \mid P\left(\alpha, X, Y, Z, X^{\prime}, Y^{\prime}, z\right)\right\}
$$

where the intersection runs over all $i, X, Y, Z, X^{\prime}, Y^{\prime}$ such that $0 \leq i<\ell ; X, Y \in \operatorname{Fin} K_{i+1}$; $Z \in \operatorname{Fin} K_{i} ; X^{\prime}, Y^{\prime} \in$ Fin K_{i-1} such that $X \cap Y=X^{\prime} \cap Y^{\prime}=\emptyset$.

Since this is a countable intersection, we can henceforth regard all parameters, save z, as fixed, and need only prove that

$$
\lambda\left(\bigcup_{z \in K_{i} \backslash Z}\left\{\alpha \mid P\left(\alpha, X, Y, Z, X^{\prime}, Y^{\prime}, z\right)\right\}\right)=1
$$

when $X, Y, X^{\prime}, Y^{\prime}$ are as above.
Now, if z^{\prime} and $z^{\prime \prime}$ are distinct elements of $K_{i} \backslash Z$, then $P\left(\alpha, X, Y, Z, X^{\prime}, Y^{\prime}, z^{\prime}\right)$ holding for α and $P\left(\alpha, X, Y, Z, X^{\prime}, Y^{\prime}, z^{\prime \prime}\right)$ holding for α are independent events. For, the evaluation of these two instances of the predicate reference disjoint (finite) sets of digits in the sequence α (ψ above being one-to-one). In each case, the probability that P holds is 2^{-n} where $n=|X|+|Y|+\left|X^{\prime}\right|+\left|Y^{\prime}\right|$. We may therefore apply the second Borel-Cantelli lemma to conclude that the union,

$$
\bigcup_{z \in K_{i} \backslash Z}\left\{\alpha \mid P\left(X, Y, Z, X^{\prime}, Y^{\prime}, z\right)\right.
$$

does indeed have measure 1 , which proves the lemma.
Theorem 1 together with Lemmas 2 and 3 now immediately give the following theorem.
Theorem 4. If α is a $K C$-string, then the ranked diagram $\left(A, S_{\alpha}\right)$ is ℓ-generic.

References

[1] G. Brightwell H.J. Prömel A. Steger, 'The Average Number of Linear Extensions of a Partial Order', J. Comb. Th. Series A 73 (1996) 193-206.
[2] G.J. Chaitin, Algorithmic Information Theory (Cambridge University Press, 1987).
[3] C.C. Chang H.J. Keisler, Model Theory (North Holland, Amsterdam, 1973).
[4] K.J. Compton, 'Laws in Logic and Combinatorics', in I. Rival (ed), Algorithms and Order (Kluwer Acad. Publ., Dordrecht, 1989) 353-383.
[5] W.L. Fouché, 'Descriptive Complexity and Reflective Properties of Combinatorial Configurations', Journal of the London Mathematical Society (2) 54 (1996) 199-208.
[6] W.L. Fouché, 'Identifying randomness given by high descriptive complexity', Acta Applicandae Mathematicae 34 (1994) 313-328.
[7] R. Fraïssé, 'Sur l'extension aux relations de quelques propriétés des ordres', Ann. Sci. École Norm. Sup. 71 (1954) 363-388.
[8] P. Gács, 'Randomness and Probability - Complexity of Description', Encyclopedia of Statistical Sciences (John Wiley \& Sons, 1986) 551-555.
[9] P. Gács, A review of G. Chaitin's Algorithmic Information Theory, Journal of Symbolic Logic 54 (1989) 624-627.
[10] P.G. Hinman, Recursion-theoretic Hierarchies (Springer, New York, 1978).
[11] W. Hodges, Model Theory, (Cambridge University Press, Cambridge, 1993).
[12] C.G. Jockusch jr., 'Ramsey's Theorem and Recursion Theory', Journal of Symbolic Logic 37 (1972) 268-280.
[13] D.J. Kleitman B.L. Rothschild, 'Asymptotic Enumeration of Partial orders on a Finite Set', Trans. Am. Math. Soc. 205 (1975) 205-220.
[14] A.N. Kolmogorov, 'Three approaches to the quantitative definition of information', Probl. Inform. Transmission 1 (1965) 1-7.
[15] A.N. Kolmogorov V.A. Uspenskii, 'Algorithms and randomness', Theory Probab. Appl. 32 (1987) 389-412.
[16] P. Martin-Löf, The Definition of Random Sequences, Information and Control 9 (1966) 602619.
[17] R. Rado, 'Universal graphs and universal functions', Acta Arith. 9 (1964) 393-407.
[18] F.P Ramsey, 'On a problem of formal logic', Proc. London Math. Soc. 30 (1930) 264-286.
[19] E. Specker, 'Ramsey's Theorem does not hold in recursive set theory', Studies in logic and the foundations of mathematics (North-Holland, Amsterdam, 1971).
[20] P. Vitányi M. Li, An Introduction to Kolmogorov Complexity and Its Applications (SpringerVerlag, 1993).

