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REALIZATION OF ANALYSIS INTO EXPLICIT MATHEMATICS 

SERGEI TUPAILO 

Abstract. We define a novel interpretation M of second order arithmetic into Explicit Mathematics. 

As a difference from standard 91 -interpretation, which was used before and was shown to interpret only 

subsystems proof-theoretically weaker than To. our interpretation can reach the full strength of To. The 

^-interpretation is an adaptation of Kleene's recursive realizability. and is applicable only to intuitionistic 

theories. 

Introduction. Systems of Explicit Mathematics were introduced by S. Feferman 
in the 70s as a logical framework for Bishop-style constructive mathematics (see [5], 
[6]). In [6] he gave an embedding of the basic theory To into a subsystem Al

2 -CA+BI 
of second order arithmetic and conjectured that the converse also holds. In [10] G. 
Jager carried out a necessary well-ordering proof in To, which together with [13] 
completed its proof-theoretical analysis and established proof-theoretic equivalence 
of the system of Explicit Mathematics To, system of analysis A2 - CA + BI. and 
the set theory KPi. However, up to now. there were no direct embeddings of strong 
conventional theories, e.g., analysis or set theory of the strength of To and higher, 
into Explicit Mathematics. This also yielded that the only method for establishing 
proof-theoretic lower bounds for To and stronger systems of Explicit Mathematics 
remained to be well-ordering proofs carried out directly in those theories. 

The situation is quite different with Martin-L6f type theories, where, in addition 
to well-ordering proofs (see [16]), we also have direct embeddings of constructive 
set theory CZF, [1], and its extensions, [2, 14], or a subsystem of analysis IARI, 
[9]. The possibility of such an embedding is often considered as an evidence for 
constructivity of a given theory. The obstacle for similar embeddings into Explicit 
Mathematics was its specific nature, where intuitionistic and classical principles, 
set-theoretic and recursion-theoretic intuition can be combined. It is sufficiently 
straightforward to do for "weak" theories (essentially up to n j - CA): however, 
for stronger systems with mathematical meaning, where adding the law of excluded 
middle often results in dramatic increase in proof-theoretic strength (see, e.g., [15]), 
the distinction classical/intuitionistic must have played a prominent role. The price 
for this universality of Explicit Mathematics is that, while in ML type theories deriv-
ability simply means Kleene-type realizability, in EM these notions are different. 
The reason for this is that a lot of realizable formulas, e.g., Church's thesis and 
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REALIZATION OF ANALYSIS INTO EXPLICIT MATHEMATICS 1849 

axiom of choice in analysis, are incompatible with classical logic without damaging 
consistency or consistency strength. 

In this paper we develop a realizability interpretation into Explicit Mathemat
ics. We have chosen here the simplest example, realization of analysis, which keeps 
the amount of technical details at minimum, and demonstrates the method most 
distinctly. For constructive set theory CZF and its extensions, one combines real
izability with other methods of interpreting set theory. This is reserved for another 
publication ([20]). 

The paper is organized as follows. For reader's convenience in Sections 1 and 
2 we briefly introduce the theory To and subsystems of analysis we are interested 
in. In Section 3 we define two interpretations of analysis into To- a direct inter
pretation 3 and a realizability interpretation M. A direct interpretation 2 means 
simply that variables are interpreted as ranging over natural numbers and sets of 
natural numbers and the meaning of logical connectives does not change. It's this 
interpretation which was used before, e.g.. in [6. Ch. V] and [4. Ch. II. §1]. The 
drawback of this translation is that it does not really exploit the axiom of Join of 
Explicit Mathematics, the consequence of which being that the only systems which 
have been interpreted via 2 are proof-theoretically weaker than To. 

Alternatively, we define a realizability interpretation 91, which is a variant of 
Kleene 1945 recursive realizability. The general setting for realizing one language 
into another was given already in [6]; however, that paper studies in detail only 
realization of Explicit Mathematics into itself. As to relationships between the 
interpretations 9 and 3i, we prove that they are equivalent over an applicative part 
App of To for first-order negative formulas, Theorem 2, and &(F) implies 3(F) 
for F from a certain CC-class, Theorem 3. Thus ^-interpretation automatically 
transfers proof-theoretic upper bounds from Explicit Mathematics to analysis, and 
lower bounds vice versa. Axiom of Choice, on the contrary, is an example of a 
formula for which 9 does not follow from 91, and is much stronger in presence of 
the law of excluded middle, Theorem 6. In Section 4 we finally build realizations 
of various axioms, giving together the theory IARI of [9], which has the same 
proof-theoretic strength as To. 

Acknowledgements. I am grateful to Prof. Gerhard Jager and Dr. Thomas Strahm 
for introducing me to the world of Explicit Mathematics. 

§1. Explicit mathematics. The theory To. We follow essentially the original type-
free two-sorted formulation of Explicit Mathematics from [5]. Alternative formu
lations are given in [3] and [11]. 

Language .S?EM- The theory To is formulated in a two-sorted language: opera
tions (individuals) and names (classifications). Names are thought of as a special 
kind of operations, coding sets of operations. We use variables a, b,c,... as ranging 
over operations, and a, fi, y, ... as ranging over names. The operation constants 
of the theory are the following: combinators k, s, pairing p and projections po, pi, 
zero 0, successor SN and predecessor PN , distinction by cases on natural numbers du, 
join j and inductive generation i. Additionally we have the following nine operation 
constants called name generators: nat, id, inv, emp, and, or, imp, all, ex. Terms are 
built from variables and constants by the following application clause: if s and t are 
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1850 SERGEI TUPAILO 

terms then s • t is a term, so that the application function symbol • accepts arguments 
of both sorts and returns an operation. Atomic formulas are s — t (s coincides 
with t) and s e t {s belongs to the set named by /, s is classified under t), where 
5 and t are terms. Formulas are built from atomic formulas by A, V, —* and two 
types of quantifiers, over operations and over names, e.g., Va, 3a, Va, 3a. Finally, 
expression is a term or a formula. 

Abbreviations. We use the following standard abbreviations: 

• ~ F :<s> F -> _L; 
• F0 <-+ F\ :<̂> {Fa -> F ) A {F\ -> F0); 
• t[ :4* 3x (f = x ) ; 
• yT[r] :«=> 3a {t = a); 
• s ~ t :^> {s[ \l t{) -+ s = t; 
• s t t :<̂> V x e i ( j c e ( ) ; s = ( :•«• s <t t A t C s; 
• r: s i—> ? for Vx e s (rx £ ?); 
• r: sl t-^> ? for r: s >—> t, r: sm+x H+ t for Vx£ s {rx: sm >-> t)\ 
• t' forsN •/; 1 forO'; s? fors • *; t{s\,... ,s„) for (... {tsi) ...$„)i(s,t) for (ps)t; 

s ^= t for -is = /, etc. 

Syntactical conventions. 
1. We use e[*] for an expression e, possibly containing occurrences of a variable 

* (of appropriate sort). In this context by e[t] we mean the result of substituting 
expression t for all occurrences of * in e. 

2. Parentheses in terms are assumed to be associated to the left: e.g., s • t • u is 
read as {s • t) • u. 

3. We adopt the following priority among propositional connectives and their 
abbreviations: ->, A, V, —>. <-•. For example, F\ V -F2 A F3 —> F4 *-> F5 has to be 
read as ( ( F V ((->F2) A F3)) -> F4) <-> F5. 

Logic. Intuitionistic 2-sorted logic of partial terms with equality. See, e.g., [3, Ch. 
VI, 1] or [18, 1.3]. We take ± (falsity) as a propositional constant with standard 
axioms pertaining to it. 

Axioms. The axioms are divided in six groups, according to their nature. 

I. Applicative axioms. These axioms formalize that operations form a partial 
combinatory algebra, that we have pairing and projections, usual closure conditions 
on natural numbers, as well as definition by numerical cases: 

(1) kab = a; 
(2) sab[ A sabc ~ ac{bc)\ 
(3) pabi A poaj. A piflj A Po{pab) = a A pi {pab) - b\ 
(4) 0 e nat A Vx e nat (SNX e nat); 
(5) Vx £ nat (SNX ^ 0 A PN(SNX) — x) ; 

(6) Vx s nat (x ^ 0 —> PNX e nat A SN(PN-X) = x); 

(7) a £ nat Abe nat —• (a = 6 —> d|\ixya6 = x) A {a ^ b —• dux^a^ = y). 

II. Induction on nat. 

<p[0] A Vx (<p[x] —> <P[SNX]) —» Vx £ nat </?[x] 

for each formula 93. 
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REALIZATION OF ANALYSIS INTO EXPLICIT MATHEMATICS 1851 

The following lemmas 1.1 and 1.2 are provable using only applicative axioms I; 
Lemma 1.3 in addition calls for induction on natural numbers II (see, for example, 
[6], [3], or a review [12]). 

LEMMA 1.1 (/-abstraction). For every term t[x] there exists a term kx.t[x] such 
that lx.t[x\[ and for every term s 

s[ -> [Xx.t[x])s ~ t[s]). 

LEMMA 1.2 (Recursion Theorem). There exists a closed term rec such that 

r e c / | A rec/x ~ f(recf)x. 

LEMMA 1.3 (Primitive recursion on natural numbers). There exists a closed term 
prim such that 

f: nat i—» nat A g: nat3 i—• nat Axe nat Aye nat —> 

primfg: nat2 i—> nat A pnmfgxO = fx A prim/gx(si\iy) = gxy(pnmfgxy). 

III. Explicit representation. This axiom states that each name is an operation: 

3x (x = a). 

IV. Elementary comprehension (ECA). These axiomatize name generators: 

(1) J > a t ] ; 
(2) jV[\d] A Vx (xe id <-> x = (po*. Pi*) A pox = Pix); 
(3) yT[inv(/, a)] A Vx (x e inv(/, a) <-> fx e a) ; 
(4) yf[emp] A Vx (x e emp *-+ J_); 
(5) yT[and(a, /?)] A Vx (x e and(a, ft) ^ x e a A x e ft); 
(6) yf[or(a, /?)] A Vx (x e or(a, /?) <-»• x e a V x e /?); 
(7) y f [imp(a, /?)] A Vx (x e imp(o!, ft) <-> x e a —> x e /?); 
(8) yf [alia] A Vx (x £ alia <-• Vj ((x, v) £ a)); 
(9) yT[exa] A Vx (xe exa <-> 3v ((x, y) £ a)) . 

DEFINITION 1.1 (Elementary formula). A formula is elementary if and only if it is 
constructed from s = t and tea by means of A, V, —•, Vx, 3x only. (No occurrences 
of / £ s with s not a name variable and name quantifiers are allowed.) 

The following lemma is an intuitionistic analogue of reducing Elementary Com
prehension as stated in [5] to name generators nat, id, co, int, dom and inv, which 
holds in classical setting (see [7]); its proof requires only axioms I, III and IV. For al
ternative intuitionistic reductions of Elementary Comprehension to a finite number 
of its instances see [9, Sect. 1] and [17, Sect. 3]. 

LEMMA 1.4 (ECA). If a formula F := F[x\ a; a] is elementary then there exists a 
term X} such that FV(t£) = FV(F) \ {x} and 

yK[t£]AVx (xetx
F «-> F). 
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1852 SERGEI TUPAILO 

PROOF. The term tx
F is built by recursion on F: 

\nv{Ax.(s[x]j[x]), id) if F is s[x] = t[x]; 

i f f is s[x] e a; 

if F is _L; 

if F is F0[x] A F,[x]: 

if F is F0[x]V Fi[x]; 

if F is F0[x] —> F\[x] 

if F is Vv G[x, y]; 

i f f is 3y G[x, y]. 

inv(Ax.s[x], a) 

emp 

« • ( % } . t F l M ) 

*o[*l,IFiM'' imp(t 

allt-: 

ext 
G[p0r,pi:] 

G[p0:.pi;] 

Now the property of tx
F is proved by induction on F. H 

V. Join (J). This axiom states that if / is an operation from a set named by a, 
each value of which is a name, then j(a, / ) names a disjoint union of all fx for 
xe a: 

Vx e a JT[fx] - (jr\i(a, / ) ] A Vz (z s j(a, / ) 

<-> 3x e a 3>> (z = (x, y) A j e fx)) J. 

VI. Inductive Generation (IG). The first part of this axiom states that \{a,fi) 
names a well-founded part of a set named by a along an ordering named by /?; the 
second part allows induction over that set for an arbitrary formula: 

JT[\(Q, 0)] A Vx e a (v>> {{y, x) e P -* y e \(a, P))-*xe \{a, P))\ 

A (Vx e a (Vj ((y, x) e yS - 0[j]) - . 0[x]) -» Vx e i (a, y9))0[x]) , 

where 0 e ^ E M is an arbitrary formula. 
The theory App is the one containing only applicative axioms I; EON has axioms 

I—II. The theory EONN has axioms of the groups I—III. EET is EONN + ECA, 
EETJ is EET + J and T0 is EET J + IG.1 

By TND {tetrium non datur), both in Explicit Mathematics and analysis, we mean 
a schema consisting of all instances of the Law of Excluded Middle. 

§2. Subsystems of analysis. The basic theory EHA {Elementary Heyting Analy
sis) is formulated in a two-sorted language 3?2. numbers and sets of numbers. We 
use variables a, b,c,... as ranging over numbers, and A, B,C,... as ranging over 
sets. There is only one individual constant 0. The function constants are: succes
sor ', pairing (*,*) and projections (*)o, (*)i, and also countably many function 
constants f\, fi, . . . for primitive recursive functions. Terms are built as usual. 
Atomic formulas are of the kinds s = t and s £ A {s and t are terms). Formulas are 
built from atomic formulas by A, V, —> and two types of quantifiers, over numbers 
and over sets, e.g., Vx, 3x, \/X, 3X. By FV(e) we denote the set of free variables 
occurring in an expression e, and by FVo(e) and FVi (e) respectively the set of first 

' in the literature the names EET and EETJ are also used for theories as defined here, but with 
restricted induction II. 
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REALIZATION OF ANALYSIS INTO EXPLICIT MATHEMATICS 1853 

and second order free variables of e. A formula is called negative if and only if 
it doesn't contain V or 3. A formula is first-order if and only if it doesn't contain 
second-order variables. A formula is arithmetical if and only if it does not contain 
second-order quantifiers. We use the same abbreviations and syntactical conventions 
as in the previous Section. The logic is intuitionistic 2-sorted logic. Axioms are the 
following: equality axioms, Peano axioms, prim. -rec. definitions for function symbols 
(*•*), (*)o, (*)i, f\, fi, . . . and mathematical induction schema. Note that we have 
no comprehension in EHA. thus EHA being a conservative extension of Heyting 
arithmetic. 

EHA is the basic theory of analysis in this paper. Additionally, we will consider 
extensions of EHA by the following axioms. 

Arithmetic comprehension (ACA): 
3X \/x (x G X <-> i//[x]) for y/ arithmetical. 

Axiom of Choice (AC): 
Vx 3 Y <j>[x, Y] -+ 3Z Vx <p{x, Zx] for all formulas <j>. 

Replacement (RP): 
MX (Vx € X 3\Y 4>[x, Y] -> 3Z Vx G X 4>[x, Zx]) for all formulas tj>, where 

<j>[x. Zv] arises from </>[x, Z] by replacing each occurrence of s G Z by (x, s) G Z. 

Inductive Generation (IGA): 
VX \/Y 3Z (WPK[A\ Z] A TlY[X, Z. <f>]) for all formulas 4>, where we adopt the 

following abbreviations: 

W?Y[X. Z] denotes Progr[X Z] A VJ7 (Progy[X, U] -> Z C £/) 
Progr[X Z] denotes Vx G X (Vy ( j <y x -> j G Z) -> x e Z) 
ProgK[X >̂] denotes Vx e X (My (y <Y x -> 0[j]) -+ ^[x]) 
TIK[A'. Z ^] denotes Progr[A', (f>]^\/z eZ <f>[z] 
y <y x denotes (y.x) e Y 

IARI of [9] is the theory EHA + ACA + RP + IGA. It's shown there that IARI 
is directly interpretable in Martin-L6f type theory MLJw and has the same proof-
theoretic strength as MLiw and To. 

§3. Interpretations into Explicit Mathematics. In this section we define two in
terpretations of analysis into Explicit Mathematics, a direct interpretation 2 and a 
readability interpretation 91, and study relationships between them. 

First, for each individual and function constant / G 5?2 by Lemma 1.3 we can 
define an operation N( / ) presenting the same primitive-recursive function as / and 
having the following property: if n is the arity of / then EET proves 

n 

A x, e nat —• N ( / ) x i . . . x„ e nat. 
1=1 

We may assume that N(0) is 0 and N(sN) is '. Now terms of ^ 2 are translated as 
follows: 
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1854 SERGEI TUPAILO 

DEFINITION 3.1 (N(?)). 

JN(JC) :=X\ 

\N(ftl...tn):=N(f)N(tl)..,N(tn). 

For each second-order variable A G %i we assume a name variable aA € i?EM • 
A direct interpretation 2: S?i i-> J?EM was introduced in [6] and used later on (see, 
for example, [4, Ch. II] and [8]). It is denned as follows: 

DEFINITION 3.2 (^-interpretation). 

' s r ( j = / ) :=N(s) = N(f); 

^ (? G ̂ ) := N ^ E ^ ; 

^ ( F 0 o F i ) : = S - ( i r o ) ° ^ ( ^ i ) . foro e {A,V,^} ; 

^ ( 2 x G ) : = e ^ £ n a t ^ ( G ) , for£>G{V,3}; 

9l[QXG) := Qax C nat S?(G), for Q G {V, 3}. 

The following lemma is straightforward (see [4, Ch. II, §1]): 
LEMMA 3.1. For each theorem F of the theory EHA + ACA Qs(F) is provable in 

EET. 

Alternatively, we define a readability interpretation 31: S?i H-> .2EM• 

DEFINITION 3.3 {JTH). JVH\t\ := JT\t\ A v<ze t (z = (p0z, piz) A p0ze nat). 

DEFINITION 3.4 (r realizes F, t rn F) . For each formula F € ^ we define a for
mula r rn F G ̂ E M - t will always be treated as a new free individual variable. The 
definition is given by the table below: 

F trnF 

N(j) = N(0 

( N ( 0 , t ) e « ^ 

potrnF0 A pitrn.Fi 

„ , - , , „ ,* A (Pot = 0 ^ pirrnFo) A Pore nat A , . „ „ •. 
( p 0 r ^ 0 - > pir rnFi) 

Vy (y rn F0 -*• tjcj A ty rn Fi) 

Vx £ nat (rxj. A tx rn G[x]) 

Pot e nat A pit rn G[pot] 
Vax (^N[Q!A'] -* rax I A ra^ rn G[ax\) 

yrN[p0r]ApirrnG[por] 

REMARK. According to our notation for substitution, p. 1850, in the previous 
definition pit rn G[pot] in the last clause, for example, stands for (r rn G[X])^afx• 

DEFINITION 3.5 (^-interpretation). For each F e y 2 we define 

m{F) : = 3 y ( y r n F ) . 

s = t 

t G A 

F 0 A F ! 

F 0 VFi 

Fo -> F\ 

Vx G[x] 

3x G[x] 

MX G[X] 

3X G[X] 
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REALIZATION OF ANALYSIS INTO EXPLICIT MATHEMATICS 1855 

REMARK. An important difference of ^-interpretation from 9-interpretation is 
that sets are translated not as (names of) sets of natural numbers, but as (names 
of) sets of pairs, only first elements of which are natural numbers (see the clause 
for t e A). This is a standard effect in realizability interpretations of analysis, see, 
e.g., [18, Sect. 7.2]. The second element r of a pair (N(/), r) can be thought of as a 
"proof" that t e A. 

Syntactical convention. We will often use the Fraktur font o, b, c , . . . to stress that 
a given term plays a role as realization. Formally, this is not a new type of objects; 
it's just a substitution for a, b, c,... used for better readability. 

Abbreviation, tj. rn F will be used for t | A t rn F. 

DEFINITION 3.6 (Realization, realizable). 
1. A term t e i?EM is called realization for a formula F G Jz?2 in a theory 

y € -2EM, App c gr, if and only if 

FV(t) C FV0(F)\J{aA | A e FV,(F)} 

and 

J h /\ a e n a t A f\ sTN[aA] -> t r n F 
aGFVo(F) ^eFVi(f) 

2. If there exists such a term t then F is called realizable in 9^. We call a theory 
TA realizable in 9~ if and only if every theorem of TA is realizable in 9"'. 

NOTE. If F is closed and realizable in 9~ then 3" \- 3%{F). 

THEOREM 1. Each theorem of EHA is realizable in EONN. 
The proof is standard and can be found, for example, in [19, Ch. IV, Sect. 4]. 

NOTE. According to Theorem 1, to prove realizability of a theory TA € 3?i, 
EHA c TA, it is sufficient to construct realizing terms for additional axioms of TA. 
This is what we do in Section 4. 

Now we turn to the relationship between 9 and ^-interpretations. For first-
order negative formulas we can define canonical realizers as in [18, Lemma 1.10]. 

DEFINITION 3.7 (Canonical realization, canf) . For F € i?2 first-order negative 
we define a term can^ e J?EM (canonical realization ofF) in the following way: 

'0 if F is s = t; 

(can K, , canfl) if F is F0 A F\; 
canf := < 

Ay. canft if F is Fo —> F\; 

Xx.cana[x] if F isVx G[x]. 

NOTE. For every F can^- is closed and App I- can/r {. 

THEOREM 2 {9(F) <-> 31(F)). For F e S?2 being first-order negative in App we 
have: 

(i) 3 y ( y r n F ) ^ S r ( F ) ; 
(ii) 9(F) ^ c a n / r r n F ; 

(iii) 9(F) ^M(F). 
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1856 SERGEI TUPAILO 

PROOF. We prove (i) and (ii) by simultaneous induction on F. 
If F is atomic then it is of the form s = t and both 3(F) and t rn F are of the 

formN(^) = NO?). 
Assume F is Fo A F\ and the claim holds for F0 and F\. 
Assume r rn (Fo A Ft). Then we have pot rn F) A pit rn F\. By IH(i) we get 

2(F0) A 2(F\). i.e.. 2(F). 
Assume 2(F0 AF\). Then we have 2(F0) A2(F\). By IH (ii) we get canfu rnF) A 
can/-, rnF], which by Definition 3.7 gives can/r rnF. 

Assume F is FQ —> F\ and the claim holds for F) and F\. 
Assume t rn (F0 —> F ) and assume 3(Fo). By IH (ii) we have can^, rnF0. Then 

r canFo J. rn F, and by IH (i) 2 ( F ) . 
Assume ^(Fo —> F ) and assumeyrnFo. By IH (i) 91 (FQ) and therefore3(F\). 

By IH (ii) can/r, rnF], which by Definition 3.7 gives can/r rnF. 
Assume F is Vx G[x] and the claim holds for G[x]. 
Assume r rn (Vx G[x]). Then Vx e nat ( txj rn G[x]). By IH (i) this yields 

VxenatSf(G[x]).i.e. 9(F). 
Assume 2(Mx G[x]). Then Vx e nat 2(G[x]). By IH (ii) this yields Vx e 

nat (cang[xj rnG[x]). which by Definition 3.7 gives can/r rnF. 
(iii) is an immediate consequence of (i) and (ii). H 

DEFINITION 3.8 (CC-class, cf. [18. Sect. 1.14]). A first-order formula F e Si be
longs to the CC-class if and only if for every subformula G —> H of it G is negative. 

THEOREM 3 (92(F) -> 2(F)). If F e CC then App h 91(F) -» ^ ( F ) . 

PROOF. The claim is proved by induction on F . 
If F is atomic then it is of the form s = t and both 2(F) and t rn F are of the 

formN(s) = N(0-
Assume F is F0 A F\ and r rn (F0 A F\). Then we have pot rn Fo A pi t rn F\. By 

IH we get Qf(Fo) A 2(F\). i.e.. 2(F). 
Assume F is Fo V F\ and r rn (Fo V F ) . Then we have pot e nat A (pot = 0 —» 

PirrnFo) A (pot ^ 0 -* pit r n F ) . In the case p0r = Oby IH 2(F0): if pot ^ 0 then 
similarly 2(F\). In both cases 2(F). 

Assume F is Fo —> F\ and rrn (Fo —• F ) . Then Fo is first-order negative. Assume 
2(FQ). By the previous Theorem (ii) can/r0 rnF). Then tcan/?u J, rn F\. Now by IH 
2(FX). 

Assume F is Vx G[x] and r rn (Vx G[x]). Then Vx e nat (rxj. rn G[x]). By IH 
this yields Vx e nat 2(G[x]). i.e.. 2(F). 

Assume F is 3x G[x] and rrn (3x G[x]). Then we have pote nat A pitrn G[pot]. 
By IH 2 (G [p0t]), which implies ^ (F). H 

Remarks about proof-theoretic strength. We assume here that TA is realizable in 

(1) Note that Consis(T) is n°-formula for any theory T e y 2 with a decidable 
predicate PrfT(a,b). Therefore, if TA h Consis(T) then 5^ h ®(Consis(T)). 

(2) Note that prenex formulas, in particular n^-formulas. are CC. Therefore, if 
TA proves totality of a function / . then so does !T. 
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REALIZATION OF ANALYSIS INTO EXPLICIT MATHEMATICS 1857 

(3) Let / x be a characteristic function of a standard prim.-rec. ordering -< on 
natural numbers (e.g., an initial part of some fixed standard ordering), i.e., 

y <x :<=> f^{y,x) = 0. 

For every first-order negative formula F[x] s ^ w e set: 

P rogK F) : o Vx (Vy (f^ (y, x) = 0 -> F[j]) -* F[x]), 

F u n d K F) :<̂> P r o g K F) -+ Vx F[x]. 

We say that a theory TA proves well-foundedness of < if and only if TA h 
Fund(^, F) for every first-order negative formula F. Since Fund(-<,F) also is a 
negative formula, by Theorem 2 we have that if TA proves well-foundedness of -<, 
then so does 3~ as well. 

§4. Realizing subsystems of analysis. In this section we provide realizing terms 
for additional axioms of analysis listed in the Section 2. 

THEOREM 4 (Arithmetic comprehension). Every instance of ACA is realizable in 
EET. 

PROOF. Assume a formula i//[a] e J?2 to be arithmetical. By EC A there exists a 
term r such that 

(4.1) yfN[r] A Vx e nat Vy ({x,y) £ t <-+ y rn (*/[*])• 

We are to prove now that the pair (r, Ax.(Ay.y, Ay.y)} is a realization of an instance 

of ACA 

3X \/x (x e X ^ y/[x]). 

Indeed, 

(/. Ax.{Ay.y, Ay.y)) rn 3X Vx (x e X ^ y/[x]) 

= ix.(ly.y, Ay.y) rnVx (x e f <-> y/[x]) 

= Vxenat f (Ay.y, ly.y) r n x € / <-* y/[x])j 

= Vxe nat (Ay.yrn (x e r —* y/[x]) A Ay.yrn (y/[x] —• x e r)J , 

which follows from 4.1. H 

THEOREM 5 (Axiom of Choice). Every instance of AC w realizable in EETJ. 

PROOF. Assume r rn Vx 3 Y <fi[x, Y]. We then have 

t rnVx37t£[x , Y] 
s V x £ n a t ( r x | A yTN[p0(rx)] A pi(rx) rn<£[x, po(tx)]). 

(5.3) 

By ECA and J (over nat) let / := t[x\ be such that 

(5.4) ^H[t] A (((x,x,),yi) e t <-» (xi.y,) e p0(tx)^ 

CLAIM. For every formula t//[x, Y], 

(5.5) Vx£natVu (urn y/[x, po(rx)] <-> urn y/[x, tx]\ . 
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1858 SERGEI TUPAILO 

PROOF. First we prove the most important case when y/[x. Y] is of the form 
s e Y. We have 

urn s e tx = urn (x, s) 6 t = ((x,s),u) s t 
(5.6) 54 

= (s, u) e po(rx) = u rn.? e Po(tx). 

Now, the proof is completed by straightforward induction on y/. -\ 

Using this claim, we have, for xe nat, pi (xx)rn<t>[x, tx]. Therefore (r[t], Ax.pi (tx)) 
is a realization of the conclusion and h.{t[x].AX.p\{rx)) is a realization of the 
instance of AC 

Vx 3 Y <j>[x, Y] -> 3Z Vx <j>[x, Zx\ H 

COROLLARY. EHA + ACA + AC is realizable in EETJ and has proof-theoretic 
strength bounded by ip{eo, 0).2 

PROOF. Realizability follows from Theorems 1, 4 and 5. The bound for proof-
theoretic strength follows from the Remarks in the end of Section 3 and the fact 
|EETJ| = |E1 - AC classical! = <p(e0,0) (see, e.g., [6, Section V]). H 

The following theorem gives an example where 31- and ^-interpretations are 
essentially different. While, according to Theorem 5, T0 proves ^(AC) , it fails to 
prove 3{AC); the latter in the presence of the Law of Excluded Middle is at least 
as strong as full second order arithmetic. 

THEOREM 6 (T0 ¥ 3){AC)). 

(1) ToFSr(AC); 
(2) EET + TND + 3 {AC) has the strength of at least full analysis. 

PROOF. Obviously 

(6.7) EHA + ACA + TND is S^-interpretable in EET + TND 

(see, e.g., [8, Section 2]). Then we have 

(6.8) EHA + ACA + TND + AC is SMnterpretable in EET + TND + 3{AC). 

But ACA + TND + AC implies full comprehension, so EHA + ACA + TND + AC 
is full analysis. By 6.8 we have (2). 

For (1), assume T0 h- 3{AC). Then T0 + TND I- 3{AC) and T0 + TND + 
3 {AC) = To + TND. By (2) T0 + TND is at least as strong as full analysis, 
contradiction, since To + TND is known to have the strength of A2 - CA + BI 
(classical) (see [6, 10]). H 

THEOREM 7 (Replacement). Every instance of RP is realizable in EETJ. 

2In fact, as shown in [3. Ch. XIII, §2-3], this bound is exact. 
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REALIZATION OF ANALYSIS INTO EXPLICIT MATHEMATICS 1859 

PROOF. Assume yfN[o;]. Assume also t rnVx e a 3\Y <j>[x, Y]). By Definition 
3.4 we have 

rrnVx <Ea3\Y cf>[x, Y] 
= x rn Vx (X e a -> 3! Y </>[x, Y]) 

EEVxenat (xx[ rn (x 6 a —> 3! 7 <p[x, Y])j 

= Vx e nat hr.vj. A Vy (x rn .v € a -» rxy], rn 3! 7 0[x. 7]) ) 

= Vx e nat ( t x | A Vy ({x. y) £ a -> txy | rn 3! 7 </)[x. 7]) J 

= Vx£nat (txlAVy ((x. y) £ a 

-> txyj rn (3 7 (0[x, 7] A VZ (0[x, Z] -> 7 = Z)))) ) 

= Vx e nat ( t x | A Vy ({x. x) e a -»• ( txy | A yFN[p0(rxy)] 

(7 9N Ap, (txy) rn (0[x, p0(rxy)] A VZ (^[x, Z] -> p0(txy) = Z))j ) ) 

= Vxenat (txjAVy f{x ,y}ea-+ (VN[p0(txy)] 

Ap0(pi (txy)) rn ^[x, po(rxy)] 

Ap, (p, (txy)) rn VZ (<f>[x, Z] -> po(rxy) = Z) J J J 

= Vx£nat (rx |AVy ((x.x)ea^ (VN[p0(txy)] 

Ap0(pi (txy)) rn 0[x, po(txy)] 

AVy (yf N[y] - (pi (pi (txy))y j rn (0[x, 7] -> p0(txy) = 7)))) ) ) 

= Vx £ nat frxi A Vy ((x, y) e a -> ^ N [p 0 ( rxy ) ] 

Ap0(pi (txy)) rn <£[x. po(txy)]) A V7 (J^N[y] -»• (p, (pi (txy))y j . 

AVq (q rn <f>[x, 7] -> p, (pi (txy))7q| rn p0(txy) = y)))J J J . 

Continuing 7.9, 

tj rnpo(txy) = 7 
= n rnVxi ((xt e Po(txy) -»• Xi e 7) A (xi e 7 -* xj 6 p0(txy))) 

(7.10) =Vxj£na t ( t ^ J . A (Vy0 ({xi,y0} e p0(txy) -> (xi, po(tixi)y0) £ 7) 

AVy, ((x1,y1}£7 -> (xt,pi(tiJCi)yi) £ p0(txy))J J . 

Also, 

urnVx e a <f>[x, Cx] 
= u rn Vx (x £ a —> </>[x. Q-]) 

(7.11) = V x £ n a t ( u x | r n ( x e a ^ f r C J ) ) 

s Vx £ nat ( wx J, A Vy ((x, y) G a —• uxyj. rn 0[x, C*] J J. 

By EC A there exists a term t := t[a,x] such that 

WN[t[a,x]]A f ( (x ,xi ) ,n)£/[a , r ] <-> n = <p0t),pin) 
(7.12) N 

A((x, p0n), (xi, pit}}> £ j(a, /t>'.po(t(po>')(pij)))J. 
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1860 SERGEI TUPAILO 

If we had (x. y) e a —> m rn<?!>[x, po(txy)] «-> t2 rn</>[x. ?.v] J, this would provide 

us with a realization of the Axiom of Choice on a (instead of Replacement) (cf. the 
proof of Theorem 5). While this is not the case, by making use of uniqueness part 
of 7.9 we obtain a pair of operations, which map realizations of 4>[x. p0(txy)] and 
4>[x. tx] into each other. This pair of operations is represented by a term r j defined 
below, and is sufficient to build up a realization of Replacement. 

For each formula ip :— ip[x. Y] € Si such that y £ FV0(</?) and a predicate 
variable Y e S?2 we define a term t£ := t£[t, x, y. FVo(v?)] by recursion on ip in the 
following way: 

'(Ayo.yo.lyi.yi) 
(Ay0.y0,Ayi.yi) 
(Ay0.y0,lyi.yi) 

(Ay0.{y,yo5,Ayi-Pi(i:i[r,x.y,yi]5[x])(piyi)) 

(Ay0.(p0t,J0(poyo),Po^](piyo))-l 

^i-{pit<J„(pDFi).Pir£Wi))} J 

{/tyo.(poyo.PodN(poyo.O,r^0,r^)(piyo)), 

Ayi.(poyi,PidN(poyi.O,t^,r^)(piyi))) 

(AyoAz.pot^CyoCpit^z)), 1 
Ayi Az.pir^(yi(p0r,J02))) J 

(Ay0 A/c.por£[/t](yo£), Ay, Afc.p,t^A](yi&)) 

<Afo.(pojo.Po^[poyo](piFo)),l 

A?i.<Poyi, Pir^[poFl](piri))) J 

(Ay0 AK.p0r^M(yo«), Ay, A«;.pit£w(yi«;)) 

(Ay0.(p0yo,Po^[pofo](piyo)),l 

Ayi.{poyi,pit^[pMi](piyi))) J 

if <p is ±; 

if (,c is î = S2'. 

if ip is s £ £> and Z> is not F: 

if ¥7 is .?[x] e F. where 

r, := pi(pi(rxj))yq. 

y := po(tx(p0yi)). 

kq : = Po(pi(w(pofi))); 

if </? is <PQ Aipi; 

if (p is <PQV tp\; 

if<p is(p0 —> <p,: 

if <p is V/c i//[A:]: 

if tp is 3A: ^[A:]; 

iftpisVK y/[K]; 

if ip is 3K y/[K]. 

CLAIM. For every formula <p := v?[x, F] e .S?2 we ^ a v e 

(7.13) {x. y) e a -> tj[r, x, y] rn (v?[x, po(txy)] *-> < [̂x, f* ]). 

PROOF. We check only the most important case (the only one which requires 
use of uniqueness in the premise of Replacement axiom), when <p is of the form 
s[x] e F. Other cases are proved by routine induction on (p. 

By Definition 3.4 we have 

(7.14) 

(7.15) 

y0rn.s[x] e po(txy) = (^[x],y0)£ po(txy). 

yi m.y[x] £ tx = yi rn (x, ^[x]) e ? = {(x, s[x]),yi) e / 
7.12 {(x, p0yi),(s[x], piFi))ej(«,Ay.po(r(p0y)(pij'))). 
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REALIZATION OF ANALYSIS INTO EXPLICIT MATHEMATICS 1861 

By J 7.14 and 7.15 immediately yield 

(7.16) (x,y) e a -> Ay0.(y,yo) rn (s[x] e Po(txy) -* s[x] € tx). 

For the opposite direction, assume (x, y) e a and ji rn s[x] 6 **, i.e., 

((x,p0j:i),(^[x].pij:i))£j(a,/l>'.po(r(po>')(pi>'))). 

Then by J 

(7.17) (x, popi) e a A (,s[x], piyi) £ p0(rx(p0?i)). 

By 7.9 we have 

(7.18) ^"N[po(tx(p0yi))] A po(pi(tx(po?i))) ra<f>[x, po(tx(p0yi))]. 

Now by the uniqueness part of 7.9 we obtain 

(7.19) Pi (pi (vxt))yql rn po(txy) = y, 

where y := po(tx(p0yi)) and q := po(pi(tx(p0ji))). Taking 

vi := p1(p1(rxy))y[r,x,yi]q[r,x,yI], 

from 7.10 and 7.17 we have 

(7.20) (s[x], pi(tij[x])(piyi)) £ po(rxy). 

Equation 7.20 shows that 

/ 7 2 1 \ {x,i)ea -» Ayi.pi(t][t,x,y,y1]5[x])(piy1) 

rn(s[x] € tx -* s[x] € p0(txy)), H 

The previous claim and equation 7.9 together prove that 

(7.22) (x^)ea ~* (porJ[jc,r][t,x,y](p0(pi(txy)))| rn0[x, (t[a,v])x]J , 

which is to say that 
(7 23) r " > V x e a 3 ! F 4 > [ x , Y] 

-> Xx Ay.p0r|[x r][t,x,y](p0(pi(txy))) rn Vx € a <j)[x, (t[a,t])x]. 

The last equation shows that an operation 

ka At.{f[a,t], Ax Ay.p0rJ[jcT][r,x,y](p0(pi(rxy)))) 

is a realization for an instance of RP 

VJT (Vx €X3\Y <f>[x, Y]-^3Z\/x eX <p[x,Zx\). -\ 
THEOREM 8 (Inductive Generation). Every instance of IGA is realizable in EET + 

IG. 

PROOF. Assume yTN[a] A JVH[f$\. Assume also 

t rn Vx £ a [Vy (y <p x -> <p[y]) -> </>[x] J . 
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1862 SERGEI TUPAILO 

By Definition 3.4 we have: 

r rn Vx e a (\/y (y <p x —> <j>[y]) —»</>[x] J 

s t rn Vx ( x e a —> (Vy (y </? x —> <£[y ]) —• <£[x]) J 

= Vxe nat ( t x j A Vy f(x, y) e a —> 

rxy| rn (Vy (y <fi x - • c/>[y]) -» 0 [* ] ) ) ) 

= Vxe nat ( rx i A Vy ((x.y) e a —> (txyl 
(8.24) A V V 

A Vu (u rn Vy (y <^ x -» 0[y]) -»txyuj rn < [̂x] j J J J 

= Vxe nat f r x | A Vy f (x.y) e a —> frxyj A Vu (Vye nat (uyi 

VD (D rn (y, x ) e j 8 - » uyo | rn </>[y])) —» rxyu| rn 0[x] J J J j 

= Vxe nat ( t x j A Vy f(x.y) e a —> (txyj A Vu (Vy e nat (uy| 

AVo(((y,x).o)e/?^uyolrn<?!>[y])) -» c*yuj.rn0[x])))) . 
By recursion theorem for a function / := Az Xx Ay.txy(Ay An.zyn,) there exists a 

term R := rec/ such that 

(8.25) Rxy ~ txy(Ay Ao.Ryo). 

By ECA there exists a term /?* := /T[y?] such that 

Jf[f5*\ A (ue /?* <-> w = (pow, pi«) 

(8.26) Apo« = (p0pow,PiPo") Apiu = (POPIH, PIPIW) 

Apopowe nat A p0pi«e nat A ((poPo". PoPi"). PiPo«) e /?j 

We want to prove Prog»» (a. Ryo| rn 0[y]), i.e.. 

(x. y) e a —> Vy e nat VD 

(8.27) , V ' 
(«y, o), (x. y)) e /?* - Ryoj rn </>[y]j - , Rxyj rn 0[x]J. 

Assume (x, y) e a A Vye nat VD (((y.v), (x.y)) e /?* —> Ryoj rn0[y]J. Then by 

8.26 we have 

(8.28) Vy e nat VD (((y, x), D) e p -> Ryoj rn 0[y]) . 

Therefore for the operation u := Ay Ao.Ryo by 8.24 we have rxyuj rn 4>[x], i.e.. 
rxy(Ay Ao.Ryo)! r n <f>[x]- From this fact and equation 8.25 we obtain 8.27. 

By IG we obtain 

(8.29) Vx e nat Vy ((x, y) e i(a, /?*) -+ Rxyj rn 4>[x]), 

or 

(8.30) AxAy.RxyrnVx e\ (aj*)4>[x]. 

This shows that an operation At Ax Ay.Rxy is a realization of a "part" of IGA 

(8.31) Vxe a (Vy (y <^ x - <£[y]) - <j>[x]) ~» Vze i (a. /T)0[r] . 
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REALIZATION OF ANALYSIS INTO EXPLICIT MATHEMATICS 1863 

Applying the above considerations to the formula x G U in place of cj>[x], we see 
that Xy At Xx Ay.Rxy is a realization of 

(8.32) MU (Pragma. U] -+ i(a, /T) C [/), 

Last, we have to find a realization of 

(8.33) Pragma. i(a,/?*)]• 

By 8.24 with x £ i(a. /?*) in place of 0[x], we have 

qrnProg/;[a. i(a.^*)] 

= qrnVxe a (\/y (y <p x —> y <E i(a,/T)) —> x £ i(a, /?*) J 

= Vxe nat fqxj A Vy (x, y) e a —> (qxyj A Vu (Vje nat 

(uyj A VO (((y,x),v)e 0 -myvlrny € i(a,/?*))) -» 

q x y u | r n x e i ( a , y ? * ) ) ) ) ) 

(8.34) = Vx e nat Ux[ A Vy f(x, x) £ a-* (qxyj A Vu (v>> e nat 

( u j | A Vo ( « * x), o) e /? - ( j , ujo) £ i(a, /?*))) -

(x ,qxyu}e i (a , / ?* ) ) ) ) ) 

<=> Vxe nat ( q x j A Vy ((x,y) e a —> (qxyj A Vu (Vye nat 

(uyj A Vo ({{J, t>), (x,y)) £ /?* - <>>.u>>0> S i(a,/**))) -

( x , q x y u ) e i ( a , r ) ) ) ) ) • 

Assume now (x. y) £ a A \/y £ nat (uy j A VD {{{y, o), (X, y)) e /?* —> (j>, uyt>) e 
i(a, jff*))). Note that from Definition 8.26 of /?* it follows that 

(o^ 3t , (({j-0 ,D0) ,( j1 ,D))er) 

and therefore by IG 

/ 8 , ^ 3«(0>.t.)e !(<*,/*•)) 

So, we also have 

V>> £ nat VD (((y, t>>, (x,y)) £ /f* -> ( j , t.) e i(a. /?*)). 

By IG we obtain (x, y)e \(a, p*). This demonstrates that an operation q : = AX Ay A1 u.y 
is a realization of 8.33. 

Bringing realizations of 8.31-8.33 together shows that an operation 

Xa Xp.(\{a, P*[P]). ((Xx Ay Au.y. Xy Xx Xx Xx.Rxx), Xx Xx /ly.Rxy)) 

is a realization of an instance of IGA 

vjf vr 3Z (wpy[jr,Z] A (VX e x 
(Vj ( j < y x - </>[>>]) - <£[x]) - Vz G Z </>[z])). H 

COROLLARY. IARI is realizable in To; its proof-theoretic strength is bounded by that 

of To-
PROOF. This follows from Theorems 1, 4. 7 and 8. H 
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