
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
1
5
4
7
2

|

d
o
w
n
l
o
a
d
e
d
:

2
3
.
4
.
2
0
2
4

THE JOURNAL of SYMBOLIC LOGIC

Volume 66. Number 4. Dec. 2001

REALIZATION OF ANALYSIS INTO EXPLICIT MATHEMATICS

SERGEI TUPAILO

Abstract. We define a novel interpretation M of second order arithmetic into Explicit Mathematics.

As a difference from standard 91 -interpretation, which was used before and was shown to interpret only

subsystems proof-theoretically weaker than To. our interpretation can reach the full strength of To. The

^-interpretation is an adaptation of Kleene's recursive realizability. and is applicable only to intuitionistic

theories.

Introduction. Systems of Explicit Mathematics were introduced by S. Feferman
in the 70s as a logical framework for Bishop-style constructive mathematics (see [5],
[6]). In [6] he gave an embedding of the basic theory To into a subsystem Al

2 -CA+BI
of second order arithmetic and conjectured that the converse also holds. In [10] G.
Jager carried out a necessary well-ordering proof in To, which together with [13]
completed its proof-theoretical analysis and established proof-theoretic equivalence
of the system of Explicit Mathematics To, system of analysis A2 - CA + BI. and
the set theory KPi. However, up to now. there were no direct embeddings of strong
conventional theories, e.g., analysis or set theory of the strength of To and higher,
into Explicit Mathematics. This also yielded that the only method for establishing
proof-theoretic lower bounds for To and stronger systems of Explicit Mathematics
remained to be well-ordering proofs carried out directly in those theories.

The situation is quite different with Martin-L6f type theories, where, in addition
to well-ordering proofs (see [16]), we also have direct embeddings of constructive
set theory CZF, [1], and its extensions, [2, 14], or a subsystem of analysis IARI,
[9]. The possibility of such an embedding is often considered as an evidence for
constructivity of a given theory. The obstacle for similar embeddings into Explicit
Mathematics was its specific nature, where intuitionistic and classical principles,
set-theoretic and recursion-theoretic intuition can be combined. It is sufficiently
straightforward to do for "weak" theories (essentially up to n j - CA): however,
for stronger systems with mathematical meaning, where adding the law of excluded
middle often results in dramatic increase in proof-theoretic strength (see, e.g., [15]),
the distinction classical/intuitionistic must have played a prominent role. The price
for this universality of Explicit Mathematics is that, while in ML type theories deriv-
ability simply means Kleene-type realizability, in EM these notions are different.
The reason for this is that a lot of realizable formulas, e.g., Church's thesis and

Received October 9, 1999; accepted September 29. 2000.

Research supported by the Swiss Nat ional Science Foundat ion.

© 2001. Association for Symbolic Logic
0022-4812/01 / 66O4-O022/S2.70

1848

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2694980
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:50:48, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2694980
https:/www.cambridge.org/core

REALIZATION OF ANALYSIS INTO EXPLICIT MATHEMATICS 1849

axiom of choice in analysis, are incompatible with classical logic without damaging
consistency or consistency strength.

In this paper we develop a realizability interpretation into Explicit Mathemat
ics. We have chosen here the simplest example, realization of analysis, which keeps
the amount of technical details at minimum, and demonstrates the method most
distinctly. For constructive set theory CZF and its extensions, one combines real
izability with other methods of interpreting set theory. This is reserved for another
publication ([20]).

The paper is organized as follows. For reader's convenience in Sections 1 and
2 we briefly introduce the theory To and subsystems of analysis we are interested
in. In Section 3 we define two interpretations of analysis into To- a direct inter
pretation 3 and a realizability interpretation M. A direct interpretation 2 means
simply that variables are interpreted as ranging over natural numbers and sets of
natural numbers and the meaning of logical connectives does not change. It's this
interpretation which was used before, e.g.. in [6. Ch. V] and [4. Ch. II. §1]. The
drawback of this translation is that it does not really exploit the axiom of Join of
Explicit Mathematics, the consequence of which being that the only systems which
have been interpreted via 2 are proof-theoretically weaker than To.

Alternatively, we define a realizability interpretation 91, which is a variant of
Kleene 1945 recursive realizability. The general setting for realizing one language
into another was given already in [6]; however, that paper studies in detail only
realization of Explicit Mathematics into itself. As to relationships between the
interpretations 9 and 3i, we prove that they are equivalent over an applicative part
App of To for first-order negative formulas, Theorem 2, and &(F) implies 3(F)
for F from a certain CC-class, Theorem 3. Thus ^-interpretation automatically
transfers proof-theoretic upper bounds from Explicit Mathematics to analysis, and
lower bounds vice versa. Axiom of Choice, on the contrary, is an example of a
formula for which 9 does not follow from 91, and is much stronger in presence of
the law of excluded middle, Theorem 6. In Section 4 we finally build realizations
of various axioms, giving together the theory IARI of [9], which has the same
proof-theoretic strength as To.

Acknowledgements. I am grateful to Prof. Gerhard Jager and Dr. Thomas Strahm
for introducing me to the world of Explicit Mathematics.

§1. Explicit mathematics. The theory To. We follow essentially the original type-
free two-sorted formulation of Explicit Mathematics from [5]. Alternative formu
lations are given in [3] and [11].

Language .S?EM- The theory To is formulated in a two-sorted language: opera
tions (individuals) and names (classifications). Names are thought of as a special
kind of operations, coding sets of operations. We use variables a, b,c,... as ranging
over operations, and a, fi, y, ... as ranging over names. The operation constants
of the theory are the following: combinators k, s, pairing p and projections po, pi,
zero 0, successor SN and predecessor PN , distinction by cases on natural numbers du,
join j and inductive generation i. Additionally we have the following nine operation
constants called name generators: nat, id, inv, emp, and, or, imp, all, ex. Terms are
built from variables and constants by the following application clause: if s and t are

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2694980
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:50:48, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2694980
https:/www.cambridge.org/core

1850 SERGEI TUPAILO

terms then s • t is a term, so that the application function symbol • accepts arguments
of both sorts and returns an operation. Atomic formulas are s — t (s coincides
with t) and s e t {s belongs to the set named by /, s is classified under t), where
5 and t are terms. Formulas are built from atomic formulas by A, V, —* and two
types of quantifiers, over operations and over names, e.g., Va, 3a, Va, 3a. Finally,
expression is a term or a formula.

Abbreviations. We use the following standard abbreviations:

• ~ F :<s> F -> _L;
• F0 <-+ F\ :<̂> {Fa -> F) A {F\ -> F0);
• t[:4* 3x (f = x) ;
• yT[r] :«=> 3a {t = a);
• s ~ t :^> {s[\l t{) -+ s = t;
• s t t :<̂> V x e i (j c e () ; s = (:•«• s <t t A t C s;
• r: s i—> ? for Vx e s (rx £ ?);
• r: sl t-^> ? for r: s >—> t, r: sm+x H+ t for Vx£ s {rx: sm >-> t)\
• t' forsN •/; 1 forO'; s? fors • *; t{s\,... ,s„) for (... {tsi) ...$„)i(s,t) for (ps)t;

s ^= t for -is = /, etc.

Syntactical conventions.
1. We use e[*] for an expression e, possibly containing occurrences of a variable

* (of appropriate sort). In this context by e[t] we mean the result of substituting
expression t for all occurrences of * in e.

2. Parentheses in terms are assumed to be associated to the left: e.g., s • t • u is
read as {s • t) • u.

3. We adopt the following priority among propositional connectives and their
abbreviations: ->, A, V, —>. <-•. For example, F\ V -F2 A F3 —> F4 *-> F5 has to be
read as ((F V ((->F2) A F3)) -> F4) <-> F5.

Logic. Intuitionistic 2-sorted logic of partial terms with equality. See, e.g., [3, Ch.
VI, 1] or [18, 1.3]. We take ± (falsity) as a propositional constant with standard
axioms pertaining to it.

Axioms. The axioms are divided in six groups, according to their nature.

I. Applicative axioms. These axioms formalize that operations form a partial
combinatory algebra, that we have pairing and projections, usual closure conditions
on natural numbers, as well as definition by numerical cases:

(1) kab = a;
(2) sab[A sabc ~ ac{bc)\
(3) pabi A poaj. A piflj A Po{pab) = a A pi {pab) - b\
(4) 0 e nat A Vx e nat (SNX e nat);
(5) Vx £ nat (SNX ^ 0 A PN(SNX) — x) ;

(6) Vx s nat (x ^ 0 —> PNX e nat A SN(PN-X) = x);

(7) a £ nat Abe nat —• (a = 6 —> d|\ixya6 = x) A {a ^ b —• dux^a^ = y).

II. Induction on nat.

<p[0] A Vx (<p[x] —> <P[SNX]) —» Vx £ nat </?[x]

for each formula 93.

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2694980
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:50:48, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2694980
https:/www.cambridge.org/core

REALIZATION OF ANALYSIS INTO EXPLICIT MATHEMATICS 1851

The following lemmas 1.1 and 1.2 are provable using only applicative axioms I;
Lemma 1.3 in addition calls for induction on natural numbers II (see, for example,
[6], [3], or a review [12]).

LEMMA 1.1 (/-abstraction). For every term t[x] there exists a term kx.t[x] such
that lx.t[x\[and for every term s

s[-> [Xx.t[x])s ~ t[s]).

LEMMA 1.2 (Recursion Theorem). There exists a closed term rec such that

r e c / | A rec/x ~ f(recf)x.

LEMMA 1.3 (Primitive recursion on natural numbers). There exists a closed term
prim such that

f: nat i—» nat A g: nat3 i—• nat Axe nat Aye nat —>

primfg: nat2 i—> nat A pnmfgxO = fx A prim/gx(si\iy) = gxy(pnmfgxy).

III. Explicit representation. This axiom states that each name is an operation:

3x (x = a).

IV. Elementary comprehension (ECA). These axiomatize name generators:

(1) J > a t] ;
(2) jV[\d] A Vx (xe id <-> x = (po*. Pi*) A pox = Pix);
(3) yT[inv(/, a)] A Vx (x e inv(/, a) <-> fx e a) ;
(4) yf[emp] A Vx (x e emp *-+ J_);
(5) yT[and(a, /?)] A Vx (x e and(a, ft) ^ x e a A x e ft);
(6) yf[or(a, /?)] A Vx (x e or(a, /?) <-»• x e a V x e /?);
(7) y f [imp(a, /?)] A Vx (x e imp(o!, ft) <-> x e a —> x e /?);
(8) yf [alia] A Vx (x £ alia <-• Vj ((x, v) £ a));
(9) yT[exa] A Vx (xe exa <-> 3v ((x, y) £ a)) .

DEFINITION 1.1 (Elementary formula). A formula is elementary if and only if it is
constructed from s = t and tea by means of A, V, —•, Vx, 3x only. (No occurrences
of / £ s with s not a name variable and name quantifiers are allowed.)

The following lemma is an intuitionistic analogue of reducing Elementary Com
prehension as stated in [5] to name generators nat, id, co, int, dom and inv, which
holds in classical setting (see [7]); its proof requires only axioms I, III and IV. For al
ternative intuitionistic reductions of Elementary Comprehension to a finite number
of its instances see [9, Sect. 1] and [17, Sect. 3].

LEMMA 1.4 (ECA). If a formula F := F[x\ a; a] is elementary then there exists a
term X} such that FV(t£) = FV(F) \ {x} and

yK[t£]AVx (xetx
F «-> F).

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2694980
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:50:48, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2694980
https:/www.cambridge.org/core

1852 SERGEI TUPAILO

PROOF. The term tx
F is built by recursion on F:

\nv{Ax.(s[x]j[x]), id) if F is s[x] = t[x];

i f f is s[x] e a;

if F is _L;

if F is F0[x] A F,[x]:

if F is F0[x]V Fi[x];

if F is F0[x] —> F\[x]

if F is Vv G[x, y];

i f f is 3y G[x, y].

inv(Ax.s[x], a)

emp

« • (% } . t F l M)

*o[*l,IFiM'' imp(t

allt-:

ext
G[p0r,pi:]

G[p0:.pi;]

Now the property of tx
F is proved by induction on F. H

V. Join (J). This axiom states that if / is an operation from a set named by a,
each value of which is a name, then j(a, /) names a disjoint union of all fx for
xe a:

Vx e a JT[fx] - (jr\i(a, /)] A Vz (z s j(a, /)

<-> 3x e a 3>> (z = (x, y) A j e fx)) J.

VI. Inductive Generation (IG). The first part of this axiom states that \{a,fi)
names a well-founded part of a set named by a along an ordering named by /?; the
second part allows induction over that set for an arbitrary formula:

JT[\(Q, 0)] A Vx e a (v>> {{y, x) e P -* y e \(a, P))-*xe \{a, P))\

A (Vx e a (Vj ((y, x) e yS - 0[j]) - . 0[x]) -» Vx e i (a, y9))0[x]) ,

where 0 e ^ E M is an arbitrary formula.
The theory App is the one containing only applicative axioms I; EON has axioms

I—II. The theory EONN has axioms of the groups I—III. EET is EONN + ECA,
EETJ is EET + J and T0 is EET J + IG.1

By TND {tetrium non datur), both in Explicit Mathematics and analysis, we mean
a schema consisting of all instances of the Law of Excluded Middle.

§2. Subsystems of analysis. The basic theory EHA {Elementary Heyting Analy
sis) is formulated in a two-sorted language 3?2. numbers and sets of numbers. We
use variables a, b,c,... as ranging over numbers, and A, B,C,... as ranging over
sets. There is only one individual constant 0. The function constants are: succes
sor ', pairing (*,*) and projections (*)o, (*)i, and also countably many function
constants f\, fi, . . . for primitive recursive functions. Terms are built as usual.
Atomic formulas are of the kinds s = t and s £ A {s and t are terms). Formulas are
built from atomic formulas by A, V, —> and two types of quantifiers, over numbers
and over sets, e.g., Vx, 3x, \/X, 3X. By FV(e) we denote the set of free variables
occurring in an expression e, and by FVo(e) and FVi (e) respectively the set of first

' in the literature the names EET and EETJ are also used for theories as defined here, but with
restricted induction II.

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2694980
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:50:48, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2694980
https:/www.cambridge.org/core

REALIZATION OF ANALYSIS INTO EXPLICIT MATHEMATICS 1853

and second order free variables of e. A formula is called negative if and only if
it doesn't contain V or 3. A formula is first-order if and only if it doesn't contain
second-order variables. A formula is arithmetical if and only if it does not contain
second-order quantifiers. We use the same abbreviations and syntactical conventions
as in the previous Section. The logic is intuitionistic 2-sorted logic. Axioms are the
following: equality axioms, Peano axioms, prim. -rec. definitions for function symbols
(*•*), (*)o, (*)i, f\, fi, . . . and mathematical induction schema. Note that we have
no comprehension in EHA. thus EHA being a conservative extension of Heyting
arithmetic.

EHA is the basic theory of analysis in this paper. Additionally, we will consider
extensions of EHA by the following axioms.

Arithmetic comprehension (ACA):
3X \/x (x G X <-> i//[x]) for y/ arithmetical.

Axiom of Choice (AC):
Vx 3 Y <j>[x, Y] -+ 3Z Vx <p{x, Zx] for all formulas <j>.

Replacement (RP):
MX (Vx € X 3\Y 4>[x, Y] -> 3Z Vx G X 4>[x, Zx]) for all formulas tj>, where

<j>[x. Zv] arises from </>[x, Z] by replacing each occurrence of s G Z by (x, s) G Z.

Inductive Generation (IGA):
VX \/Y 3Z (WPK[A\ Z] A TlY[X, Z. <f>]) for all formulas 4>, where we adopt the

following abbreviations:

W?Y[X. Z] denotes Progr[X Z] A VJ7 (Progy[X, U] -> Z C £/)
Progr[X Z] denotes Vx G X (Vy (j <y x -> j G Z) -> x e Z)
ProgK[X >̂] denotes Vx e X (My (y <Y x -> 0[j]) -+ ^[x])
TIK[A'. Z ^] denotes Progr[A', (f>]^\/z eZ <f>[z]
y <y x denotes (y.x) e Y

IARI of [9] is the theory EHA + ACA + RP + IGA. It's shown there that IARI
is directly interpretable in Martin-L6f type theory MLJw and has the same proof-
theoretic strength as MLiw and To.

§3. Interpretations into Explicit Mathematics. In this section we define two in
terpretations of analysis into Explicit Mathematics, a direct interpretation 2 and a
readability interpretation 91, and study relationships between them.

First, for each individual and function constant / G 5?2 by Lemma 1.3 we can
define an operation N(/) presenting the same primitive-recursive function as / and
having the following property: if n is the arity of / then EET proves

n

A x, e nat —• N (/) x i . . . x„ e nat.
1=1

We may assume that N(0) is 0 and N(sN) is '. Now terms of ^ 2 are translated as
follows:

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2694980
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:50:48, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2694980
https:/www.cambridge.org/core

1854 SERGEI TUPAILO

DEFINITION 3.1 (N(?)).

JN(JC) :=X\

\N(ftl...tn):=N(f)N(tl)..,N(tn).

For each second-order variable A G %i we assume a name variable aA € i?EM •
A direct interpretation 2: S?i i-> J?EM was introduced in [6] and used later on (see,
for example, [4, Ch. II] and [8]). It is denned as follows:

DEFINITION 3.2 (^-interpretation).

' s r (j = /) :=N(s) = N(f);

^ (? G ̂) := N ^ E ^ ;

^ (F 0 o F i) : = S - (i r o) ° ^ (^ i) . foro e {A,V,^} ;

^ (2 x G) : = e ^ £ n a t ^ (G) , for£>G{V,3};

9l[QXG) := Qax C nat S?(G), for Q G {V, 3}.

The following lemma is straightforward (see [4, Ch. II, §1]):
LEMMA 3.1. For each theorem F of the theory EHA + ACA Qs(F) is provable in

EET.

Alternatively, we define a readability interpretation 31: S?i H-> .2EM•

DEFINITION 3.3 {JTH). JVH\t\ := JT\t\ A v<ze t (z = (p0z, piz) A p0ze nat).

DEFINITION 3.4 (r realizes F, t rn F) . For each formula F € ^ we define a for
mula r rn F G ̂ E M - t will always be treated as a new free individual variable. The
definition is given by the table below:

F trnF

N(j) = N(0

(N (0 , t) e « ^

potrnF0 A pitrn.Fi

„ , - , , „ ,* A (Pot = 0 ^ pirrnFo) A Pore nat A , . „ „ •.
(p 0 r ^ 0 - > pir rnFi)

Vy (y rn F0 -*• tjcj A ty rn Fi)

Vx £ nat (rxj. A tx rn G[x])

Pot e nat A pit rn G[pot]
Vax (^N[Q!A'] -* rax I A ra^ rn G[ax\)

yrN[p0r]ApirrnG[por]

REMARK. According to our notation for substitution, p. 1850, in the previous
definition pit rn G[pot] in the last clause, for example, stands for (r rn G[X])^afx•

DEFINITION 3.5 (^-interpretation). For each F e y 2 we define

m{F) : = 3 y (y r n F) .

s = t

t G A

F 0 A F !

F 0 VFi

Fo -> F\

Vx G[x]

3x G[x]

MX G[X]

3X G[X]

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2694980
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:50:48, subject to the Cambridge Core terms of use, available at

http://pitrn.Fi
https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2694980
https:/www.cambridge.org/core

REALIZATION OF ANALYSIS INTO EXPLICIT MATHEMATICS 1855

REMARK. An important difference of ^-interpretation from 9-interpretation is
that sets are translated not as (names of) sets of natural numbers, but as (names
of) sets of pairs, only first elements of which are natural numbers (see the clause
for t e A). This is a standard effect in realizability interpretations of analysis, see,
e.g., [18, Sect. 7.2]. The second element r of a pair (N(/), r) can be thought of as a
"proof" that t e A.

Syntactical convention. We will often use the Fraktur font o, b, c , . . . to stress that
a given term plays a role as realization. Formally, this is not a new type of objects;
it's just a substitution for a, b, c,... used for better readability.

Abbreviation, tj. rn F will be used for t | A t rn F.

DEFINITION 3.6 (Realization, realizable).
1. A term t e i?EM is called realization for a formula F G Jz?2 in a theory

y € -2EM, App c gr, if and only if

FV(t) C FV0(F)\J{aA | A e FV,(F)}

and

J h /\ a e n a t A f\ sTN[aA] -> t r n F
aGFVo(F) ^eFVi(f)

2. If there exists such a term t then F is called realizable in 9^. We call a theory
TA realizable in 9~ if and only if every theorem of TA is realizable in 9"'.

NOTE. If F is closed and realizable in 9~ then 3" \- 3%{F).

THEOREM 1. Each theorem of EHA is realizable in EONN.
The proof is standard and can be found, for example, in [19, Ch. IV, Sect. 4].

NOTE. According to Theorem 1, to prove realizability of a theory TA € 3?i,
EHA c TA, it is sufficient to construct realizing terms for additional axioms of TA.
This is what we do in Section 4.

Now we turn to the relationship between 9 and ^-interpretations. For first-
order negative formulas we can define canonical realizers as in [18, Lemma 1.10].

DEFINITION 3.7 (Canonical realization, canf) . For F € i?2 first-order negative
we define a term can^ e J?EM (canonical realization ofF) in the following way:

'0 if F is s = t;

(can K, , canfl) if F is F0 A F\;
canf := <

Ay. canft if F is Fo —> F\;

Xx.cana[x] if F isVx G[x].

NOTE. For every F can^- is closed and App I- can/r {.

THEOREM 2 {9(F) <-> 31(F)). For F e S?2 being first-order negative in App we
have:

(i) 3 y (y r n F) ^ S r (F) ;
(ii) 9(F) ^ c a n / r r n F ;

(iii) 9(F) ^M(F).

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2694980
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:50:48, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2694980
https:/www.cambridge.org/core

1856 SERGEI TUPAILO

PROOF. We prove (i) and (ii) by simultaneous induction on F.
If F is atomic then it is of the form s = t and both 3(F) and t rn F are of the

formN(^) = NO?).
Assume F is Fo A F\ and the claim holds for F0 and F\.
Assume r rn (Fo A Ft). Then we have pot rn F) A pit rn F\. By IH(i) we get

2(F0) A 2(F\). i.e.. 2(F).
Assume 2(F0 AF\). Then we have 2(F0) A2(F\). By IH (ii) we get canfu rnF) A
can/-, rnF], which by Definition 3.7 gives can/r rnF.

Assume F is FQ —> F\ and the claim holds for F) and F\.
Assume t rn (F0 —> F) and assume 3(Fo). By IH (ii) we have can^, rnF0. Then

r canFo J. rn F, and by IH (i) 2 (F) .
Assume ^(Fo —> F) and assumeyrnFo. By IH (i) 91 (FQ) and therefore3(F\).

By IH (ii) can/r, rnF], which by Definition 3.7 gives can/r rnF.
Assume F is Vx G[x] and the claim holds for G[x].
Assume r rn (Vx G[x]). Then Vx e nat (txj rn G[x]). By IH (i) this yields

VxenatSf(G[x]).i.e. 9(F).
Assume 2(Mx G[x]). Then Vx e nat 2(G[x]). By IH (ii) this yields Vx e

nat (cang[xj rnG[x]). which by Definition 3.7 gives can/r rnF.
(iii) is an immediate consequence of (i) and (ii). H

DEFINITION 3.8 (CC-class, cf. [18. Sect. 1.14]). A first-order formula F e Si be
longs to the CC-class if and only if for every subformula G —> H of it G is negative.

THEOREM 3 (92(F) -> 2(F)). If F e CC then App h 91(F) -» ^ (F) .

PROOF. The claim is proved by induction on F .
If F is atomic then it is of the form s = t and both 2(F) and t rn F are of the

formN(s) = N(0-
Assume F is F0 A F\ and r rn (F0 A F\). Then we have pot rn Fo A pi t rn F\. By

IH we get Qf(Fo) A 2(F\). i.e.. 2(F).
Assume F is Fo V F\ and r rn (Fo V F) . Then we have pot e nat A (pot = 0 —»

PirrnFo) A (pot ^ 0 -* pit r n F) . In the case p0r = Oby IH 2(F0): if pot ^ 0 then
similarly 2(F\). In both cases 2(F).

Assume F is Fo —> F\ and rrn (Fo —• F) . Then Fo is first-order negative. Assume
2(FQ). By the previous Theorem (ii) can/r0 rnF). Then tcan/?u J, rn F\. Now by IH
2(FX).

Assume F is Vx G[x] and r rn (Vx G[x]). Then Vx e nat (rxj. rn G[x]). By IH
this yields Vx e nat 2(G[x]). i.e.. 2(F).

Assume F is 3x G[x] and rrn (3x G[x]). Then we have pote nat A pitrn G[pot].
By IH 2 (G [p0t]), which implies ^ (F). H

Remarks about proof-theoretic strength. We assume here that TA is realizable in

(1) Note that Consis(T) is n°-formula for any theory T e y 2 with a decidable
predicate PrfT(a,b). Therefore, if TA h Consis(T) then 5^ h ®(Consis(T)).

(2) Note that prenex formulas, in particular n^-formulas. are CC. Therefore, if
TA proves totality of a function / . then so does !T.

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2694980
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:50:48, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2694980
https:/www.cambridge.org/core

REALIZATION OF ANALYSIS INTO EXPLICIT MATHEMATICS 1857

(3) Let / x be a characteristic function of a standard prim.-rec. ordering -< on
natural numbers (e.g., an initial part of some fixed standard ordering), i.e.,

y <x :<=> f^{y,x) = 0.

For every first-order negative formula F[x] s ^ w e set:

P rogK F) : o Vx (Vy (f^ (y, x) = 0 -> F[j]) -* F[x]),

F u n d K F) :<̂> P r o g K F) -+ Vx F[x].

We say that a theory TA proves well-foundedness of < if and only if TA h
Fund(^, F) for every first-order negative formula F. Since Fund(-<,F) also is a
negative formula, by Theorem 2 we have that if TA proves well-foundedness of -<,
then so does 3~ as well.

§4. Realizing subsystems of analysis. In this section we provide realizing terms
for additional axioms of analysis listed in the Section 2.

THEOREM 4 (Arithmetic comprehension). Every instance of ACA is realizable in
EET.

PROOF. Assume a formula i//[a] e J?2 to be arithmetical. By EC A there exists a
term r such that

(4.1) yfN[r] A Vx e nat Vy ({x,y) £ t <-+ y rn (*/[*])•

We are to prove now that the pair (r, Ax.(Ay.y, Ay.y)} is a realization of an instance

of ACA

3X \/x (x e X ^ y/[x]).

Indeed,

(/. Ax.{Ay.y, Ay.y)) rn 3X Vx (x e X ^ y/[x])

= ix.(ly.y, Ay.y) rnVx (x e f <-> y/[x])

= Vxenat f (Ay.y, ly.y) r n x € / <-* y/[x])j

= Vxe nat (Ay.yrn (x e r —* y/[x]) A Ay.yrn (y/[x] —• x e r)J ,

which follows from 4.1. H

THEOREM 5 (Axiom of Choice). Every instance of AC w realizable in EETJ.

PROOF. Assume r rn Vx 3 Y <fi[x, Y]. We then have

t rnVx37t£[x , Y]
s V x £ n a t (r x | A yTN[p0(rx)] A pi(rx) rn<£[x, po(tx)]).

(5.3)

By ECA and J (over nat) let / := t[x\ be such that

(5.4) ^H[t] A (((x,x,),yi) e t <-» (xi.y,) e p0(tx)^

CLAIM. For every formula t//[x, Y],

(5.5) Vx£natVu (urn y/[x, po(rx)] <-> urn y/[x, tx]\ .

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2694980
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:50:48, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2694980
https:/www.cambridge.org/core

1858 SERGEI TUPAILO

PROOF. First we prove the most important case when y/[x. Y] is of the form
s e Y. We have

urn s e tx = urn (x, s) 6 t = ((x,s),u) s t
(5.6) 54

= (s, u) e po(rx) = u rn.? e Po(tx).

Now, the proof is completed by straightforward induction on y/. -\

Using this claim, we have, for xe nat, pi (xx)rn<t>[x, tx]. Therefore (r[t], Ax.pi (tx))
is a realization of the conclusion and h.{t[x].AX.p\{rx)) is a realization of the
instance of AC

Vx 3 Y <j>[x, Y] -> 3Z Vx <j>[x, Zx\ H

COROLLARY. EHA + ACA + AC is realizable in EETJ and has proof-theoretic
strength bounded by ip{eo, 0).2

PROOF. Realizability follows from Theorems 1, 4 and 5. The bound for proof-
theoretic strength follows from the Remarks in the end of Section 3 and the fact
|EETJ| = |E1 - AC classical! = <p(e0,0) (see, e.g., [6, Section V]). H

The following theorem gives an example where 31- and ^-interpretations are
essentially different. While, according to Theorem 5, T0 proves ^(AC) , it fails to
prove 3{AC); the latter in the presence of the Law of Excluded Middle is at least
as strong as full second order arithmetic.

THEOREM 6 (T0 ¥ 3){AC)).

(1) ToFSr(AC);
(2) EET + TND + 3 {AC) has the strength of at least full analysis.

PROOF. Obviously

(6.7) EHA + ACA + TND is S^-interpretable in EET + TND

(see, e.g., [8, Section 2]). Then we have

(6.8) EHA + ACA + TND + AC is SMnterpretable in EET + TND + 3{AC).

But ACA + TND + AC implies full comprehension, so EHA + ACA + TND + AC
is full analysis. By 6.8 we have (2).

For (1), assume T0 h- 3{AC). Then T0 + TND I- 3{AC) and T0 + TND +
3 {AC) = To + TND. By (2) T0 + TND is at least as strong as full analysis,
contradiction, since To + TND is known to have the strength of A2 - CA + BI
(classical) (see [6, 10]). H

THEOREM 7 (Replacement). Every instance of RP is realizable in EETJ.

2In fact, as shown in [3. Ch. XIII, §2-3], this bound is exact.

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2694980
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:50:48, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2694980
https:/www.cambridge.org/core

REALIZATION OF ANALYSIS INTO EXPLICIT MATHEMATICS 1859

PROOF. Assume yfN[o;]. Assume also t rnVx e a 3\Y <j>[x, Y]). By Definition
3.4 we have

rrnVx <Ea3\Y cf>[x, Y]
= x rn Vx (X e a -> 3! Y </>[x, Y])

EEVxenat (xx[rn (x 6 a —> 3! 7 <p[x, Y])j

= Vx e nat hr.vj. A Vy (x rn .v € a -» rxy], rn 3! 7 0[x. 7]))

= Vx e nat (t x | A Vy ({x. y) £ a -> txy | rn 3! 7 </)[x. 7]) J

= Vx£nat (txlAVy ((x. y) £ a

-> txyj rn (3 7 (0[x, 7] A VZ (0[x, Z] -> 7 = Z)))))

= Vx e nat (t x | A Vy ({x. x) e a -»• (txy | A yFN[p0(rxy)]

(7 9N Ap, (txy) rn (0[x, p0(rxy)] A VZ (^[x, Z] -> p0(txy) = Z))j))

= Vxenat (txjAVy f{x ,y}ea-+ (VN[p0(txy)]

Ap0(pi (txy)) rn ^[x, po(rxy)]

Ap, (p, (txy)) rn VZ (<f>[x, Z] -> po(rxy) = Z) J J J

= Vx£nat (rx |AVy ((x.x)ea^ (VN[p0(txy)]

Ap0(pi (txy)) rn 0[x, po(txy)]

AVy (yf N[y] - (pi (pi (txy))y j rn (0[x, 7] -> p0(txy) = 7))))))

= Vx £ nat frxi A Vy ((x, y) e a -> ^ N [p 0 (rxy)]

Ap0(pi (txy)) rn <£[x. po(txy)]) A V7 (J^N[y] -»• (p, (pi (txy))y j .

AVq (q rn <f>[x, 7] -> p, (pi (txy))7q| rn p0(txy) = y)))J J J .

Continuing 7.9,

tj rnpo(txy) = 7
= n rnVxi ((xt e Po(txy) -»• Xi e 7) A (xi e 7 -* xj 6 p0(txy)))

(7.10) =Vxj£na t (t ^ J . A (Vy0 ({xi,y0} e p0(txy) -> (xi, po(tixi)y0) £ 7)

AVy, ((x1,y1}£7 -> (xt,pi(tiJCi)yi) £ p0(txy))J J .

Also,

urnVx e a <f>[x, Cx]
= u rn Vx (x £ a —> </>[x. Q-])

(7.11) = V x £ n a t (u x | r n (x e a ^ f r C J))

s Vx £ nat (wx J, A Vy ((x, y) G a —• uxyj. rn 0[x, C*] J J.

By EC A there exists a term t := t[a,x] such that

WN[t[a,x]]A f ((x ,xi) ,n)£/[a , r] <-> n = <p0t),pin)
(7.12) N

A((x, p0n), (xi, pit}}> £ j(a, /t>'.po(t(po>')(pij)))J.

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2694980
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:50:48, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2694980
https:/www.cambridge.org/core

1860 SERGEI TUPAILO

If we had (x. y) e a —> m rn<?!>[x, po(txy)] «-> t2 rn</>[x. ?.v] J, this would provide

us with a realization of the Axiom of Choice on a (instead of Replacement) (cf. the
proof of Theorem 5). While this is not the case, by making use of uniqueness part
of 7.9 we obtain a pair of operations, which map realizations of 4>[x. p0(txy)] and
4>[x. tx] into each other. This pair of operations is represented by a term r j defined
below, and is sufficient to build up a realization of Replacement.

For each formula ip :— ip[x. Y] € Si such that y £ FV0(</?) and a predicate
variable Y e S?2 we define a term t£ := t£[t, x, y. FVo(v?)] by recursion on ip in the
following way:

'(Ayo.yo.lyi.yi)
(Ay0.y0,Ayi.yi)
(Ay0.y0,lyi.yi)

(Ay0.{y,yo5,Ayi-Pi(i:i[r,x.y,yi]5[x])(piyi))

(Ay0.(p0t,J0(poyo),Po^](piyo))-l

^i-{pit<J„(pDFi).Pir£Wi))} J

{/tyo.(poyo.PodN(poyo.O,r^0,r^)(piyo)),

Ayi.(poyi,PidN(poyi.O,t^,r^)(piyi)))

(AyoAz.pot^CyoCpit^z)), 1
Ayi Az.pir^(yi(p0r,J02))) J

(Ay0 A/c.por£[/t](yo£), Ay, Afc.p,t^A](yi&))

<Afo.(pojo.Po^[poyo](piFo)),l

A?i.<Poyi, Pir^[poFl](piri))) J

(Ay0 AK.p0r^M(yo«), Ay, A«;.pit£w(yi«;))

(Ay0.(p0yo,Po^[pofo](piyo)),l

Ayi.{poyi,pit^[pMi](piyi))) J

if <p is ±;

if (,c is î = S2'.

if ip is s £ £> and Z> is not F:

if ¥7 is .?[x] e F. where

r, := pi(pi(rxj))yq.

y := po(tx(p0yi)).

kq : = Po(pi(w(pofi)));

if </? is <PQ Aipi;

if (p is <PQV tp\;

if<p is(p0 —> <p,:

if <p is V/c i//[A:]:

if tp is 3A: ^[A:];

iftpisVK y/[K];

if ip is 3K y/[K].

CLAIM. For every formula <p := v?[x, F] e .S?2 we ^ a v e

(7.13) {x. y) e a -> tj[r, x, y] rn (v?[x, po(txy)] *-> < [̂x, f*]).

PROOF. We check only the most important case (the only one which requires
use of uniqueness in the premise of Replacement axiom), when <p is of the form
s[x] e F. Other cases are proved by routine induction on (p.

By Definition 3.4 we have

(7.14)

(7.15)

y0rn.s[x] e po(txy) = (^[x],y0)£ po(txy).

yi m.y[x] £ tx = yi rn (x, ^[x]) e ? = {(x, s[x]),yi) e /
7.12 {(x, p0yi),(s[x], piFi))ej(«,Ay.po(r(p0y)(pij'))).

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2694980
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:50:48, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2694980
https:/www.cambridge.org/core

REALIZATION OF ANALYSIS INTO EXPLICIT MATHEMATICS 1861

By J 7.14 and 7.15 immediately yield

(7.16) (x,y) e a -> Ay0.(y,yo) rn (s[x] e Po(txy) -* s[x] € tx).

For the opposite direction, assume (x, y) e a and ji rn s[x] 6 **, i.e.,

((x,p0j:i),(^[x].pij:i))£j(a,/l>'.po(r(po>')(pi>'))).

Then by J

(7.17) (x, popi) e a A (,s[x], piyi) £ p0(rx(p0?i)).

By 7.9 we have

(7.18) ^"N[po(tx(p0yi))] A po(pi(tx(po?i))) ra<f>[x, po(tx(p0yi))].

Now by the uniqueness part of 7.9 we obtain

(7.19) Pi (pi (vxt))yql rn po(txy) = y,

where y := po(tx(p0yi)) and q := po(pi(tx(p0ji))). Taking

vi := p1(p1(rxy))y[r,x,yi]q[r,x,yI],

from 7.10 and 7.17 we have

(7.20) (s[x], pi(tij[x])(piyi)) £ po(rxy).

Equation 7.20 shows that

/ 7 2 1 \ {x,i)ea -» Ayi.pi(t][t,x,y,y1]5[x])(piy1)

rn(s[x] € tx -* s[x] € p0(txy)), H

The previous claim and equation 7.9 together prove that

(7.22) (x^)ea ~* (porJ[jc,r][t,x,y](p0(pi(txy)))| rn0[x, (t[a,v])x]J ,

which is to say that
(7 23) r " > V x e a 3 ! F 4 > [x , Y]

-> Xx Ay.p0r|[x r][t,x,y](p0(pi(txy))) rn Vx € a <j)[x, (t[a,t])x].

The last equation shows that an operation

ka At.{f[a,t], Ax Ay.p0rJ[jcT][r,x,y](p0(pi(rxy))))

is a realization for an instance of RP

VJT (Vx €X3\Y <f>[x, Y]-^3Z\/x eX <p[x,Zx\). -\
THEOREM 8 (Inductive Generation). Every instance of IGA is realizable in EET +

IG.

PROOF. Assume yTN[a] A JVH[f$\. Assume also

t rn Vx £ a [Vy (y <p x -> <p[y]) -> </>[x] J .

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2694980
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:50:48, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2694980
https:/www.cambridge.org/core

1862 SERGEI TUPAILO

By Definition 3.4 we have:

r rn Vx e a (\/y (y <p x —> <j>[y]) —»</>[x] J

s t rn Vx (x e a —> (Vy (y </? x —> <£[y]) —• <£[x]) J

= Vxe nat (t x j A Vy f(x, y) e a —>

rxy| rn (Vy (y <fi x - • c/>[y]) -» 0 [*])))

= Vxe nat (rx i A Vy ((x.y) e a —> (txyl
(8.24) A V V

A Vu (u rn Vy (y <^ x -» 0[y]) -»txyuj rn < [̂x] j J J J

= Vxe nat f r x | A Vy f (x.y) e a —> frxyj A Vu (Vye nat (uyi

VD (D rn (y, x) e j 8 - » uyo | rn </>[y])) —» rxyu| rn 0[x] J J J j

= Vxe nat (t x j A Vy f(x.y) e a —> (txyj A Vu (Vy e nat (uy|

AVo(((y,x).o)e/?^uyolrn<?!>[y])) -» c*yuj.rn0[x])))) .
By recursion theorem for a function / := Az Xx Ay.txy(Ay An.zyn,) there exists a

term R := rec/ such that

(8.25) Rxy ~ txy(Ay Ao.Ryo).

By ECA there exists a term /?* := /T[y?] such that

Jf[f5*\ A (ue /?* <-> w = (pow, pi«)

(8.26) Apo« = (p0pow,PiPo") Apiu = (POPIH, PIPIW)

Apopowe nat A p0pi«e nat A ((poPo". PoPi"). PiPo«) e /?j

We want to prove Prog»» (a. Ryo| rn 0[y]), i.e..

(x. y) e a —> Vy e nat VD

(8.27) , V '
(«y, o), (x. y)) e /?* - Ryoj rn </>[y]j - , Rxyj rn 0[x]J.

Assume (x, y) e a A Vye nat VD (((y.v), (x.y)) e /?* —> Ryoj rn0[y]J. Then by

8.26 we have

(8.28) Vy e nat VD (((y, x), D) e p -> Ryoj rn 0[y]) .

Therefore for the operation u := Ay Ao.Ryo by 8.24 we have rxyuj rn 4>[x], i.e..
rxy(Ay Ao.Ryo)! r n <f>[x]- From this fact and equation 8.25 we obtain 8.27.

By IG we obtain

(8.29) Vx e nat Vy ((x, y) e i(a, /?*) -+ Rxyj rn 4>[x]),

or

(8.30) AxAy.RxyrnVx e\ (aj*)4>[x].

This shows that an operation At Ax Ay.Rxy is a realization of a "part" of IGA

(8.31) Vxe a (Vy (y <^ x - <£[y]) - <j>[x]) ~» Vze i (a. /T)0[r] .

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2694980
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:50:48, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2694980
https:/www.cambridge.org/core

REALIZATION OF ANALYSIS INTO EXPLICIT MATHEMATICS 1863

Applying the above considerations to the formula x G U in place of cj>[x], we see
that Xy At Xx Ay.Rxy is a realization of

(8.32) MU (Pragma. U] -+ i(a, /T) C [/),

Last, we have to find a realization of

(8.33) Pragma. i(a,/?*)]•

By 8.24 with x £ i(a. /?*) in place of 0[x], we have

qrnProg/;[a. i(a.^*)]

= qrnVxe a (\/y (y <p x —> y <E i(a,/T)) —> x £ i(a, /?*) J

= Vxe nat fqxj A Vy (x, y) e a —> (qxyj A Vu (Vje nat

(uyj A VO (((y,x),v)e 0 -myvlrny € i(a,/?*))) -»

q x y u | r n x e i (a , y ? *)))))

(8.34) = Vx e nat Ux[A Vy f(x, x) £ a-* (qxyj A Vu (v>> e nat

(u j | A Vo (« * x), o) e /? - (j , ujo) £ i(a, /?*))) -

(x ,qxyu}e i (a , / ?*)))))

<=> Vxe nat (q x j A Vy ((x,y) e a —> (qxyj A Vu (Vye nat

(uyj A Vo ({{J, t>), (x,y)) £ /?* - <>>.u>>0> S i(a,/**))) -

(x , q x y u) e i (a , r))))) •

Assume now (x. y) £ a A \/y £ nat (uy j A VD {{{y, o), (X, y)) e /?* —> (j>, uyt>) e
i(a, jff*))). Note that from Definition 8.26 of /?* it follows that

(o^ 3t , (({j-0 ,D0) ,(j1 ,D))er)

and therefore by IG

/ 8 , ^ 3«(0>.t.)e !(<*,/*•))

So, we also have

V>> £ nat VD (((y, t>>, (x,y)) £ /f* -> (j , t.) e i(a. /?*)).

By IG we obtain (x, y)e \(a, p*). This demonstrates that an operation q : = AX Ay A1 u.y
is a realization of 8.33.

Bringing realizations of 8.31-8.33 together shows that an operation

Xa Xp.(\{a, P*[P]). ((Xx Ay Au.y. Xy Xx Xx Xx.Rxx), Xx Xx /ly.Rxy))

is a realization of an instance of IGA

vjf vr 3Z (wpy[jr,Z] A (VX e x
(Vj (j < y x - </>[>>]) - <£[x]) - Vz G Z </>[z])). H

COROLLARY. IARI is realizable in To; its proof-theoretic strength is bounded by that

of To-
PROOF. This follows from Theorems 1, 4. 7 and 8. H

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2694980
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:50:48, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2694980
https:/www.cambridge.org/core

1864 SERGEI TUPAILO

REFERENCES

[1] P. ACZEL. The type theoretic interpretation of constructive set theory. Logic colloquium '77 (A. Mac-
Intyre, L. Pacholski, and J. Paris, editors), 1978, pp. 55-66.

[2] , The type theoretic interpretation of constructive set theory: inductive definitions. Logic,
methodology and philosophy of science vii (R. B. Marcus et al„ editors). Amsterdam. 1986.

[3] M. BEESON, Foundations of constructive mathematics. Springer-Verlag, 1985.
[4] W. BUCHHOLZ, S. FEFERMAN. W. POHLERS, and W. SIEG. Iterated inductive definitions and subsystems

of analysis. Lecture Notes in Mathematics, vol. 897, Springer-Verlag, 1981.
[5] S. FEFERMAN, A language and axioms for explicit mathematics, Algebra and logic. Lecture Notes

in Mathematics, vol. 450, Springer-Verlag, 1975, pp. 87-139.
[6] , Constructive theories of functions and classes. Logic colloquium '78. 1979, pp. 159-224.
[7] S. FEFERMAN and G. JAGER, Systems of explicit mathematics with non-constructive ^-operator. Part

II, Annals of Pure and Applied Logic, vol. 79 (1996), no. 1, pp. 37-52.
[8] T. GLASS, Standardstrukturen fur Systeme Expliziter Mathematik, Ph. D. Dissertation, Miinster,

1993.
[9] E. GRIFFOR and M. RATHJEN, The strength of some Martin-Lof type theories. Archive for Mathe

matical Logic, vol. 33 (1994), pp. 347-385.
[10] G. JAGER, A well-ordering proof for Feferman s theory TQ, Archive for Mathematical Logic, vol. 23

(1983), pp. 65-77.
[11] , Induction in elementary theory of types and names. Computer science logic '87. LNCS,

vol. 329, Springer-Verlag, 1988, pp. 118-128.
[12] G. JAGER, R. KAHLE, and T. STRAHM, On applicative theories, Logic and foundations of mathe

matics (A. Cantini, E. Casari, and P. L. Minari. editors), 1999, pp. 83-92.
[13] G. JAGER and W. POHLERS, Eine heweistheoretische Untersuchung von Aj — CA+BI und verwandter

Systeme, Sitz. Beyer. Akad. der Wissen., Math.-Natur. Klasse, (1982). pp. 1-28.
[14] M. RATHJEN, Interpreting Mahlo set theory in Mahlo type theory, preprint. 1999.
[15] M. RATHJEN, E. R. GRIFFOR, and E. PALMGREN, Inaccessibility in constructive set theory and type

theory. Annals of Pure and Applied Logic, vol. 94 (1998), pp. 181-200.
[16] A. SETZER, Well-ordering proof for Martin-Lof type theory with W-type and one universe. Annals

of Pure and Applied Logic, vol. 92 (1998), pp. 113-159.
[17] M. TATSUTA, Realizability for constructive theory of functions and classes and its application to

program synthesis, Proceedings of thirteenth annual IEEE symposium on logic in computer science, 1998.
pp. 358-367.

[18] A. TROELSTRA, Realizability. Handbook of proof theory (S. Buss, editor), North-Holland. 1998.
pp. 407-474.

[19] A. TROELSTRA and D. VAN DALLEN, Constructivism in mathematics, vol. I, North-Holland, 1988.
[20] S. TUPAILO. Realization of constructive set theory into explicit mathematics: a lower bound for

impredicative Mahlo universe, Technical report IAM-00-004. University of Bern. Switzerland, submitted
for publication.

INSTITUT FUR INFORMATIK UND ANGEWANDTE MATHEMATIK
UNIVERSITAT BERN, SWITZERLAND

E-mail: sergei@iam.unibe.ch

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2694980
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:50:48, subject to the Cambridge Core terms of use, available at

mailto:sergei@iam.unibe.ch
https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2694980
https:/www.cambridge.org/core

	1

