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Abstract

We use model-theoretic methods described in [3] to obtain ordinal
analyses of a number of theories of first- and second-order arithmetic,
whose proof-theoretic ordinals are less than or equal to Γ0.

1 Introduction

In [3] we introduced a model-theoretic approach to ordinal analysis
as an interesting alternative to cut elimination. Here we extend these
methods to the analysis of stronger theories of first- and second-order
arithmetic which are nonetheless predicatively justifiable.

When used in this sense, the word “predicative” refers to a foun-
dational stance under which one is willing to accept the set of natural
numbers as a completed totality, but not the set of all subsets of the
natural numbers. In this spirit, predicative theories bar definitions that
require quantification over the full power set of N, depicting instead
a universe of sets of numbers that is constructed “from the bottom
up.” Work of Feferman and Schütte has established that the ordinal
Γ0 is the least upper bound to the strength of such theories (see for
example, [4]). More recently a number of theories that are not prima
facie justifiable on predicative grounds have been shown to have, in
fact, predicative strength, in the sense of proving the same arithmetic
statements as their predicatively justifiable counterparts. The analysis
of such theories is our present concern.

This paper is best read as a sequel to [3]. In Section 2 we recap
basic definitions from that source and introduce some new notation.
In Section 3 we present a lemma, due to the second author, that allows
one to build transfinite jump hierarchies, yielding ordinal analyses of
the theories (Π0

1 -CA)≺ωα . In Sections 4 and 5 we analyze the theories
ACA and Σ1

1 -AC respectively, and in the two remaining sections we
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treat the theories ÎDn , ÎD<ω, ATR0 , and ATR. (Stricly speaking,
ATR goes beyond the bounds of predicativity, since its ordinal is Γε0 ;
but we have included it here because its analysis is not much more
difficult than that of ATR0 .)

2 Preliminaries

Suppose we have fixed an initial segment of the countable ordinals, and
assigned cofinal sequences λ[0], λ[1], λ[2], . . . to limit ordinals λ. The
notion of an α-large set of ordinals is defined inductively, as follows:

• Every set is 0-large.

• A set A is (β + 1)-large if it is nonempty and A − {min(A)} is
β-large.

• If λ is a limit, then a set A is λ-large if it is nonempty and
A− {min(A)} is λ[min(A)]-large.

Fix a nonstandard model of arithmeticM. The approach to ordinal
analysis described in [3] involves starting with an appropriately large
interval [a, b] with nonstandard endpoints in M, and using it to build
a model N of the theory in question. The constructions proceed by
extracting from [a, b] a nonstandardly-large subset A, and possibly
otherM-finite sets S, with various combinatorial properties. The first-
order part of N is then taken to be any limit I of points in A (that is,
any initial segment of M with no greatest element, in which points of
A occur cofinally), and elements of the second-order universe of N are
obtained by taking intersections of the sets S with I (these intersections
are denoted SI). The trick is to design the combinatorial properties of
A and S so that, “in the limit,” SI will have desired properties in N .
In practice we often blur the distinction between anM-finite set S and
its potentially unbounded counterpart in I, and drop the superscript
from SI .

For example, suppose we want to guarantee that, in the limit, S
will be the Turing jump of T ; that is

I |= S = T ′

where T ′ = {x | TrΣ0
1
(x, T )} and TrΣ0

1
(x,Z) ≡ ∃y Θ(x, y, Z) is a

complete Σ0
1 truth predicate relative to Z. Our goal is to define a

finitary combinatorial notion “S approximates the Turing jump of T
in A,” written

A |≈ S = T ′,

which will guarantee that S = T ′ holds in I. The motivation behind
the definition is that in order determine the jump of a set Z it is
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sufficient to have bounds on where to find witnesses y to the formula
∃y Θ(x, y, Z). We introduce the notation ja,b by

ja,b(Z) = {e < a | ∃y ≤ b Θ(e, y, Z)},

and we take
ja,∞(Z) = {e < a | ∃y Θ(e, y, Z)}.

Clearly for all natural numbers a there is a value aZ such that

ja,aZ (Z) = ja,∞(Z),

and any integer greater than aZ will also satisfy this equation. Also
note that

Z ′ =
⋃
a

ja,∞(Z).

Our definition of A |≈ S = T ′, where A = {a0, . . . , ak}, is motivated
by the desire to have ak behave like ∞ and the mapping ai 7→ ai+1
satisfy the properties of a mapping a 7→ aZ described above.

In the next definition we use the notation Sa to denote the set
{x ∈ S | x < a}; note that this agrees with the definition of SI if we
identify a with the set of natural numbers less than a.

Definition 2.1 Let A = {a0, a1, . . . , ak}, S, and T be finite sets. Say
that S approximates the Turing jump of T in A, written A |≈ S = T ′,
if the following hold:

i. for every i < k, jai,ai+1(T ) = jai,ak(T ), and
ii. k ≥ 1 implies Sak−1 = jak−1,ak(T ).

Although there is, for each T , a unique set S satisfying S = T ′, note
that sets S such that A |≈ S = T ′ are not uniquely determined, since
the definition does not say anything about what numbers greater than
ak−1 are in S.

The following lemma states the fundamental property of the “ap-
proximates the jump” relation.

Lemma 2.2 Let A, S, and T be finite sets in M such that

M |= (A |≈ S = T ′).

Then for any limit I of A,

I |= S = T ′.

The proof of this lemma is straightforward and can be found in [3].
Recall that a set A = {a0, a1, . . . , ak} is spread out if for all i < k − 3,
2ai < ai+1. In [3] it is also shown that if A is spread out and there is
a set S such that A |≈ S = ∅′, then I will be a model of I Σ1 .

The next lemma lists some basic properties of “approximates the
jump.”
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Lemma 2.3 1. For any S, T , and a,

∅ |≈ S = T ′ and {a} |≈ S = T ′.

2. If B ⊂ A and A |≈ S = T ′ then B |≈ S = T ′.

3. Suppose B is obtained from A by replacing the minimum element
of A by a smaller number (i.e., B = (A − {minA}) ∪ {minB}
and minB ≤ minA), then A |≈ S = T ′ implies B |≈ S = T ′.

4. Suppose A = {a0, . . . , ak} and k ≥ 1. Then

A |≈ S = T ′

if and only if

Sak−1 = jak−1,ak(T ), A−{a0} |≈ S = T ′ and ja0,a1(T ) = ja0,ak(T ).

For the analysis of predicative theories we need a sufficiently strong
notation system. The one that follows is based on Veblen’s sequence
of ordinal functions ϕα, each of which enumerates the fixed points of
its predecessors (for more information see [3, 4]).

Definition 2.4 Our set of ordinal notations is defined inductively, as
follows:

• 0 is an ordinal notation.

• If α1, α2, . . . , αk are ordinal notations other than 0, then so is

α1 + α2 + . . .+ αk.

• If α and β are ordinal notations, so is ϕ(α, β).

• If α is an ordinal notation, so is Γα.

Notations of the form α + 1 (that is, α + ϕ(0, 0)) are called successor
notations. A notation that is neither 0 nor a successor notation is
called a limit notation.

The symbol � denotes the usual order relation for notations of this
form. When we refer to notations such as 1, ωα, ωn, εα, γn, and so on,
these are to be taken as abbreviations for their usual representations
with 0, +, and ϕ. In particular, we use α · n to denote the term

α+ α+ . . .+ α

in which there are n terms in the sum, ωα to denote ϕ(0, α), and ϕnα(β)
to denote the n-fold iteration

ϕ(α, ϕ(α, . . . ϕ(α, β))).
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Our treatment of ordinal addition violates unique readability, since,
for example, the term α + β + γ can be interpreted by associating to
the left or to the right. As it turns out, blurring this distinction is
convenient, and one can check that the definitions and proofs below
are insensitive to the way such a term is parsed.

Definition 2.5 Sequences are assigned to limit notations as follows.
(Here λ always denotes a limit ordinal.)

1. (α+ β)[n] =def α+ (β[n]).

2. ωα+1[n] =def ω
α · (n+ 2)

3. ϕ(α, λ)[n] =def ϕ(α, λ[n] + 1).

4. ϕ(α+ 1, 0)[n] =def ϕ
n+2
α (1).

5. ϕ(α+ 1, β + 1)[n] =def ϕ
n+2
α (ϕ(α+ 1, β) + 1).

6. ϕ(λ, 0)[n] =def ϕ(λ[n], λ[n]).

7. ϕ(λ, β + 1)[n] =def ϕ(λ[n] + 1, ϕ(λ, β) + 1).

8. Γ0[n] = γn+1

9. Γα+1[n] = γΓα+1
n+1 .

10. Γλ[n] = Γλ[n]+1.

We have chosen these particular limit sequences to facilitate our con-
structions, though they differ from the “standard” assignments only
slightly.

Note that different notations can denote the same ordinal, as is
the case with ε0 and ωε0 . Further note that equivalent notations need
not have equivalent limit sequences; for example, ε0[n] = ωn+2, but
ωε0 [n] = ωωn+2+1. We assume that to each notation α there has been
assigned a canonical normal form α, satisfying the following:

Lemma 2.6 For any notations α and β, we have

1. If α ≡ β (that is, α � β and β � α) then α = β.

2. α ≡ α.

We will also assume, for simplicity, that α+ 1 = α+ 1.
Because our constructions take place in a model of arithmetic, we

need to assume that notations α have been coded as numbers pαq in
a reasonable way. The requirements in [3] were very minimal; here,
because the models we construct contain jump hierarchies that are
again indexed by ordinals, we need to assume that the following two
lemmas are satisfied.

Lemma 2.7 If α = α1 + · · ·+αk then pαq > pαiq for i = 1, 2, . . . ,k,
and pαq > k.
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Lemma 2.8 There is a (standard) number k such that for every no-
tation α and natural number x,

pα[x]q ≤ (pαq)k·x,

and
pωαq ≤ (pαq)k.

Choosing a coding that satisfies these is not difficult. In fact, under a
reasonable coding scheme the first condition of the second lemma will
follow from the fact that the “length” of α[x] is less than x times the
length of α. Furthermore, the bounds stated in this lemma are not
essential: any bound that is elementary in x and pαq will do.

Lemma 2.9 below is a corollary of Lemma 2.7, by a straightforward
induction on codes of notations. Note that statements (1) and (2) are
logically equivalent.

Lemma 2.9

1. If λ is a limit notation and λ[n] � γ ≺ λ then pγq ≥ n.

2. If λ is a limit notation, γ ≺ λ, and pγq < n then γ ≺ λ[n].

3 Approximating transfinite jump hierar-
chies

In this section we use appropriately large intervals to build approx-
imations to jump hierarchies indexed by ordinals notations. In this
context, it is traditional to use only notations in normal form. To
simplify notation we adopt the convention that whenever an ordinal is
used as an index to such a hierarchy, it is implicitly “cast” to normal
form. In other words, Hα is to be interpreted as Hα, and we define
H≺α to be the disjoint union

⊕
γ≺αHγ .

Definition 3.1 The set H is an α-level jump hierarchy, written Hα(H),
if the following conditions hold:

1. Successor conditions: if γ ≺ α then

Hγ+1 = (H�γ)′.

2. Limit conditions: if λ � α is a limit notation then

Hλ = H≺λ.

If H0 = S then H is an α-level jump hierarchy from S, which is written
HSα(H).
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Note that the definition does not specify what Hi is when i is not
a notation in normal form, or when i is a notation in normal form that
denotes an ordinal greater than α, so H is not uniquely determined.

Definition 3.2 Suppose A = {a0, . . . , ak}. The set H approximates
an α-level jump hierarchy in A, written A |≈ Hα(H), if the following
conditions hold:

1. Successor conditions: if γ ≺ α and pγq < ai, where i ≤ k, then

{ai, ai+1, . . . , ak} |≈ Hγ+1 = (H�γ)′.

2. Limit conditions: if λ � α is a limit notation and pλq < ak, then

Hλ = H≺λ.

If H0 = S then H approximates an α-level jump hierarchy from S in
A, which is written A |≈ HSα(H).

The following lemma asserts the fundamental property of the rela-
tion A |≈ Hα(H).

Lemma 3.3 Suppose

M |= (A |≈ Hα(H)),

A is spread out, and I is any limit of A. Then

I |= Hα(H).

Proof. Assume A |≈ Hα(H) and suppose I is a limit of A. If pγq ∈ I
then for some i ≤ k, pγq < ai ∈ I. Thus if γ ≺ α, by the successor con-
ditions of Definition 3.2 we have that {ai, . . . , ak} |≈ Hγ+1 = (H�γ)′.
Since ai ∈ I we have that I is a limit of {ai, . . . , ak}, and Lemma 2.2
implies

I |= Hγ+1 = (H�γ)′.

If γ � α is a limit notation in I then pγq < ak, and so

I |= Hγ = H≺γ

follows from the limit conditions of Definition 3.2. �

The following definition will be useful in proving Lemma 3.6 be-
low. A lemma listing basic properties of approximate jump hierarchies
follows the definition.

Definition 3.4 We say H agrees with J up to α, and write H ≡α J ,
if H�α = J�α.
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Lemma 3.5

1. ≡α is an equivalence relation.

2. If β � α and H ≡α J then H ≡β J .

3. For any H and α, ∅ |≈ Hα(H).

4. For any A and H, A |≈ H0(H).

5. If B ⊆ A and A |≈ Hα(H) then B |≈ Hα(H).

6. If β � α and A |≈ Hα(H) then A |≈ Hβ(H).

7. If H ≡α J and A |≈ Hα(H) then A |≈ Hα(J).

8. Suppose B is obtained from A by replacing A’s minimum element
by a smaller integer (i.e., B = (A − {minA}) ∪ {minB} where
minB ≤ minA), then A |≈ Hα(H) implies B |≈ Hα(H).

The proofs of the above are straightforward from the definitions.
To augment our notation, we add to the assertion A |≈ Hβ(H) the
information that A is α-large by writing

A |≈
α
Hβ(H).

The following lemma can be thought of as a model-theoretic counter-
part to the predicative cut-elimination lemma (see, for example, [8]).

Lemma 3.6 Suppose there is a set H such that A |≈
ϕ(ρ,α)

Hβ(H). Then

there is a spread out B ⊂ A and a set J ≡β H such that B |≈
α
Hβ+ωρ(J).

Proof.

Suppose A |≈
ϕ(ρ,α)

Hβ(H). We will prove the lemma by transfinite
induction on ϕ(ρ, α). In the event α = 0 or α is a limit the result is
easy. If α = 0 then, by Lemma 3.5.3, we get the result by taking B = ∅
and J = H.

If α is a limit then A − {a0} is ϕ(ρ, α[a0] + 1)-large, where a0 =
minA. Applying the induction hypothesis, we get B̂ and J such that
B̂ ⊂ A− {a0}, J ≡β H, and

B̂ |≈
α[a0]+1

Hβ+ωρ(J).

Taking B = (B̂ − {min B̂}) ∪ {a0}, we have that B ⊂ A, B is α-large
and, by Lemma 3.5.8, B |≈

α
Hβ+ωρ(J). To see that B is spread out

it is enough to note that, for any set X, if X is spread out and Y is
obtained from X by replacing minX with something smaller, then Y
is spread out.

8



We will handle three separate cases for α = α0 + 1, according to
whether ρ is 0, a successor, or a limit. In each of these cases we will
appeal to the induction hypothesis to get sets B̂ and Ĵ such that

B̂ ⊂ A− {a0}, (1)

Ĵ ≡β H, (2)

and

B̂ |≈
α0Hβ+ωρ(Ĵ). (3)

The set B̂ is one element short of being α-large, and in each case we
add a0 to B̂ to get B. We suppose

B = {b0, b1, . . . bk},

and so b0 = a0 and k is the cardinality of B̂. The trick is to pick B̂ such
that B = B̂ ∪ {b0} has the right properties; this will go differently in
the different cases, but there are points of similarity that we mention
now.

Our main focus is to establish

B |≈Hβ+ωρ(J), (4)

For this we need to show that the successor and limit conditions of
Definition 3.2 hold. In part, we will use (3), but we also use

if ρ 6= 0 then B |≈
α
Hβ+ωρ[b0](Ĵ), (5)

and

if ρ = 0 and k ≥ 1 then jb0,b1(J�β) = jb0,bk(J�β). (6)

Before showing how to get B̂ and Ĵ satisfying (1), (2), (3), (5), and
(6), we will use these conditions to get (4). For this we need to say
how J is defined.

Define J by

if ρ 6= 0 set J≺β+ωρ =def Ĵ≺β+ωρ and Jβ+ωρ =def J≺β+ωρ , (7)

and

if ρ = 0 set J�β =def Ĵ�β , and if k ≥ 1 set Jβ+1 =def j
bk−1,bk(J�β).

(8)

To show (4) from the above, we need to pay special attention to
the k = 0 case; this corresponds to B̂ = ∅. First we show the limit
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conditions for (4). If B̂ 6= ∅ then using Lemma 3.5, (1), (2), (3) and
the definition of J given by (7) and (8) we get the limit conditions for
(4), but if B̂ = ∅ then the limit conditions for (3) are trivially satisfied,
and so (3) doesn’t help for establishing the limit conditions for (4).
Nonetheless, when ρ 6= 0, we can use (5) to get the limit conditions
for λ ≺ β + ωρ[b0], and if β + ωρ is a limit, which it is when ρ 6= 0,
the conditions λ ≺ β + ωρ and pλq < bk imply, by Lemma 2.9, that
λ ≺ β + ωρ[bk]; since k = 0 this means λ ≺ β + ωρ[b0], and we have
the desired limit conditions in the case ρ 6= 0. If ρ = 0 then, for λ a
limit, λ � β + ωρ if and only if λ � β, so the limit conditions for (4)
follow from (1), (2), (8) and the fact A |≈Hβ(H) (using Lemma 3.5.5
and 3.5.7).

The successor conditions for (4) in the cases γ ≺ β+ωρ and pγq <
bi, when i > 0, follow from (3); in the case γ ≺ β + ωρ, pγq < b0, and
ρ 6= 0, we use Lemma 2.9 to get γ � β + ωρ[b0], and then the result
follows from (5). If ρ = 0 then ωρ = 1 and γ ≺ β + ωρ if and only if
either γ ≺ β or γ = β. The successor conditions for γ ≺ β, in the event
ρ = 0, follow from (1), (2), (8) and the assumption A |≈Hβ(H) (using
Lemma 3.5.5 and 3.5.7). In order to take care of the case γ = β, first
note that if k = 0 then this case follows from Lemma 2.3.1. If k ≥ 1,
the desired successor condition follows from Lemma 2.3.4, (6), and the
second part of (8).

The fact B ⊂ A follows from B̂ ⊂ A, b0 = minA and B =def
B̂ ∪ {b0}. The fact J ≡β H follows from the definition of J and (2).
A bit of an argument is needed in order to show that B is spread out;
we will take care of that as we go through the cases for proving (3),
(5), and (6).

Case ρ = 0 and α = α0 + 1: Notice that this is the main case of
Lemma 2.2 which was proved as Lemma 8.3 in [3]; since the argument
is presented there in detail (as well as in several cited references), we
will be brief here. Note that A − {a0} is ωα0(a0 + 2)-large. By a
property for partitioning ωδl-large sets (see [3, Lemma 5.5]), there is
an increasing partition of A−{a0} into a0 + 2 many ωα0 -large sets P0,
P1, . . . , Pa0+1. By the pigeon-hole principle we can select j ≥ 1 such
that for all e < a0,

(µy < maxA)Θ(e, y,H�β) /∈ (minPj ,maxPj ]. (9)

By the induction hypothesis there is a set B̂ ⊂ Pj and a set Ĵ ≡β H
such that

B̂ |≈
α0Hβ+1(Ĵ);

i.e., such that (3) holds.
Assume k ≥ 1. Since minPj ≤ b1 ≤ bk ≤ maxPj , (9) implies

jb0,b1(Ĵ�γ) = jb0,bk(Ĵ�γ);

10



i.e., (6) holds.
To see that B is spread out, note that, by the induction hypothesis,

B̂ is spread out, so we need only verify that if k > 3 then 2b0 < b1.
Since we selected j ≥ 1, the ωα0 -large set P0 sits between b0 and b1.
If α0 < 3 then (removing elements from B̂ if necessary) we can get
by with k ≤ 2, so assume α0 ≥ 3, then by a property of ωδ-large sets
when δ ≥ 3 (see [3, Lemma 5.6]), 2minP0 < maxP0, and so 2b0 < b1,
as desired.

Case ρ = ρ0 + 1 and α = α0 + 1: Apply the induction hypothesis
a0 + 2 times starting with the ϕa0+2

ρ0
(ϕ(ρ, α0) + 1)-large set A − {a0}

in place of A resulting in sets B∗ and J∗ such that J∗ ≡β H and

B∗ |≈
ϕ(ρ,α0)+1

Hβ+ωρ0 (a0+2)(J∗) (10)

Then apply the induction hypothesis again with B∗−{minB∗} in place
of A and J∗ in place of H, to get

B̂ ⊂ B∗ − {minB∗} (11)

and

Ĵ ≡β+ωρ0 (a0+2) J
∗ (12)

such that
B̂ |≈

α0Hβ+ωρ(Ĵ);

i.e., (3) holds. Using the fact that β + ωρ[b0] = β + ωρ0 · (b0 + 2), (10)
and (12) imply

B∗ |≈Hβ+ωρ[b0](Ĵ). (13)

Using Lemma 3.5.5 and (11) we have

B̂ ∪ {minB∗} |≈
α
Hβ+ωρ[b0](Ĵ). (14)

So, by Lemma 3.5.8 we have

B |≈
α
Hβ+ωρ[b0](Ĵ);

i.e., (5) holds.
To see that B is spread out, use b0 < minB∗, (11), and the fact B∗

is spread out (which is given by the induction hypothesis).
Case ρ is a limit and α = α0 + 1: Apply the induction hypothesis

with the ϕ(ρ[b0] + 1, ϕ(ρ, α0) + 1)-large set A − {a0} in place of A
resulting in sets B∗ and J∗ such that

B∗ |≈
ϕ(ρ,α0)+1

Hβ+ωρ[b0]+1(J∗) (15)
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Apply the induction hypothesis again with the ϕ(ρ, α0)-large set B∗−
{minB∗} in place of A and J∗ in place of H to get B̂ and Ĵ such that

B̂ |≈
α0Hβ+ωρ(Ĵ).

So (3) holds. By Lemma 3.5.5 and (15),

B̂ ∪ {minB∗} |≈Hβ+ωρ[b0]+1(Ĵ). (16)

Using Lemma 3.5.8, we then have

B |≈Hβ+ωρ[b0]+1(Ĵ). (17)

Since ρ is a limit, β + ωρ[b0] = β + ωρ[b0]+1, and so

B |≈
α
Hβ+ωρ[b0](Ĵ) (18)

i.e., (5) holds.
To see that B is spread out, use b0 < minB∗, B − {b0} ⊂ B∗ −

{minB∗}, and the fact B∗ is spread out (which is given by the induc-
tion hypothesis). �

Relativizing the construction in Lemma 3.6 and setting β = 0 yields

Lemma 3.7 Suppose C and T are sets and C is ϕ(ρ, α)-large. Then
there are sets A and H such that A is an α-large subset of C and spread
out, and A |≈ HTωρ(H).

The following lemma asserts that the various levels of a transfinite
jump hierarchy code the truth of arithmetic formulas involving previ-
ous levels. To state it, we expand the language of arithmetic to include
constants that denote sets of the form Hγ , so that if ψ is a formula with
parameters Hγ1 , . . . ,Hγk , the code pψq can refer to these parameters.

Lemma 3.8 There is an I ∆0 + (exp)-definable function

TruthCode(pψq, x)

with the following property: whenever

N |= I ∆0 + (exp) +Hα(H),

ψ is a Σ0
m(Hγ1 , . . . ,Hγk) formula, and

α � β � (sup{γ1, . . . , γk}+m),

then the equivalence

ψ ↔ TruthCode(pψq, β) ∈ Hβ

holds in N .
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The proof of this lemma is routine.
The constructions in this section enable us to build models of the-

ories that assert the existence of jump hierarchies. If α is a limit
notation in normal form, (Π0

1 -CA)≺α is a theory in the language of
second-order arithmetic that consists of the basic defining axioms for
successor, plus, and times, arithmetic comprehension with parameters,
an induction axiom for sets of natural numbers, and axioms

∃X Hγ(X)

for every (standard) notation γ ≺ α (see [7]).

Theorem 3.9 Suppose a and b are nonstandard elements of M such
that

M |= [a, b] is ϕ(α, 0)-large,

where α is a limit notation. Then there are a cut a < I < b and a
finite set S in M such that

N = 〈I, {SIi | i ∈ I}〉

is a model of (Π0
1 -CA)≺ωα . (In particular, if α is an ε-number, this is

equivalent to (Π0
1 -CA)≺α.)

Proof. Since [a, b] is ϕ(α, 0)-large, [a+1, b] is ϕ(α[a+1], α[a+1])-large.

By Lemma 3.7 there are sets A and H such A |≈
α[a+1]

Hωα[a+1](H). One
can verify that since α is a limit notation and A is α[a + 1]- large, A
is also ω-large. (In the “counting down” procedure it is impossible to
pass from an ordinal greater than ω to an ordinal less than ω, without
hitting ω first.) As a result, the set A has at least a+ 1 elements. Let

A′ =def {a0, a1, . . . , aa}

denote the first a+ 1 elements of A, let I be any limit of A′, and let

J =def {j | aj ∈ I},

so that J is a limit of {0, 1, . . . , a}.
Let N be the model defined by

N =def 〈I, {(H [k]
ωα[j])I | k ∈ I, j ∈ J}〉

We claim that N models (Π0
1 -CA)≺ωα . Verifying that arithmetic com-

prehension holds is not difficult, using Lemma 3.8. And since every
standard γ ≺ ωα is less than ωα[n] for some standard n, and Hγ is
then equal to H [k]

ωα[n] for some appropriate k,

N |= ∃X Hγ(X),

as desired. As in [3, Theorem 9.4] the second-order universe of N can
be coded into a single set S. �
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4 Constructing a model of ACA
The theory ACA is a subsystem of second-order arithmetic consisting
of quantifier-free defining equations for successor, plus, and times, an
axiom schema (ACA) of comprehension for arithmetic formulas with
numeric and set parameters, and full second-order induction. Since
the arithmetically definable sets form a natural interpretation of the
second-order variables of this theory, it isn’t surprising that an ω-level
jump hierarchy can be used to build a model. Indeed, one can verify
that if H is such a hierarchy in a model

N = 〈K, {H}〉

of the weak base theory I ∆0 + (exp), then

N ′ =def 〈K, {H [k]
i | i, k ∈ K}〉

will satisfy (ACA). But now the second-order universe of N ′ is defin-
able in N , so, for example, given any arithmetic formula θ(X,Y ) we
have that

N ′ |= ∃X ∀Y θ(X,Y )

if and only if
N |= ∃x, i ∀y, j θ(H [x]

i ,H
[y]
j ).

In short, second-order quantification in N ′ reduces to first-order quan-
tification relative to the parameter H in N . This suggests that to build
a model of ACA we only need to build a model in which first-order in-
duction holds relative to an ω-level jump hierarchy H. But Lemma 3.7
makes this easy: starting from a suitably large interval we can obtain
finite sets H and A such that A is ε0-large and H approximates an
ω-level jump hierarchy in A. Then we can use the techniques of [3]
to thin A down so that first-order induction will hold relative to the
parameter H in any limit of A.

Theorem 4.1 Suppose M is a model of true arithmetic, and a and b
are nonstandard elements of M such that

M |= [a, b] is εε0- large.

Then there are a cut a < I < b and a finite set S coded in M such
that

〈I, {SIj | j ∈ I}〉

is a model of ACA.

Proof. Recall that εε0 abbreviates ϕ(1, ε0). Applying Lemma 3.7 we
obtain a sets A and a set H such that A |≈

ε0Hω(H). As in [3] we can
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thin A to an ω-large set A′ (and build another jump hierarchy from
H), so that first-order induction is guaranteed to hold relative to H in
any limit I. Now if we take

N =def 〈I, {H [k]
i | i, k ∈ I}〉

the previous discussion shows that N will be a model of ACA. As
usual, we can code the second-order universe of N into a single set S.
�

5 Constructing a model of Σ1
1 -AC

We would like to extend the construction of the previous section to
model the theory Σ1

1 -AC , which adds to ACA the Σ1
1 axiom of choice,

(Σ1
1 -AC ). It is important to realize, however, that the simple approach

to building a model of Σ1
1 -AC0 described in [3] falls short. That con-

struction relied on the fact that the assertion

∀x ∃Y ϕ(x, Y ) (19)

in the final model implied

I |= ∀x ∃y ϕ(x,H [y]
e ) (20)

for a single parameter e. Furthermore— and this is crucial— such a
parameter e could be found in the model, that is, in the cut I. This
fact allowed us to express the truth of (20) in any limit I with a formula
in M, and then find the least such e.

In the construction in the previous section, however, we needed to
index the jump hierarchy by all the elements of I, so that the fact that
(19) holds in the final model does not necessarily imply that there is
an e in I satisfying (20). On the other hand, if e is beyond I then
the formula (20) is not coded below any ai in I, and hence the truth
of (20) in I is not expressible in M. As a result, the construction for
Σ1

1 -AC0 falls apart here.
The solution is to use the jump lemma to build a much larger

hierarchy, allowing us to refer to more sets from within I. We will
show that if we have an α-level hierarchy for a suitable α, we can
find an initial segment K of α such that whenever (19) holds of the
hierarchy along K, then (20) holds when e is replaced by any notation
γ � K in I; and K has the further property that whenever such a
formula holds for every γ above K, it holds for some γ in K as well.

In previous constructions we’ve proceeded by building a single set
S that codes the sets of a second-order universe {Sx}. We would like
to make this process more explicit now. If ϕ is a second-order formula,
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we define ϕ relativized to S to be the translation of ϕ whereby second-
order quantifiers are taken to range over the collection of sets coded
by S. For example, if ϕ is the second-order formula

∀X1 ∃X2 ∀X3 θ(X1, X2, X3),

where θ is arithmetic, then ϕS is the formula

∀x1 ∃x2 ∀x3 θ(Sx1 , Sx2 , Sx3).

Using relativization we can express the fact that a S codes the
second-order part of a model of a particular theory.

Definition 5.1 Let S be a set of natural numbers. Say that S is an
ω-model of Σ1

1 -AC if (ACA) and (Σ1
1 -AC ) hold relativized to S.

Lemma 5.2 Suppose
〈K, {S}〉

is a model of Peano Arithmetic in which induction holds relative to the
parameter S, and

K |= S is an ω-model of Σ1
1 -AC .

Then
N =def 〈K, {Si | i ∈ K}〉

is a model of Σ1
1 -AC .

Proof. Straightforward. Second-order induction in N follows from first-
order induction in 〈K, {S}〉. �

Having reduced our task to that of constructing an ω-model of
Σ1

1 -AC , we now come to the main lemma in this section. We pause to
note that the proof was inspired by similar “pseudohierarchy” construc-
tions in [7, 6] (see also [10, 11]). The constructions in [7, 6] however,
rely on deep proof-theoretic results and Gödel’s second incompleteness
theorem, whereas, in contrast, the constructions here are more direct.1

In clause (2) of the following lemma, as in Lemma 3.8, we allow
arithmetic formulas ϕ to include parameters of the formHγ . Intuitively
it states that anything (coded low enough) that happens in the jump
hierarchy at stage βi already happens before stage αi.

1We would like to point out that our methods also allow us to build a model of the
Σ1

1 axiom scheme of dependent choice, (Σ1
1 -DC ), by building a jump hierarchy H, using

the methods of [12] to guarantee that transfinite induction holds relative to H, and then
employing the techniques of [7, 11]. In this case, however, we do not know of a more direct
construction.
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Lemma 5.3 Suppose C is a ϕ(α, α)-large set, and ωα is coded below
2min(C)2

. Then there is a set

A = {a0, a1, . . . , ak} ⊆ C

such that A is α-large and spread out, a set H such that A |≈ Hωα(H),
and sequences of ordinal notations

0 = α0 ≺ α1 ≺ α2 ≺ . . . ≺ αk ≺ βk ≺ . . . ≺ β1 ≺ β0 = ωα[a0]

such that for each 0 < i < k the following hold:

1. If i < k − 4, the codes for αi and βi are less than 2a
2
i+1 .

2. If ϕ(X) is an arithmetic formula coded below ai−1, and

TruthCode(ϕ(Hβi), β0) ∈ Hβ0 ,

then for some γ � αi that is coded below ai+1 we have

TruthCode(ϕ(Hγ), β0) ∈ Hβ0 .

Proof. Since C is ϕ(α, α)-large, by Lemma 3.7 we can find sets A and
H, such that

A = {a0, a1, . . . , ak}

is α-large and spread out, and A |≈ Hωα(H). As a result, we only need
to construct the sequences of αi and βi satisfying the conclusion of the
lemma.

Setting α0 = 0 and β0 = ωα[a0], we will carry out the construction
in k steps, where at each stage i > 0 we construct αi and βi so that

βi = αi + ωα[a0,... ,ai] (21)

and

αi−1 ≺ αi ≺ βi ≺ βi−1, (22)

and clauses (1) and (2) of the lemma are satisfied.
Suppose we’ve constructed α0, α1, . . . , αi and β0, β1, . . . , βi. At

stage i+ 1, there are two possibilities: either

α[a0, a1, . . . , ai] = δ + 1

for some δ or
α[a0, a1, . . . , ai] = λ,

where λ is a limit.
In the first case we have

βi = αi + ωδ+1.
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For each j ≤ ai + 3, define

ηj = αi + ωδ · j,

so that
αi = η0 ≺ η1 ≺ . . . ηai+3 ≺ βi

and for each j < ai + 2 we have

ηj+1 = ηj + ωδ

= ηj + ωα[a0,a1,... ,ai+1].

Since there are ai + 1 many values ηj , for j > 0, the pigeonhole
principle implies that we can find an l > 0 so that

l 6= µj ≤ ai + 2 (TruthCode(pϕ(Hηj+1)q, β0) ∈ Hβ0)

for any of the at most ai formulas ϕ coded below ai. Set

αi+1 =def ηl

and
βi+1 =def ηl+1.

Then if
TruthCode(pϕ(Hβi+1)q, β0) ∈ Hβ0

for some ϕ coded below ai, we have that

TruthCode(pϕ(Hηj )q, β0) ∈ Hβ0

for some j ≤ l. Using Lemmas 2.8 and 2.7 and the induction hypothesis
one can verify that the codes of αi+1 and βi+1 are less than 2a

2
i+1 .

So clauses (1) and (2) of the lemma are satisfied, and the induction
hypotheses (21) and (22) are also maintained.

The case where α[a0, a1, . . . , ai] = λ is almost identical; in this
case, take

ηj =def αi + ωλ[ai+1] · j
and proceed as before. �

The following definition is slightly awkward since it defines a prop-
erty of a set A by giving conditions on A−{min(A)}. This concession
pays off later on, in that it simplifies that statement of Lemma 5.7.
The definition should not be taken to imply that the conditions of
Lemma 5.3, expressible in the language of first-order arithmetic, pro-
vide the only way of ensuring that S will be an ω-model of Σ1

1 -AC in
any limit I of a nonstandard A. What is important is that they pro-
vide one way of doing so, as is evidenced by the lemmas that follow.
Notice that we use the usual coding trick of [3] to guarantee that only
certain sets are “seen” by the limit I.
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Definition 5.4 Let A = {a0, a1, . . . , ak} and S be finite sets. Say
that S approximates an ω-model of Σ1

1 -AC in A if there is a set H
and sequences 〈αi〉 and 〈βi〉 satisfying the conclusion of Lemma 5.3
with A replaced by A− {min(A)}; and, letting

T〈ai,γ,d〉 = H [d]
γ

we have that
S =

⊕
ai∈A,γ≺αi,d<ak

T〈ai,γ,d〉.

The idea behind this definition is as follows. Suppose S approxi-
mates an ω-model of Σ1

1 -AC in A = {a0, a1, . . . , ak}, and let I be any
limit of A. Then I determines a limit of the sequence

α0, α1, . . . , αk,

namely the set of αi corresponding to some ai in I. If we let K denote
the set of ordinal notations in I below some such αi, then K denotes
a set of notations in I with no greatest element, and in fact, an initial
segment with the favorable properties discussed in the opening para-
graphs of this section. The set SI then codes the sets that are definable
in some level of H corresponding to a notation in K.

The next two lemmas show that Definition 5.4 has the desired prop-
erties. The first was inspired by [7].

Lemma 5.5 Suppose 〈N , {H}〉 is a model of I ∆0 + (exp), such that
N |= Hβ(H). Let K be an initial segment of the notations less than β
in N such that K has no greatest element, and define

S =def {H [d]
γ | γ ∈ K, d ∈ N}.

Suppose further that whenever ϕ(X) is an arithmetic formula with set
parameters from S and ϕ(Hδ) holds for every δ above K, then it holds
for some δ in K as well. Then

K =def 〈N ,S〉

is a model of (ACA) and (Σ1
1 -AC ).

Proof. That (ACA) holds is implied by the fact that K has no greatest
element, as follows. Let ϕ(x, ~P ) be a Σ0

l formula with set parameters
~P in S. Each parameter P is of the form H

[d]
γ for some γ ∈ K, so we

can pick γ′ to be the largest of these. Since K has no greatest element,
it is closed under successors, so

δ =def γ
′ + l
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is also in K. By Lemma 3.8 we have that

N |= ∀x (ϕ(x)↔ TruthCode(pϕ(x)q, δ) ∈ Hδ).

But then
N |= ∀x (ϕ(x)↔ x ∈ H [ϕ]

δ ),

and this latter set is an element of S.
To see that K is a model of (Σ1

1 -AC ), suppose that

K |= ∀x ∃Y ϕ(x, Y ) (23)

for some arithmetic formula ϕ with parameters in S. The fact that
(23) holds implies that for every x there is a γ in K such that

N |= ∃y ϕ(x,H [y]
γ ).

Since every level of the hierarchy codes all the ones that come before
it, we have that

N |= ∀x ∃y ϕ(x,H [y]
δ ) (24)

for any δ above K. By the hypothesis of the lemma there is some δ
in K satisfying (24) as well. But the set Hδ is an element of S. Now,
using arithmetic comprehension in K, define Y so that for every x

Yx = H
[fx]
δ ,

where fx is the least natural number such that ϕ(x,H [fx]
δ ) holds. Then

we have
∀x ϕ(x, Yx),

witnessing the conclusion of (Σ1
1 -AC ). �

Lemma 5.6 Suppose S and A are sets in M such that

M |= S approximates an ω-model of Σ1
1 -AC in A.

If I is any limit of A, then

I |= SI is an ω-model of Σ1
1 -AC .

Proof. Suppose S, A, and I are in the statement of the lemma. Since
I is a limit of A it is a limit of A−{min(A)}, so there are a set H and
sequences 〈αi〉 and 〈βi〉 satisfying the conclusion of Lemma 5.3. Define

S = {SIi | i ∈ I}.
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and let
K =def {γ ∈ I | ∃i (ai ∈ I ∧ γ ≺ αi)}.

It is not difficult to verify that

S = {(H [d]
γ )I | γ ∈ K, d ∈ I}.

so we only need to verify that I, HI , and K satisfy the hypotheses of
Lemma 5.5.

The fact that K has no greatest element in I follows from the fact
that if γ ∈ K, then for some i such that ai ∈ I, we have that γ ≺ αi.
Since I is a limit, ai+1 is in I as well, and hence αi ≺ αi+1 is also in
K.

Suppose that ϕ(S) is an arithmetic formula with set parameters
from S, and ϕ(Hδ) holds in I for every δ above K. Note that as long
as δ is sufficiently below β0, we will have that

TruthCode(pϕ(Hδ)q, β0) ∈ Hβ0 . (25)

Find ai so that in addition pϕ(X)q is less than ai. Then we have that
(25) holds for δ = βi+1, and so clause (2) of Lemma 5.3 implies that it
also holds for some δ ∈ K as well. By Lemma 3.8

I |= ϕ(Hδ)

for this δ. �

From Lemma 5.3 we now obtain the following

Lemma 5.7 Suppose C is ϕ(λ, 0)-large and λ is coded below min(C).
Then there are sets A and S, such that A is λ-large and spread out,
and S approximates an ω-model of Σ1

1 -AC in A.

Proof. Set
a0 =def min(C).

Since C is ϕ(λ, 0)-large, C − {a0} is ϕ(λ[a0], λ[a0])-large, and one
can use Lemma 2.8 to show that pωλ[a0]q is coded below 2a

2
0 . Ap-

ply Lemma 5.3 to obtain a λ[a0]-large set A′, a set H, and sequences
〈αi〉 and 〈βi〉. Set

A =def A
′ ∪ {a0}

and define S as in Definition 5.4. �

Putting it all together yields the following
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Theorem 5.8 Suppose a and b are nonstandard elements of M such
that

M |= [a, b] is ϕ(ε0, 0)-large.

Then there are a cut a < I < b and a finite set S coded in M such
that

〈I, {SIj | j ∈ I}〉

is a model of Σ1
1 -AC .

Proof. By Lemma 5.7 there are an ε0-large A ⊂ [a, b] and a set S such
that S approximates an ω-model of Σ1

1 -AC in A. As in the proof of
Theorem 4.1 we can thin A down to an ω-large set A′ such that first-
order induction relative to the parameters S holds in any limit I of
A′. Lemmas 5.6 and 5.2 then yield a model of (Σ1

1 -AC ) and (ACA) in
which full second-order induction holds. �

6 Approximating finite Σ1
1 -AC hierarchies

Using our relativized version of the transfinite jump lemma, we can
iterate the construction in the previous section, to obtain nested ω-
models of Σ1

1 -AC . This gives rise to the following sequence of defini-
tions and lemmas.

Definition 6.1 Say S is an ω-model of Σ1
1 -AC containing T if S is

an ω-model of Σ1
1 -AC and for some i, Si = T .

Definition 6.2 Say that S approximates an ω-model of Σ1
1 -AC con-

taining T in A if S is as in Definition 5.4, except that H approximates
a jump hierarchy from T in A.

Of course, if S approximates an ω-model of Σ1
1 -AC containing T

in A, where S, T , and A are all coded in some nonstandard model of
true arithmetic, then SI is an ω-model of Σ1

1 -AC containing T I in any
limit I of A. The lemmas in the previous section can be relativized to
yield the following

Lemma 6.3 Suppose C is an ϕ(λ, 0)-large set, and T is any finite
set in M. Then there are a set S and a λ-large A ⊆ C such that S
approximates an ω-model of Σ1

1 -AC containing T in A.

Analogous to the notion of a c-level jump hierarchy, we introduce
the notion of a c-level hierarchy of nested models of Σ1

1 -AC .

Definition 6.4 Say H is a c-level nested Σ1
1 -AC hierarchy if for each

i, 0 < i ≤ c, Hi is an ω-model of Σ1
1 -AC containing H<i.
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Definition 6.5 Say H approximates a c-level nested Σ1
1 -AC hierarchy

in A if for each i, 0 < i ≤ c, Hi approximates an ω-model of Σ1
1 -AC

containing H<i in A.

If H0 is some set T in Definition 6.4 (6.5), we will say that H is
(approximates) a c-level nested Σ1

1 -AC hierarchy from T . Once again,
it is not hard to show that if H approximates a c-level nested Σ1

1 -AC
hierarchy from T in A, and min(A) is nonstandard, then HI is a c-level
nested Σ1

1 -AC hierarchy from T I in any limit I of A.
As in the case of finite jump hierarchies, we can approximate finite

nested Σ1
1 -AC hierarchies if we start from a suitably large interval.

Lemma 6.6 Suppose C is γαc -large, and T is any finite set. Then
there are an α-large set A and a set H such that H approximates a
c-level nested Σ1

1 -AC hierarchy from T in A.

Proof. Recall that γα0 = α and γαi+1 = ϕ(γαi , 0). The proof is just a
simple iteration of Lemma 5.7. �

Finally, as in Section 3, we can extend these constructions to the
transfinite. Though we only state the results for ω iterations, we note
that by an appropriate extension to our notation systems they can
easily be generalized.

Definition 6.7 Say H is an ω-level nested Σ1
1 -AC hierarchy if for

every i > 0, Hi is an ω-model of Σ1
1 -AC containing H<i.

Definition 6.8 Suppose A = {a0, a1, . . . , ak}. Say H approximates
an ω-level nested Σ1

1 -AC hierarchy in A if, whenever 0 < i < aj−1, Hi

approximates an ω-model of Σ1
1 -AC containing H<i in {aj+1, aj+2, . . . , ak}.

Lemma 6.9 Suppose C is Γα-large. Then there are a set H and an
α-large set A ⊆ C such that H approximates an ω-level nested Σ1

1 -AC
hierarchy in A.

Proof. The proof is analagous to that of Lemma 3.6. �

7 Constructing models of ÎDn, ATR0 , and
ATR
As it turns out, nested Σ1

1 -AC hierarchies are useful in constructing
models of the theories ÎDn , ATR0 , and ATR, which we now address.

Let ϕ(x, Y ) be an arithmetic formula, in which the sole set param-
eter Y occurs positively (that is, in the scope of an even number of
negation symbols, assuming that ϕ is written using the connectives ∃,
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∀, ∧, ∨, and ¬). We can think of such an arithmetic formula as a
“positive arithmetic operator” since it defines the monotone function

Γϕ : P (ω)→ P (ω)

given by
Γϕ(A) = {x|ϕ(x,A)}.

(The monotonicity means that for any sets A and B, A ⊃ B implies
Γϕ(A) ⊃ Γϕ(B).) Classically such operators are known to have fixed-
points: for example, defining

• Γ0
ϕ =def ∅

• Γα+1
ϕ =def Γϕ(Γαϕ)

• Γλϕ =def
⋃
γ≺λ Γγϕ, for limit ordinals λ,

the monotonically increasing sequence Γαϕ must stabilize at some count-
able stage δ. At this point, we will have Γϕ(Γδϕ) = Γδϕ, so that Γδϕ
defines a fixed-point of Γϕ, and, in fact, the least fixed-point (in the
sense that it is contained in any other fixed-point).

The theory ÎD1 is a first-order theory in the language of Peano
Arithmetic, with an additional predicate Pϕ for each positive arith-
metic operator ϕ(x,X). ÎD1 then extends the axioms of PA with
axioms

∀x(Pϕ(x)↔ ϕ(x, Pϕ))

that assert that each Pϕ is a fixed-point (though not necessarily least)
of the operator Γϕ. Similarly, each theory ÎDn+1 adds new constants
for positive arithmetic formulas in the language of ÎDn and the corre-
sponding fixed point axioms, and ÎD<ω is the union of the ÎDn ’s. See
[5, 2] more more information on ÎD<ω, and [1] for more information
on inductive definitions in general.

The connection between the theories ÎDn and nested Σ1
1 -AC hier-

archies is given by the following two lemmas.

Lemma 7.1 The theory ÎD1 can be interpreted in Σ1
1 -AC .

Proof (sketch). Let ϕ(x, Y ) be any arithmetic (or even Σ1
1) formula

in which the set parameter Y occurs positively. Aczel has observed
that by using a universal Σ1

1 truth predicate and diagonalizing as in
the proof of Gödel’s fixed-point theorem, there is a Σ1

1 formula ψ(z)
that defines a fixed point of ϕ. In particular, for this ψ, Σ1

1 -AC proves

∀x (ψ(x)↔ ϕ(x, {z | ψ(z)})).

(The axiom scheme (Σ1
1 -AC ) is required to bring set quantifiers to the

front of appropriate formulas.) One can then interpret the fixed-point
constants of ÎD1 using such ψ, so that induction in ÎD1 is reduced to
second- order induction in (Σ1

1 -AC ). See [5] for more details. �
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Lemma 7.2 The theory ÎDn can be interpreted in ACA0 together with
the extra axiom “there is an n-level nested Σ1

1 -AC hierarchy.”

Proof (sketch). One inductively shows that each fixed-point constant
from the language of ÎD i can be interpreted by a set that is arithmetic
in the ith level of the nested Σ1

1 -AC hierarchy. �

Combined with Lemma 6.6 this yields

Theorem 7.3 Suppose a and b are nonstandard elements of M such
that

M |= [a, b] is γn-large.

Then there are a cut a < I < b and a finite set T coded in M such
that

〈I, . . . , T Ipϕq, . . .〉

is a model of ÎDn , where the sets T Ipϕq interpret the fixed-point con-
stants.

Proof. Recall that γ1 =def γ
ε0
1 . By Lemma 6.6 we can find a set S′ and

an ε0-large set A′ such that S′ approximates an n-level nested Σ1
1 -AC

hierarchy in A′. As in the proof of Theorem 4.1 we can thin A′ down
to an ω-large set A, and obtain a set S which will code the universe of
a model of (ACA) containing S′. We can read off interpretations in S

for the fixed-point constants of ÎDn from the proof of Lemma 7.2. �

If [a, b] is Γ0-large then [a + 1, b] is γa-large, and we can use the
same construction to obtain an a-level nested Σ1

1 -AC hierarchy. If a is
nonstandard, we can interpret all the “standard” fixed-point constants
of ÎD<ω. This yields

Theorem 7.4 Suppose a and b are nonstandard elements of M such
that

M |= [a, b] is Γ0-large.

Then there are a cut a < I < b and a finite set T coded in M such
that

〈I, . . . , T Ipϕq, . . .〉

is a model of ÎDω.

The theories ATR0 and ATR extend ACA0 and ACA respectively,
by adding an a schema (ATR) which allows definitions by arithmetic
transfinite recursion along any well ordering:

WO(≺)→ ∃Y ∀b, x (x ∈ Yb ↔ ϕ(x, Y≺b)) (ATR)

25



where ϕ ranges over arithmetic formulas, possibly involving set pa-
rameters. Here WO(≺) represents the Π1

1 assertion that the set ≺
codes a well-ordering, that is, every set X contains a ≺-least element.
Intuitively, (ATR) asserts that given any well-ordering, we can build
a hierarchy Y such that each level b is obtained from an arithmetic
comprehension over all the levels that have preceeded it. For more
information about ATR0 , see [11, 9, 10, 2].

The connection between arithmetic transfinite recursion and nested
Σ1

1 -AC hierarchies is given by the following

Lemma 7.5 Over ACA0 , the scheme (ATR) is equivalent to the as-
sertion “for every X, there is an ω-model of Σ1

1 -AC containing X.”

Proof. We sketch the right-to-left direction, which is the only direction
we need below. From within ACA0 , suppose every set X is contained
in an ω-model of Σ1

1 -AC and ≺ is a well-ordering. Letting ϕ(x, Y )
be any arithmetic formula, we need to show that there is a transfinite
hierarchy defined by ϕ along ≺. By coding all the set parameters of
ϕ into a single set, we can find an ω-model S of Σ1

1 -AC that contains
these parameters. We claim that for every c there is a (unique) set W
in S that codes the hierarchy up to c, i.e. W satisfies

∀b ≺ c ∀x (x ∈Wb ↔ ϕ(x,W≺b)), (26)

and Wb = ∅ if b is not a predecessor of c. Notice that the claim is an
arithmetic assertion in the parameter S. Suppose there is a c for which
the claim is false, i.e. for this c there is no W in S satisfying (26). By
(ACA) and the assumption that ≺ is a well-ordering, we can find the
least such c. Then for every d ≺ c, there is a hierarchy up to d in S.
But using (Σ1

1 -AC ) in S we can combine all these hierarchies into a
single set, and then using arithmetic comprehension in S we can turn
this into a hierarchy up to c, contrary to our assumption.

We’ve shown that for every c there is a hierarchy up to c in S.
Again, using (Σ1

1 -AC ) and (ACA) in S, we can find a hierarchy defined
for all the elements of ≺, completing the proof.

The left-to-right direction of the lemma can be found in [11, 10]. �

Lemma 7.5, combined with Lemmas 6.6 and 6.9, yield the last two
theorems in this paper.

Theorem 7.6 Suppose a and b are nonstandard elements of M such
that

M |= [a, b] is Γ0-large.

Then there are a cut a < I < b and a finite set S coded in M such
that

〈I, {SIj | j ∈ I}〉

26



is a model of ATR0 .

Proof. Since [a, b] is Γ0-large, [a+ 1, b] is γa+1-large. As in the proof of
Theorem 7.3 we obtain an ε0-large set A′ and a set T that approximates
an (a+1)-level nested Σ1

1 -AC hierarchy in A′, and thin A′ down to an
ω-large set A. Suppose I is any limit of A and J is any limit of the set
{0, 1, . . . , a+ 1}. Since each T Ij+1 is an ω-model of Σ1

1 -AC containing
T Ij , it is not difficult to verify that

K =def 〈I, {(T Ij )i | i ∈ I, j ∈ J}〉

will satisfy (ACA) as well as the assertion “for every X there is an
ω-model of Σ1

1 -AC containing X.” Hence, by the preceeding lemma,
K will be a model of ATR0 . By the usual trick we can find a single set
S such that

〈I, {Si | i ∈ I}〉

is of this form. �

Theorem 7.7 Suppose a and b are nonstandard elements of M such
that

M |= [a, b] is Γε0- large.

Then there are a cut a < I < b and a finite set S coded in M such
that

〈I, {SIj | j ∈ I}〉

is a model of ATR.

Proof. The proof bears the same relationship to the construction of a
model of ACA in Theorem 4.1 as the previous proof bore to the con-
struction of a model of ACA0 . Which is to say, first we use Lemma 6.9
to construct a set S that approximates an ω-level nested Σ1

1 -AC -
hierarchy in an ε0-large set A ⊆ [a, b]. Then we thin A down to an
ω-large set A′ and guarantee that induction will hold relative to A in
any limit. Taking I to be a limit of A and

N =def 〈I, {SIi | i ∈ I}〉,

N will satisfy full second-order induction as well as (ACA) and (ATR).
�
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