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Abstract

In spite of the analogies between Qp and Fp((t)) which became evident through the
work of Ax and Kochen, an adaptation of the complete recursive axiom system given
by them for Qp to the case of Fp((t)) does not render a complete axiom system. We
show the independence of elementary properties which express the action of additive
polynomials as maps on Fp((t)). We formulate an elementary property expressing
this action and show that it holds for all maximal valued fields. We also discuss the
action of arbitrary polynomials on valued fields.
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1 Elementary properties and additive polynomials

In this paper, we work with valued fields (K, v), denoting the value group by vK, the
residue field by Kv and the valuation ring by Ov or just O. For elements a ∈ K, the value
is denoted by va, and the residue by av. We will use the classical additive (Krull) way
of writing valuations. That is, the value group is an additively written ordered abelian
group, the homomorphism property of v reads as vab = va + vb, and the ultrametric
triangle law reads as v(a+ b) ≥ min{va, vb}. Further, we have the rule va = ∞ ⇔ a = 0.
We fix a language L of valued fields (or valued rings) which contains a relation symbol
O(X/Y ) for valuation divisibility. That is, O(a/b) will say that va ≥ vb, or equivalently,
that a/b is an element of the valuation ring. We will write O(X) in the place of O(X/1)
(note that O(a/1) says that va ≥ v1 = 0, i.e., a ∈ Ov).
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Let Fp denote the field with p elements. The power series field Fp((t)), also called “field
of formal Laurent series over Fp”, carries a canonical valuation vt , the t-adic valuation
(we write vtt = 1). (Fp((t)), vt) is a complete discretely valued field, with value group
vtFp((t)) = Z (that is what “discretely valued” means) and residue field Fp((t))vt = Fp .
At the first glimpse, such fields may appear to be the best known objects in valuation
theory. Nevertheless, the following prominent questions about the elementary theory
Th(Fp((t)), vt) are still unanswered:

Is Th(Fp((t)), vt) decidable? Is it model complete? Does (Fp((t)), vt) admit quan-
tifier elimination in L or in a natural extension of L? Does there exist an
elementary class of valued fields, containing (Fp((t)), vt) and satisfying some
Ax–Kochen–Ershov principle?

By an Ax–Kochen–Ershov principle for a class K of valued fields we mean a principle of
the form

(K, v), (L, v) ∈ K with vK ≡ vL , Kv ≡ Lv implies that (K, v) ≡ (L, v)

or a similar version with ≺ or ≺∃ (“existentially closed in”) in the place of ≡ . Here, vK
denotes the value group of (K, v), and the language is that of ordered groups. Further,
Kv denotes the residue field of (K, v), and the language is that of rings or of fields. For
example, the elementary class of henselian fields with residue fields of characteristic 0
satisfies all of these Ax–Kochen–Ershov principles (cf. [AK], [E], [KP], [K2]).

Encouraged by the similarities between Fp((t)) and the field Qp of p-adics, one might
try to give a complete axiomatization for Th(Fp((t)), vt) by adapting the well known ax-
ioms for Th(Qp, vp). They express that (Qp, vp) is a henselian valued field of characteristic
0 with value group a Z-group (i.e., an ordered abelian group elementarily equivalent to
Z), and residue field Fp . They also express that vp = 1 (the smallest positive element in
the value group). This is not relevant for Fp((t)) since there, p · 1 = 0. Nevertheless, we
may add a constant name t to L so that one can express by an elementary sentence that
vt = 1.

A naive adaptation would just replace “characteristic 0” by “characteristic p” and p
by t. But there is an elementary property of valued fields that is satisfied by all valued
fields of residue characteristic 0 and all formally p-adic fields, but not by all valued fields
in general. It is the property of being defectless. A valued field (K, v) is called defectless
if the fundamental equality

n =
g
∑

i=1

eifi

holds for every finite extension L|K, where n = [L : K] is the degree of the extension,
v1, . . . , vg are the distinct extensions of v from K to L, ei = (viL : vK) are the respective
ramification indices, and fi = [Lvi : Kv] are the respective inertia degrees. (Note that g =
1 if (K, v) is henselian.) There is a simple example, probably already due to F. K. Schmidt,
which shows that there are henselian discretely valued fields of positive characteristic
which are not defectless.

However, each power series field with its canonical valuation is henselian and defectless.
In particular, (Fp((t)), vt) is defectless. For a less naive adaptation of the axiom system of
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Qp, we will thus add “defectless”. We obtain the following axiom system in the language
L(t):

(K, v) is a henselian defectless valued field
K is of characteristic p
vK is a Z-group
Kv = Fp

vt is the smallest positive element in vK .































(1)

Let us note that also (Fp(t), vt)
h, the henselization of (Fp(t), vt), satisfies these axioms. It

was common knowledge since some time that this is a defectless field, and the proof of
this fact is not all too hard. But it can also be deduced from a more general principal,
the “generalized Grauert–Remmert Stability Theorem” (see [K2] for this theorem and its
proof, and [K5], [K7] for further applications). It is also well-known that (Fp(t), vt)

h is
existentially closed in (Fp((t)), vt); for an easy proof see [K2]. But it is not known whether
(Fp((t)), vt) is an elementary extension of (Fp(t), vt)

h.
In fact, it did not seem unlikely that axiom system (1) could be complete, until we

proved in [K1]:

Theorem 1 The axiom system (1) is not complete.

We wish to show how this result is obtained and which additional previously unknown
elementary properties of Fp((t)) have been discovered.

We start by noting that for K = Fp((t)), the elements 1, t, t2, . . . , tp−1 form a basis of
the field extension K|Kp. Thus,

K = Kp ⊕ tKp ⊕ . . .⊕ tp−1Kp . (2)

It follows that the L(t)-sentence

∀X∃X0 . . .∃Xp−1 X = Xp
0 + tXp

1 + . . .+ tp−1Xp
p−1 (3)

holds in K.
Since the Frobenius x 7→ xp is an endomorphism of every field K of characteristic p,

it follows that for every i the polynomial tiXp is additive. A polynomial f(X) ∈ K[X ]
is called additive if f(a + b) = f(a) + f(b) for all a, b in any extension field of K. The
additive polynomials in K[X ] are precisely the polynomials of the form

m
∑

i=0

ciX
pi with ci ∈ K , m ∈ N

(cf. [L], VIII, §11). If K is infinite, then f(X) ∈ K[X ] is additive if and only if f(a+ b) =
f(a)+ f(b) for all a, b ∈ K. For further details about additive polynomials, see [O], [W1],
[W2] and [K2].

Now it is a natural question to ask what might happen if we replace the polynomials
tiXp in (3) by other additive polynomials. Apart from the additive polynomials cXpn,
the most important is the Artin-Schreier polynomial ℘(X) := Xp −X . Lou van den
Dries observed that if k is a field of characteristic p such that ℘(k) := {℘(x) | x ∈ k} = k,
then the L(t)-sentence

∀X∃X0 . . .∃Xp−1 X = Xp
0 −X0 + tXp

1 + . . .+ tp−1Xp
p−1 (4)
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holds in k((t)). However, he found that he was not able to eliminate the quantifiers in
this assertion (with respect to a version of axiom system (1) where “Kv = Fp” is replaced
by “Kv ≡ k”). Observe that ℘(Fp) = {0} 6= Fp . To get an assertion valid in Fp((t)), we
have to introduce a corrective summand Y :

∀X∃Y ∃X0 . . .∃Xp−1 X = Y +Xp
0 −X0 + tXp

1 + . . .+ tp−1Xp
p−1 ∧ O(Y ) (5)

Lemma 2 The L(t)-sentence (5) holds for every intermediate field (K, v) between the
fields (Fp(t), vt) and (Fp((t)), vt).

Proof: Take x ∈ K. If vx ≥ 0, then we set y = x and xi = 0 to obtain that
x = y = y + xp

0 − x0 + txp
1 + . . . + tp−1xp

p−1 with vy ≥ 0. For vx < 0, we can proceed
by induction on −vx since vK = Z. Suppose that m ∈ N and that we have shown the
assertion to hold for every x of value vx > −m. Take x ∈ K such that vx = −m. There
is ℓ ∈ {0, . . . , p− 1} such that vx ≡ ℓ modulo pZ = pvK. Choose some z ∈ K such that
vx = ℓ + pvz = vtℓzp. Then v(x/tℓzp) = 0, and the residue of x/tℓzp is some element
j ∈ Fp . It follows that v(x/t

ℓ(jz)p − 1) = v(j−1x/tℓzp − 1) > 0. Hence, v(x− tℓ(jz)p) >
vtℓ(jz)p = vx. If ℓ > 0, then we set x′ := x− tℓ(jz)p, so that vx′ > vx. If ℓ = 0, then we
set x′ := x− (jz)p + jz ; since vjz < 0, we have that vx = v(jz)p < vjz and thus again,
vx′ ≥ min{v(x − (jz)p), vjz} > vx. So by induction hypothesis, there are y, x′

0 . . . x
′
p−1

such that vy ≥ 0 and x′ = y+(x′
0)

p−x′
0+t(x′

1)
p+ . . .+tp−1(x′

p−1)
p. We set xℓ = x′

ℓ+z and
xi = x′

i for i 6= ℓ, to obtain by additivity that x = y + xp
0 − x0 + txp

1 + . . .+ tp−1xp
p−1. ✷

This lemma shows that in analogy to (2), every intermediate field (K, v) between
(Fp(t), vt) and (Fp((t)), vt) satisfies:

K = O + ℘(K) + tKp + . . .+ tp−1Kp . (6)

If in addition (K, v) is henselian, then we can improve this representation to

K = Fp + ℘(K) + tKp + . . .+ tp−1Kp . (7)

This is seen as follows. Using Hensel’s Lemma, one proves that the valuation ideal M of
any henselian field (K, v) is contained in ℘(K). On the other hand, Kv = Fp implies that
O = Fp +M. Consequently, Fp + ℘(K) = O + ℘(K).

Theorem 1 is proved by constructing a valued field (L, v) which satisfies axiom system
(1) but not sentence (5):

Theorem 3 Take (K, v) to be (Fp(t), vt)
h or (Fp((t)), vt). Then there exists an extension

(L, v) of (K, v) such that:
a) L|K is a regular extension of transcendence degree 1,
b) 1, t, t2, . . . , tp−1 is a basis of L|Lp,
c) (L, v) is henselian defectless,
d) the value group vL a Z-group,
e) the residue field Lv is again equal to Fp ,
f) sentence (5) does not hold in (L, v).
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We have chosen to construct this extension also over (Fp(t), vt)
h because this leads to a

quite small valued field, having only transcendence degree 2 over its prime field. This
allows us to apply it also to the problem of local uniformization in positive characteristic
(cf. [K3] and [K5]). Note that a field extension L|K is said to be regular if it is linearly
disjoint from the algebraic closure of K, that is, if it is separable and K is relatively
algebraically closed in L.

We will give the construction of (L, v) in Chapter 4; it is taken over from [K1]. The
basic idea is to start with a simple transcendental extension K(x)|K and extend the valu-
ation v such that vx > vK, so that vK(x) is the lexicographically ordered product Z×Z.
Then automatically, K(x)v = Kv = Fp . Passing to the henselization of (K(x), v) doesn’t
change the value group and residue field. By adjoining n-th roots of suitable elements
with value not in vK, we enlarge the value group without changing the residue field.
While adjoining pm-th roots, we build in a “twist” which in the end guarantees that x
cannot be of the form as stated in assertion (5). A major problem in the construction is
how to obtain that the constructed field is defectless. (It is henselian, being an algebraic
extension of the henselization of (K(x), v).) To solve this problem, we use a character-
ization of defectless valued fields of positive characteristic, which we derived in [K1]. It
is based on a classification of proper finite immediate extensions of henselian fields; an
extension of valued fields is called immediate if it leaves value group and residue field
unchanged. Such extensions violate the fundamental equality in the worst possible way,
since n > 1 while e = f = g = 1.

Since (L, v) does not satisfy (5), it cannot be an elementary extension of (Fp((t)), vt).
This contrasts the fact that, according to another theorem proved in [K1], (Fp((t)), vt) is
existentially closed in (L, v).

Having seen that the sentence (5) is independent of the axioms in (1), we now pursue
two main questions. The first of them is:

A) Are there further assertions similar to (5) and independent of (1)? What happens
if we replace the additive polynomials ℘(X), tXp , . . . , tp−1Xp appearing in (5) by other
additive polynomials? Which corrective summands are then needed? Can we find a form
that asserts essentially the same but dispenses with the use of the corrective summands
Y , O, Fp in (5), (6) and (7)?

Before we formulate the second question, let us give some background. In the model
theory of valued fields, the maximal fields play a crucial role. These are valued fields
not admitting any proper immediate extensions. It was shown by Krull [KR] that every
valued field has at least one maximal immediate extension; this must be a maximal field.
(Later, Gravett [G] gave a beautiful short proof replacing Krull’s complicated argument.)
As it is the case for power series fields (which in fact are maximal), also all maximal fields
are henselian defectless.

A valued field (K, v) is called algebraically maximal if it admits no proper im-
mediate algebraic extension. As the henselization is an immediate algebraic extension,
every algebraically maximal field is henselian. On the other hand, every henselian de-
fectless field is algebraically maximal since every finite immediate extension would satisfy
e = f = g = 1. But F. Delon [D] gave an example of an algebraically maximal field which
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is not defectless (this example can also be found in [K2]). Certainly, an algebraically
maximal field is not necessarily maximal.

For the elementary classes of (see [K2] for missing definitions)

• all henselian fields with residue characteristic 0 (cf. [AK], [E], [KP]),
• all henselian formally p-adic fields (cf. [AK], [E]),
• all henselian finitely ramified fields (cf. [E], [Z]),
• all algebraically maximal Kaplansky fields (cf. [E], [Z]),



















(8)

most proofs of their good model theoretical properties work, implicitly or explicitly, with
the following fact:

the maximal immediate extensions of fields with residue characteristic 0, formally p-adic
fields, finitely ramified fields and Kaplansky fields are unique up to isomorphism.

(This actually follows from the fact that for such fields the maximal immediate algebraic
extensions are unique up to isomorphism; cf. [KPR].) But uniqueness of maximal imme-
diate extensions does not hold for arbitrary valued fields. In fact, there exist henselian
fields with value group a Z-group and residue field Fp which admit infinitely many non-
isomorphic maximal immediate extensions.

Because of this special role of maximal fields, it would be important to know whether
all maximal fields satisfy assertions similar to (5). But for an arbitrary maximal field
(M, v), also the p-degree [M : Mp] is arbitrary and thus, the basis 1, t, . . . , tp−1 has to
be replaced adequately. On the other hand, elementary properties like “henselian” and
“defectless” hold simultaneously for all maximal fields (see [K2] for the proofs), and they
can be formulated without referring to the p-degree. So we ask:

B) Do all maximal fields satisfy assertions similar to (5)? Is there a way to formulate
these assertions simultaneously for all maximal fields, not involving the p-degree?

In order to formulate our answer to these questions, we have to introduce some
notation. Take a valued field (K, v) of characteristic p > 0 and additive polynomials
f0, . . . , fn ∈ K[X ]. We define an L-formula

pd(z0, . . . , zn, z
′
0, . . . , z

′
n) :⇔ v

(

n
∑

i=0

zi −
n
∑

i=0

z′i

)

> v
n
∑

i=0

zi ∧ v
n
∑

i=0

z′i = min
i

vz′i

and an L(K)-sentence

PD(f0, . . . , fn) :⇔ ∀X0, . . . , Xn∃Y0, . . . , Yn pd(f0(X0), . . . , fn(Xn), f0(Y0), . . . , fn(Yn)) .

To understand the meaning of PD observe that v
∑n

i=0 zi ≥ mini vzi by the ultrametric
triangle law, but that equality need not hold in general. In this situation, we would
like to replace the zi’s by z′i ’s such that

∑n
i=0 zi =

∑n
i=0 z

′
i and v

∑n
i=0 z

′
i = mini vz

′
i . If

one restricts the choice of the z′i ’s to certain sets (e.g., the images of the fi’s), then this
might not always be possible. Asking for the equality of the sums is quite strong; for
our purposes, a weaker condition will suffice. We replace the equality by the expression
v(
∑n

i=0 zi −
∑n

i=0 z
′
i) > v

∑n
i=0 zi . This means that the new sum “approximates” the old,

in a certain sense. Note that this implies that v
∑n

i=0 zi = v
∑n

i=0 z
′
i .
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At this point, observe that the images fi(K) of K under fi are subgroups of the
additive group of K because the fi’s are additive. Now if we have subgroups G0, . . . , Gn

then we call their sum direct (as valued groups) if v
∑n

i=0 zi = mini vzi for every choice
of zi ∈ Gi . In fact, K = Fp((t)) is the direct sum of the subgroups Kp, tKp, . . . , tp−1Kp

not only in the ordinary sense, but also as valued groups (see Lemma 16 in Section 3).
On the other hand, the sum of the subgroups ℘(K), tKp, . . . , tp−1Kp is not direct since
tiO ⊂ M ⊂ ℘(K) for all i ≥ 1. Therefore, we introduce the notion pseudo direct: we
call the sum of the Gi pseudo direct if for every choice of zi ∈ Gi there are z′i ∈ Gi such
that pd(z0, . . . , zn, z

′
0, . . . , z

′
n) holds.

The following lemma will be proved in the next section:

Lemma 4 Assume that (K, v) is a valued field of characteristic p > 0 with t ∈ K such
that vt is the smallest positive element in the value group vK. Then the sum of the
groups ℘(K), tKp, . . . , tp−1Kp is pseudo direct. That is, PD(℘(X), tXp, . . . , tp−1Xp) holds
in (K, v).

We need one further notion, which will play a key role in our results. A subset S of
a valued field (K, v) will be called an optimal approximation subset in (K, v) if for
every z ∈ K there is some y ∈ S such that v(z − y) = max{v(z − x) | x ∈ S}, i.e., if the
following holds in (K, v):

∀Z ∃Y ∈ S ∀X ∈ S O((Z − Y )/(Z −X)) . (9)

(Recall that with our way of writing valuations, two points x, y are the closer to each other,
the bigger the value v(x−y) is.) Note that (9) is an L(K)-sentence if S is L(K)-definable.

For additive polynomials f0, . . . , fn ∈ K[X ], we define:

OA(f0, . . . , fn) :⇔ the sum of the images of f0, . . . , fn

is an optimal approximation subset.

Since the subgroup f0(K) + . . .+ fn(K) of (K,+) is L(K)-definable, OA(f0, . . . , fn) is in
fact an L(K)-sentence. If K is infinite (which we will always assume here, and which is
automatic if v is non-trivial), then also the fact that a polynomial f is additive can be
stated by an L(K)-sentence:

ADD(f) :⇔ ∀X∀Y f(X + Y ) = f(X) + f(Y ) .

Therefore, also the following is an L(K)-sentence:
(

n
∧

i=0

ADD(fi) ∧ PD(f0, . . . , fn)

)

⇒ OA(f0, . . . , fn) . (10)

It asserts that if the given polynomials f0, . . . , fn are additive and the sum of their images
is pseudo direct, then this sum is an optimal approximation subset.

The constants from K can be removed by quantifying over the coefficients of the
polynomials f0, . . . , fn . By this method, for every n ∈ N we can get an elementary L-
sentence talking about at most n + 1 additive polynomials of degrees at most pn. We
obtain a recursive L-axiom scheme expressing the following elementary property:
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(PDOA) for every n ∈ N and every choice of additive polynomials f0, . . . , fn ,
PD(f0, . . . , fn) ⇒ OA(f0, . . . , fn) .

One of our main results is:

Theorem 5 (PDOA) holds in every maximal field.

We will give a proof in Section 2 below. (For maximal fields of characteristic 0, the
theorem is trivial because then the only additive polynomials are of the form cX .)

Keeping some faith in our original sentence (5), let us observe:

Lemma 6 If (K, v) satisfies axiom system (1) and (PDOA), then (5) holds in (K, v) and
K satisfies (6) and (7).

The proof will be given in the next section. Theorem 5 and Lemma 6 yield:

Corollary 7 If (K, v) is a maximal field which satisfies axiom system (1), then (5) holds
in (K, v) and K satisfies (6) and (7).

Let us take advantage of the fact that (PDOA) is already formalized in L, without
needing the constant t. So far, we have kept secret the fact that we are much more
interested in the L-axiom system

(K, v) is a henselian defectless valued field
K is of characteristic p
vK is a Z-group
Kv = Fp



















(11)

rather than in the L(t)-axiom system (1). We only formulated (1) to show what the
sentence (5) tells us

bout it. But now, we can derive:

Theorem 8 The axiom system (11) is not complete.

Indeed, Theorem 5 shows that the model (Fp((t)), vt) satisfies (PDOA), whereas Lemma 6
shows that the model (L, v) given in Theorem 3 cannot satisfy (PDOA).

Now our main open question is:

Is the axiom system (11) + (PDOA) complete?

If this is the case, then it will also follow that Th(Fp((t)), vt) is decidable. We do not
know an answer to this question. But we know that (PDOA) plays an important role
in the structure theory of valued function fields. In fact, it admits to derive structure
theorems of the same sort as we employed to prove the Ax–Kochen–Ershov principles for
the elementary class of tame fields (cf. [K1], [K2], [K7]). Also, we can show that valued
fields (K, v) satisfying (11) + (PDOA) will satisfy the Ax–Kochen–Ershov principle with
≺∃ for arbitrary extensions (L, v), provided that the extension L|K is of transcendence
degree 1. However, this needs an abundance of valuation theoretical machinery. The
reason is that (PDOA) does not have as nice properties as “henselian” (or “tame”). Let
us present one of the problems. It is a well known fact that a relatively algebraically
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closed subfield of a henselian field is again henselian. (The same holds for “tame” in
the place of “henselian” if the extension is immediate.) But now consider an arbitrary
maximal immediate extension (M, v) of the field (L, v) which is given in Theorem 3. By
Theorem 5, (PDOA) holds in (M, v). But it does not hold in (L, v). On the other hand,
the fact that (L, v) is henselian defectless yields that (L, v) is algebraically maximal.
Therefore, it is relatively algebraically closed in M . Hence:

Theorem 9 There is an immediate extension (L, v) ⊂ (M, v) of henselian defectless fields
such that L is relatively algebraically closed in M and (PDOA) holds in (M, v), but not
in (L, v).

Another important property of “henselian” is: if (K, v) is henselian, then so is each of
its algebraic extensions. Also, “defectless” carries over to every finite extension (but not
to every algebraic extension in general). So the following yet unanswered questions arise:

Does (PDOA) carry over to finite extensions or even to algebraic extensions?
What are the “algebraic properties” of (PDOA)?

In the possible absence of uniqueness of maximal immediate extensions, e.g. for el-
ementary classes containing (Fp((t)), vt), one has to employ new ideas for the proof of
Ax–Kochen–Ershov principles. Our proof for the case of tame fields profits from the fact
that every extension of tame fields of finite transcendence degree can be split into an
“anti-immediate” extension plus a tower of immediate extensions of tame fields of tran-
scendence degree 1. In [K1] we proved a model theoretical result which takes care of the
anti-immediate extension. For the immediate extensions of transcendence degree 1, we
employ our structure theory for valued function fields. The reduction to transcendence
degree 1 shows that in a certain sense, the model theoretical behaviour of tame fields
(and of the other fields which we cited in (8)) is “one-dimensional”. In contrast to this,
(PDOA) tells us something about the correlation between several polynomials, and this
is a “higher–dimensional information”. Indeed, one can read off from Theorem 9 that for
the case of Fp((t)) a reduction to the case of transcendence degree 1 is much harder or
even impossible (at least if one wants to remain in the given elementary class of valued
fields). In fact, by a modification of our basic construction, we will show in Section 4 that
for every n ∈ N, we can construct (L, v) in such a way that in addition to the assertions
of Theorem 3, the following holds:

If (L′|L, v) is an extension such that L′v = Lv and (PDOA) holds in (L′, v), then
trdegL′|L ≥ n.

If we do not insist in L′|L having finite transcendence degree, then we can even get that
trdegL′|L must be infinite.

For the conclusion of this section, let us think about three possible generalizations of
Theorem 5:

1) It seems not unlikely to prove that already OA(f0, . . . , fn) holds in every maximal
field, for all additive polynomials f0, . . . , fn . A possible way to prove this could be to
show that for every choice of additive polynomials f0, . . . , fn there are additive polynomials
g0, . . . , gm such that PD(g0, . . . , gm) holds and f0(K)+ . . .+fn(K) = g0(K)+ . . .+gm(K).

9



Let us call the group f0(K)+ . . .+fn(K) a polygroup. So the generalization would state
that every polygroup in a maximal field is an optimal approximation subset.

2) A polynomial f(X1, . . . , Xn) ∈ K[X1, . . . , Xn] is called additive if it induces an
additive map on Ln for every extension field L ofK. With fi(Xi) = f(0, . . . , 0, Xi, 0 . . . , 0),
it follows by additivity that f(a1, . . . , an) = f1(a1)+ . . .+ fn(an) for all (a1, . . . , an) ∈ Ln.
Since the polynomials fi are additive in one variable, we find that the polygroups in K
are precisely the images of the additive polynomials in several variables on K. Hence,
the generalization indicated in 1) would actually state that the image of every additive
polynomial in several variables on a maximal field is an optimal approximation subset.

3) Perhaps, the image of every polynomial in several variables on a maximal field is an
optimal approximation subset. This would be an amazing generalization of Theorem 5
and of Lemma 12 of the next section. Our hope is that one could derive such a result
from generalization 2) by approximating arbitrary polynomials by suitably chosen additive
polynomials. For polynomials in one variable, something like this can be done by building
on Kaplansky’s work [KA].

2 Spherical completeness and optimal approximation

In the following, we will give the proof of Theorem 5. We need some further definitions.
They can be given already in the context of ultrametric spaces, but here we will give
them for subsets S of valued fields (K, v). A closed ball in S is a set of the form
Bγ(a, S) = {x ∈ S | v(a−x) ≥ γ} for a ∈ S and γ ∈ v(S−S) := {v(s−s′) | s, s′ ∈ S}. A
nest of (closed) balls B is a nonempty collection of closed balls such that each two balls
in B have a nonempty intersection. By the ultrametric triangle law it follows that the
balls in B are linearly ordered by inclusion. Now (S, v) is called spherically complete
if every nest of balls B in S has a nonempty intersection:

⋂

B∈B B 6= ∅. It is easy to
prove that (S, v) is spherically complete if and only if every pseudo–convergent sequence
in (S, v) has a limit in S (see [KA] or [K2] for these notions). Therefore, the following
characterization of maximal fields is a direct consequence of Theorem 4 of [KA]:

Theorem 10 A valued field (K, v) is maximal if and only if it is spherically complete.

On the other hand, we have:

Lemma 11 Take any subset S of the additive group of a valued field (K, v). If (S, v) is
spherically complete, then S is an optimal approximation subset in (K, v).

Proof: Assume that S is not an optimal approximation subset in (K, v). Then there
is an element z ∈ K such that for every y ∈ S there is some x ∈ S satisfying that
v(z − x) > v(z − y). Note that by the ultrametric triangle law, the latter implies that
v(z − y) = v(x − y) ∈ v(S − S). From this and the fact that S ∩ Bv(z−y)(z,K) =
Bv(z−y)(y, S), it follows that

{Bv(z−y)(y, S) | y ∈ S }

is a nest of balls in (S, v). Take any a ∈ S and choose b ∈ S such that v(z− b) > v(z−a).
Then a /∈ Bv(z−b)(z,K). Hence the nest has an empty intersection, showing that (S, v) is
not spherically complete. ✷
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Now a natural question is: if (K, v) is spherically complete and f is an additive
polynomial, does it follow that (f(K), v) is spherically complete? In fact, this is true for
every polynomial (the proof of the next two lemmas will be given in Section 5):

Lemma 12 If (K, v) is spherically complete, then for every f ∈ K[X ], (f(K), v) is
spherically complete and therefore, f(K) is an optimal approximation subset of (K, v).

Using Kaplansky’s results together with the methods developped in Section 5), we can
prove even more:

Lemma 13 If (K, v) is algebraically maximal, then for every f ∈ K[X ], f(K) is an
optimal approximation subset of (K, v).

Now this exhibits an intriguing fact: if we have additive polynomials f0, . . . , fn on K
and (K, v) is henselian defectless, then the fi(K) are optimal approximation subgroups,
but their sum is not necessarily an optimal approximation subgroup, even if it is pseudo
direct. By virtue of Lemma 15 below, the field (L, v) of Theorem 3 with the additive
polynomials ℘(X), tXp, . . . , tp−1Xp is an example for this. The situation changes when
the subgroups are spherically complete:

Theorem 14 Let G0, . . . , Gn be spherically complete subgroups of an arbitrary valued
abelian group (G, v). If their sum is pseudo direct, then it is spherically complete and
hence an optimal approximation subset of (G, v).

The proof is given in [K4], using a theorem about maps on spherically complete ultrametric
spaces. (It seems unlikely that the theorem works without any condition on the sum of
the Gi’s. But we do not know of any counterexample.)

Now Theorem 5 follows from Theorem 10, Lemma 12 and Theorem 14. We note
that all this works as well for arbitrary definable additive maps in the place of additive
polynomials. However, we do not know of any such maps which would provide subgroups
essentially different from polygroups. More generally, we ask:

Do there exist definable subgroups in valued fields of positive characteristic
which are essentially different from polygroups? Are they optimal approxi-
mation subgroups? Do they carry other (independent) valuation theoretical
properties? Are there polygroups which are not representable as pseudo direct
sums but are optimal approximation subgroups?

Let us note that it makes no essential difference to add the “trivial” subgroups like O,
M or other balls around 0. Optimal approximation assertions about groups obtained in
such a way from polygroups are consequences of (PDOA).

3 Valuation independence and pseudo direct sums

Take any valued field extension (K|K ′, v). The elements c0, . . . , cm ∈ K \ {0} will be
called K ′-valuation independent if for every choice of elements d0, . . . , dm ∈ K ′, the
following holds:

v(c0d0 + . . .+ cmdm) = min
0≤i≤m

vcidi .
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In particular, if dk 6= 0 for at least one k, then ckdk 6= 0 and thus, v(c0d0 + . . .+ cmdm) ≤
vckdk < ∞ which shows that c0d0 + . . .+ cmdm 6= 0. Hence if c0, . . . , cm are K ′-valuation
independent, then they are K ′-linearly independent.

Lemma 15 Take a valued field (K, v) of characteristic p > 0 with Kp-valuation inde-
pendent elements c0, . . . , cm , where c0 = 1. Then PD(℘(X), c1X

p, . . . , cmX
p) holds in

(K, v).

Proof: We set f0(X) = ℘(X) and fi(X) = ciX
p for 1 ≤ i ≤ m. For x0, . . . , xm ∈ K,

f0(x0) + . . .+ fm(xm) = −x0 + c0x
p
0 + . . .+ cmx

p
m .

If vx0 > v(c0x
p
0 + . . .+ cmx

p
m), then

v(f0(x0) + . . .+ fm(xm)) = min{vx0, v(c0x
p
0 + . . .+ cmx

p
m)}

= v(c0x
p
0 + . . .+ cmx

p
m) = min

0≤i≤m
vcix

p
i = min

0≤i≤m
vfi(xi) ,

where the last equality holds since vx0 > vc0x
p
0 implies that vc0x

p
0 = vf0(x0).

Now assume that v
∑m

i=0 fi(xi) > mini vfi(xi). Then by what we just have shown,

vx0 ≤ v(c0x
p
0 + . . .+ cmx

p
m) = min

0≤i≤m
vcix

p
i ≤ vc0x

p
0 = pvx0 .

But vx0 ≤ pvx0 can only hold if vx0 ≥ 0, in which case also vf0(x0) ≥ 0. We also find
that 0 ≤ vx0 ≤ mini vcix

p
i ≤ vcjx

p
j = vfj(xj) for all j ≥ 1. Hence, mini vfi(xi) ≥ 0. Now

it follows from our assumption that v
∑m

i=0 fi(xi) > 0. We set y0 = −
∑m

i=0 fi(xi). Observe
that vy0 > 0 implies that vyp0 > vy0. Hence,

v

(

m
∑

i=0

fi(xi) − ℘(y0)

)

= vyp0 > vy0 = v
m
∑

i=0

fi(xi) .

Taking yi = 0 for i ≥ 1, we obtain that

pd(f0(x0), . . . , fm(xm), f0(y0), . . . , fm(ym))

holds. ✷

If in the situation of this lemma, (K, v) is henselian, then we can even get that
∑m

i=0 fi(yi) =
∑m

i=0 fi(xi). Indeed, using that M ⊂ ℘(K), in the second part of the
proof we just have to choose y0 ∈ K such that ℘(y0) =

∑m
i=0 fi(xi).

Lemma 16 Assume that (K, v) is a valued field of characteristic p > 0 with t ∈ K
such that vt is the smallest positive element in the value group vK. Then the elements
1, t, t2, . . . , tp−1 are Kp-valuation independent.
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Proof: For every choice of elements d0, . . . , dp−1 we have that vtidpi ∈ ivt + pvK. As
vt is the smallest positive element of vK by assumption, the cosets pvK, vt+ pvK, 2vt+
pvK, . . . , (p− 1)vt + pvK are all distinct. This shows that vtidpi 6= vtjdpj for 0 ≤ i < j ≤
p− 1. Hence, v(d0 + td1 + . . .+ tp−1dp−1) = min0≤i≤p−1 vt

idi . ✷

Now Lemma 4 follows from Lemmas 15 and 16.

A valued field (K, v) is called inseparably defectless if the fundamental equality
holds for every finite purely inseparable extension. We will need the following charac-
terization of inseparably defectless fields, which was proved by F. Delon [D] (see also
[K2]):

Lemma 17 Take a valued field (K, v) of characteristic p > 0 such that (vK : pvK) < ∞
and [Kv : (Kv)p] < ∞. Then (K, v) is inseparably defectless if and only if

[K : Kp] = (vK : pvK)[Kv : (Kv)p] . (12)

From this lemma we obtain:

Lemma 18 Assume that (K, v) is an inseparably defectless valued field of characteristic
p > 0 with t ∈ K such that vt is the smallest positive element in the value group vK.
Assume further that vK is a Z-group and that Kv is perfect. Then 1, t, t2, . . . , tp−1 is a
basis of K|Kp.

Proof: By Lemma 16 and our remark in the beginning of this section we know that
1, t, t2, . . . , tp−1 are Kp-linearly independent. By the foregoing lemma, (12) holds. Since
vK is a Z-group, we have that (vK : pvK) = p. Since Kv is perfect, we have that
[Kv : (Kv)p] = 1. Thus, [K : Kp] = p, which shows that 1, t, t2, . . . , tp−1 is a basis of
K|Kp. ✷

Lemma 19 Let the assumptions be as in Lemma 18. Take z ∈ K and assume that the
set

{v(z − y) | y ∈ ℘(K) + tKp + . . .+ tp−1Kp} (13)

admits a maximum. Then this maximum is either 0 or ∞ (the latter meaning that z lies
in ℘(K) + tKp + . . .+ tp−1Kp).

Proof: Assume that y0 ∈ K is such that v(z − y0) is the maximum of (13). After
replacing z by z − y0 we can assume that y0 = 0.

Suppose that vz > 0. Then vz = ∞ since otherwise, we could set

y := −zp + z = (−z)p − (−z) + t · 0 + . . .+ tp−1 · 0 ∈ ℘(K) + tKp + . . .+ tp−1Kp

to obtain that v(z − y) = vzp > vz, a contradiction.
Now suppose that vz < 0. We have to deduce a contradiction from this assumption.

By Lemma 18, we can write

z = bp0 + tbp1 + . . .+ tp−1bpp−1 with b0, . . . , bp−1 ∈ K .
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By Lemma 16 we have that

min
0≤i≤p−1

vtibpi = v(bp0 + tbp1 + . . .+ tp−1bpp−1) = vz < 0 .

Hence if vb0 < 0, then

vb0 > pvb0 = vbp0 ≥ min
0≤i≤p−1

vtibpi = vz .

On the other hand, if vb0 ≥ 0, then vb0 > vz, too. Hence in every case,

v(z − (℘(b0) + tbp1 + . . .+ tp−1bpp−1)) = vb0 > vz ,

a contradiction to the maximality of vz. ✷

Proof of Lemma 6: Assume that (K, v) satisfies axiom system (1) and (PDOA). By
Lemma 15 in connection with Lemma 18, PD(℘(X), tXp, . . . , tp−1Xp) holds in (K, v).
Thus, (PDOA) yields that OA(℘(X), tXp, . . . , tp−1Xp) holds in (K, v). Take z ∈ K
and suppose that z /∈ ℘(K) + tKp + . . . + tp−1Kp. Then by Lemma 19, there is some
y ∈ ℘(K) + tKp + . . . + tp−1Kp such that v(z − y) = 0. Since Kv = Fp , there is some
j ∈ Fp such that v(z − y − j) > 0. Again by Lemma 19, we obtain that z − y − j ∈
℘(K) + tKp + . . .+ tp−1Kp. This proves that K satisfies (7). Hence, it also satisfies (6),
and (5) holds in (K, v). ✷

4 An example and its consequences

We need some preparations. The rank of (K, v) is the number of proper convex subgroups
of the value group vK (if finite); (K, v) has rank 1 if and only if vK is archimedean,
i.e., embeddable in the additive group of the reals. If (K, v) has rank n, then v is the
composition of n valuations of rank 1.

Here is a well-known fact about pseudo–convergent sequences. Unfortunately, it is not
explicitly stated in [KA].

Lemma 20 Assume that (aν)ν<λ is a pseudo–convergent sequence in a valued field (L, v)
(where λ is a limit ordinal). If b is not a limit of this sequence, then there is some ν0 < λ
such that for all ν ≥ ν0 , ν < λ,

v(b− aν) < v(aν0+1 − aν0) .

Proof: By definition, b is not a limit of (aν)ν<λ if and only if v(b− aµ) 6= v(aµ+1 − aµ)
for some µ < λ. We set ν0 := µ+2. Take any ν ≥ ν0 such that ν < λ. Then by Lemma 2
of [KA] and by the definition of pseudo–convergent sequences,

v(aν − aµ+1) = v(aµ+2 − aµ+1) > v(aµ+1 − aµ) .

So we obtain that

v(b− aν) = min{v(b− aµ), v(aµ − aµ+1), v(aµ+1 − aν)}

= min{v(b− aµ), v(aµ − aµ+1)} ≤ v(aµ − aµ+1)

< v(aµ+2 − aµ+1) = v(aν0+1 − aν0) ,
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where the first equality holds since the values v(b − aµ), v(aµ − aµ+1) and v(aµ+1 − aν)
are distinct. ✷

We will need the following characterization of henselian defectless fields; for a proof,
see [K2].

Theorem 21 Let (K, v) be an inseparably defectless field of characteristic p > 0. If in
addition (K, v) is algebraically maximal, then (K, v) is henselian defectless.

Now we are ready for the construction of a basic example, which we will then use
to prove Theorem 3. Let K be a field of characteristic p > 0. Further, assume that
m := [K : Kp] is finite, and choose a basis c0, . . . , cm of K|Kp with c0 = 1. We work in
the power series fieldK((sQ)) with its canonical (s-adic) valuation vs . As this is henselian,
it contains the henselization of the subfield K(s1/n | n ∈ N , (p, n) = 1) with respect to
(the restriction of) vs . We will denote this henselization by L1 . We have that

vsL1 =
∑

n∈N , (p,n)=1

1

n
Z . (14)

In particular, 1/q ∈ vsL1 and s1/q ∈ L1 for every prime number q 6= p.

We take an ascending sequence of prime numbers qj , j ∈ N, such that

pj+1 < qj for all j ∈ N . (15)

In particular, p < qj and thus s1/qj ∈ L1 for all j ∈ N. Now assume that ζ is a limit of
the pseudo–convergent sequence





k
∑

j=1

s−1/qj





k∈N

(16)

in some extension of (L1, vs). Using the method employed in Example 16.1 of [K5] one
shows by use of Hensel’s Lemma that

vsK(s, ζ) =
∑

j∈N

1

qj
Z .

Condition (15) yields that the sequence (qj) contains infinitely many primes; consequently,
(vsK(s, ζ) : vsK(s)) = (vsK(s, ζ) : Z) is not finite. By virtue of the fundamental inequal-
ity, this shows that ζ must be transcendental over K(s) and thus also over its algebraic
extension L1 . By virtue of Theorem 3 of [KA], this proves that the pseudo–convergent
sequence (

∑k
j=1 s

−1/qj )k∈N in (L1, vs) cannot be of algebraic type; hence it must be of
transcendental type.

We will now construct a purely inseparable algebraic extension L2 of L1 such that
c0, . . . , cm is again a basis of L2|L

p
2. We define recursively

ξ1 = s−1/p and ξj+1 = (ξj − c1s
−p/qj)1/p . (17)
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Since vs is trivial on K, we have that vsc1 = 0. Using this and (15), one shows by
induction on j that

vsξj = −
1

pj
< −

p

qj
= vs(c1s

−p/qj) < 0 for all j ∈ N . (18)

We put
L2 := L1(ξj | j ∈ N) .

To prove that c0, . . . , cm is a p-basis of L2, take a ∈ L2. Then a ∈ L1(ξ1, . . . , ξk) = L1(ξk)
for a suitable k ∈ N. Now one deduces by induction that cµξ

ν
k , 0 ≤ µ ≤ m, 0 ≤ ν < p, is

a p-basis for L1(ξk) and that

ξk = ξpk+1 + c1s
−p/qj ∈ L1(ξk+1)

p + c1L1(ξk+1)
p ⊂ K.Lp

2 .

This shows that

a ∈
∑

µ,ν

cµξ
ν
kL1(ξk)

p ⊂ K.Lp
2 = c0L

p
2 + c1L

p
2 + . . .+ cmL

p
2 .

Hence, 1, c1, . . . , cm is a p-basis of L2 .

Since the extension L2|L1 is purely inseparable, there is a unique extension w of vs
to L2 . (Note that we are now working outside of K((sQ)) ). For each j we have that
1
pj

= wξj ∈ wL1(ξj) and thus, (wL1(ξj) : vsL1) ≥ pj = [L1(ξj) : L1]. By the fundamental

inequality, [L1(ξj) : L1] ≥ (wL1(ξj) : vsL1). Hence, [L1(ξj) : L1] = (wL1(ξj) : vsL1), and

wL1(ξj) = vsL1 +
1

pj
Z . (19)

Again by the fundamental inequality it follows that L1(ξj)w = L1vs = K and therefore,

L2w =
⋃

j∈N

L1(ξj)w = K .

By (19) and (14),

wL2 =
⋃

j∈N

wL1(ξj) =
⋃

j∈N

(

vsL1 +
1

pj
Z

)

= Q . (20)

Now we choose (L,w) to be a maximal immediate algebraic extension of (L2, w) (which
exists by Zorn’s Lemma since its cardinality is bounded by that of the algebraic closure
of L2). Then

[L : Lp] ≤ [L2 : L
p
2] = m+ 1 = [K : Kp] = [L2w : (L2w)

p]

= [L2w : (L2w)
p] · (Q : pQ) = [L2w : (L2w)

p] · (wL2 : pwL2)

= [Lw : (Lw)p] · (wL : pwL) ≤ [L : Lp] .

Hence, equality holds everywhere. By Lemma 17, the last equality implies that (L,w) is
inseparably defectless. Since (L,w) is a maximal immediate algebraic extension and thus
algebraically maximal, Theorem 21 shows that (L,w) is a henselian defectless field.
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We set
x := s−1 .

Assume that there is an extension (L′|L, v) such that L′v = Lv, and that there exist
elements x0, x1, . . . , xm, y ∈ L′ such that

x = y + xp
0 − x0 + c1x

p
1 + . . .+ cmx

p
m with wy ≥ 0 . (21)

We wish to show that then x1 must be a limit of the pseudo–convergent sequence (16),
which yields that x1 is transcendental over L. This in turn shows that (21) cannot hold
in L.

Suppose that x1 is not a limit of (16). Then by Lemma 20, there exists some k0 ∈ N

such that for all k ≥ k0 ,

w



x1 −
k
∑

j=1

s−1/qj



 < vs−1/qk0+1 = −
1

qk0+1
. (22)

We can choose k as large as to also guarantee that pk > qk0+1 , that is,

−
1

qk0+1
< −

1

pk
= wξk . (23)

We set

x̃0 := x0 −
k
∑

j=1

ξj and x̃1 := x1 −
k−1
∑

j=1

s−1/qj . (24)

According to (22) and (23), we have that

pwx̃1 < wx̃1 < wξk < 0 . (25)

Now we compute

x̃0
p − x̃0 = xp

0 − x0 + (−
k
∑

j=1

ξj)
p +

k
∑

j=1

ξj

= xp
0 − x0 − ξp1 −

k−1
∑

j=1

(ξpj+1 − ξj) + ξk

= xp
0 − x0 − x+

k−1
∑

j=1

c1s
−p/qj + ξk

= ξk − y − (c1x̃
p
1 + c2x

p
2 + . . .+ cmx

p
m) .

Since wξk+1 < 0 and wy ≥ 0, and by virtue of (25), we have that

0 > w(ξk − y) = wξk > pwx̃1 = wx̃p
1 ≥ min{wx̃p

1, wx
p
2, . . . , wx

p
m} =: α .

We set x̃i := xi for 2 ≤ i ≤ m and take i1, . . . , iℓ ∈ {1, . . . , m} to be all indices i for
which wx̃p

i = α. Then w(x̃p
iν/x̃

p
i1) = 0 and w((ξk+1 − y)/x̃p

i1) > 0. Therefore, and since
the elements 1, c1, . . . , cm ∈ K are linearly independent over Kp = (Lw)p = (L′w)p,

x̃0
p − x̃0

x̃p
i1

w =

(

ci1
x̃p
i1

x̃p
i1

+ . . .+ ciℓ
x̃p
iℓ

x̃p
i1

)

w = ci1+ci2

(

x̃i2

x̃i1

w

)p

+ . . .+ciℓ

(

x̃iℓ

x̃i1

w

)p

/∈ (L′w)p .
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In particular, the residue is nonzero, which implies that

w(x̃0
p − x̃0) = x̃p

i1 = α < 0 .

This yields that wx̃0 < 0. Consequently, wx̃0 > wx̃0
p and thus,

(

x̃0

x̃i1

w

)p

=
x̃0

p

x̃p
i1

w =
x̃0

p − x̃0

x̃p
i1

w /∈ (L′w)p .

This contradiction proves that x1 must be a limit of (16).

Now we take K to be any field of characteristic p containing an element t such that
(2) holds (for example, we may take K = Fp(t), K = Fp(t)

h or K = Fp((t)).) Then we
can set m = p− 1 and ci = ti for 0 ≤ i ≤ m. We obtain that the existential sentence

∃Y ∃X0 . . .∃Xp−1 x = Y +Xp
0 −X0 + tXp

1 + . . .+ tp−1Xp
p−1 ∧ O(Y ) (26)

does not hold in (L,w). So we have proved:

Theorem 22 Let K be any field of characteristic p > 0 containing an element t such
that K = Kp ⊕ tKp ⊕ . . .⊕ tp−1Kp. Then there exists a henselian defectless field (L,w),
not satisfying property (5), of transcendence degree 1 over its embedded residue field K,
having value group wL = Q, and such that

L = K.Lp = Lp ⊕ tLp ⊕ . . .⊕ tp−1Lp .

Now we can give the

Proof of Theorem 3: We take K to be the field Fp(t)
h or Fp((t)), with vt the t-adic

valuation on K. We denote by v the composition w◦vt of w with vt on L; this can actually
be viewed as an extension of vt to L. We note that v is finer than w, that is, Ov ⊂ Ow .
This means that vy ≥ 0 implies wy ≥ 0; therefore, since (5) doesn’t hold for (L,w), it
doesn’t hold for (L, v).

We have mentioned already that both (Fp(t)
h, vt) and (Fp((t)), vt) are defectless fields.

On the other hand, we know from our construction that (L,w) is a henselian defectless
field. Since the composition of henselian defectless valuations is again henselian defectless
(cf. [K2]), it follows that for both choices of K, (L, v) is a henselian defectless field. Since
wL = Q and vt(Lw) = vtK = Z, we have that vt = vtt is the smallest positive element of
vL, Zvt is a convex subgroup of vL, and vL/Zvt ≃ Q. Hence, vL is a Z-group. Further,
Lv = (Lw)vt = Kvt = Fp. By construction, 1, t, t2, . . . , tp−1 is a basis of L|Lp.

Finally, it remains to show that L|K is regular. Take any finite extension K ′|K and
an extension of vt from L to K ′.L. Since (K, vt) is henselian, the restriction of v from
K ′.L to K ′ is the unique extension of vt from K to K ′. We set e := (vK ′ : vK) and f
:= [K ′v : Kvt]. Since (K, vt) is defectless, we have that [K ′ : K] = ef. As vtK = Zvtt,
there is some t′ ∈ K ′ such that evt′ = vt; therefore, t′ ∈ K ′.L yields that (vK ′.L : vL) ≥
e. Since Kvt = Fp = Lv, we also find that [(K ′.L)v : Lv] = [(K ′.L)v : Fp] ≥ [K ′v : Fp] =
f. Thus,

[K ′ : K] = ef ≤ (vK ′.L : vL)[(K ′.L)v : Lv] ≤ [K ′.L : L] ≤ [K ′ : K] .

Therefore, equality must hold everywhere, showing that L|K is linearly disjoint from
K ′|K. Since K ′|K was an arbitrary finite extension, this proves that L|K is regular. ✷
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Remark 23 These examples also show that a field which is relatively algebraically closed
in a henselian defectless field that satisfies (5) does itself not necessarily satisfy (5), even if
the extension is immediate. Indeed, every maximal immediate extension of our examples
(L, v) or (L,w) is a maximal field and thus satisfies (5) according to Theorem 7, and L is
relatively algebraically closed in every such extension since (L, v) and (L,w) are henselian
defectless and thus algebraically maximal.

With the examples that we have constructed, we can even show a sharper result.
Beforehand, we need two auxiliary lemmas. Note that it is easy to show that a pseudo–
convergent sequence of transcendental type in (k, v) will never have a limit in k.

Lemma 24 Take any henselian field (k, v) and an immediate extension (k(x)|k, v) such
that x is the limit of a pseudo–convergent sequence of transcendental type in (k, v). Then
(k, v) is existentially closed in the henselization (k(x), v)h of (k(x), v).

Proof: Let x be the limit of the pseudo–convergent sequence (xν)ν<λ of transcendental
type in (k, v). We take (k∗, v∗) to be a |k|+-saturated elementary extension of (k, v).
Every finite subset of the set {O((X−aν)/(aν+1−aν)) | ν < λ} of atomic L(k)-sentences
is satisfied by aµ if µ is bigger than all ν appearing in that subset. Thus, there is an
element x∗ ∈ k∗ which simultaneously satisfies all sentences in this set. Then x∗ is a limit
of (xν)ν<λ (we leave the easy proof to the reader). By Theorem 2 of [KA], x 7→ x∗ induces
a valuation preserving isomorphism of k(x) onto k(x∗). Since (k∗, v∗) is an elementary
extension of (k, v) and “henselian” is an elementary property, also (k∗, v∗) is henselian.
Hence by the universal property of henselizations (cf. [R] or [K2]), this isomorphism can
be extended to an embedding of (k(x), v)h in (k∗, v∗). Now every existential L(k)-sentence
holding in (k(x), v)h carries over to (k∗, v∗) through the embedding. Since (k, v) ≺ (k∗, v∗),
it will therefore also hold in (k, v). ✷

Lemma 25 Take a henselian field (k, v), a polynomial f ∈ k[X ] of degree p = char kv,
and a root a of f . Suppose that (aν)ν<λ is a pseudo–convergent sequence which does not
fix the value of f and has no limit in (k, v). Then there is an immediate extension of v
from k to k(a) such that a is a limit of (aν)ν<λ in (k(a), v).

Proof: We pick a polynomial g ∈ k[X ] of minimal degree with the property that
(aν)ν<λ does not fix the value of g. Take a root b of g. Then by Theorem 3 of [KA] there
is an immediate extension of v from k to k(b). Since (k, v) is assumed to be henselian,
we have e = f = g = 1. By the Lemma of Ostrowski (cf. [R] or [K2]), it follows that
deg g = [k(b) : k] = [k(b) : k]/efg is a power of p. This proves that f is of minimal degree
with the property that (aν)ν<λ does not fix the value of f . Hence, our assertion follows
by a second application of Theorem 3 of [KA]. ✷

Theorem 26 Let L be the field given by our construction. Then there exists a regular
function field F of transcendence degree 1 and generated by two elements over L such that
L is not existentially closed in F (in the language of rings), but w and v have immediate
extensions from L to F .
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Proof: We will show that the existential sentence

∃Y ∃X0 . . .∃Xp−1 x = Xp
0 −X0 + tXp

1 + . . .+ tp−1Xp
p−1 (27)

holds already in L(x0, x1), where

(L(x0, x1)|L,w)

is a regular immediate function field with L(x0, x1)|L(x1) an Artin-Schreier extension.
As L(x0, x1)w = Lw = K, we can again define v = w ◦ vt on L(x0, x1). Then also
(L(x0, x1)|L, v) is immediate. This will imply the assertion of our lemma.

We take x1 to be a transcendental element over L. Using Theorem 2 of [KA], we extend
w to L(x1) in such a way that x1 becomes a limit of the pseudo–convergent sequence (16)
and (L(x1)|L,w) is an immediate extension. Then we define a pseudo–convergent sequence
(ak)k∈N by setting

ak :=
k
∑

j=1

ξj . (28)

Now we compute for all k ∈ N, using (17) and (18):

w(apk − ak − (x− txp
1)) =

= w



(
k
∑

j=1

ξj)
p −

k
∑

j=1

ξj − (x− txp
1)



 = w



ξp1 +
k−1
∑

j=1

(ξpj+1 − ξj)− ξk − (x− txp
1)





= w



x− t
k−1
∑

j=1

s−p/qj − ξk − (x− txp
1)



 = w



t(x1 −
k−1
∑

j=1

s−1/qj )p − ξk





= min



wt(x1 −
k−1
∑

j=1

s−1/qj)p, wξk



 = min
(

wts−p/qk , wξk
)

= wξk = −
1

pk

(where the first equality of the last line holds since wts−p/qk 6= wξk). This shows that the
pseudo–convergent sequence (ak)k∈N does not fix the value of the Artin–Schreier polyno-
mial

Xp −X − (x− txp
1) . (29)

Also, we see that a limit x0 of (ak)k∈N in an arbitrary extension of (L, v) will satisfy

w(xp
0 − x0 − (x− txp

1)) > −
1

pk
for all k ∈ N ,

whence
w(xp

0 − x0 − (x− txp
1)) ≥ 0 .

This means that the existential sentence (26) holds in (L(x0, x1), w). From Lemma 24
we know that (L,w) is existentially closed in the henselization (L(x1), w)

h the immediate
rational function field (L(x1), w). So if x0 were an element of this henselization, (26)
would also hold in (L,w), contrary to what we have already proved. This contradiction
shows that the pseudo–convergent sequence (ak)k∈N has no limit in (L(x1), w)

h. Hence by
virtue of Lemma 25, if x0 is any root of the polynomial (29), then there is an immediate
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extension of the valuation w from L(x1)
h to L(x1)

h(x0). Its restriction is an immediate
extension of w from L(x1) to the Artin-Schreier

xtension L(x0, x1). Now (27) is satisfied in L(x0, x1), as desired.
Using that (F |L, v) is immediate, the regularity of F |L can be shown in a similar way

as the regularity of L|K was shown in the proof of Theorem 3. This completes the proof
of our lemma. ✷

By taking maximal immediate extensions of (F,w) and of (F, v), we obtain:

Corollary 27 There are maximal immediate extensions of (L,w) and of (L, v) in which
L is not existentially closed (already in the language of rings).

Let us draw a further conclusion which is important for an application to the question
of local uniformization (cf. [K3], [K5], [K8]). A valued function field (F |L, v) of transcen-
dence degree 1 is called henselian rational if there is some x ∈ F h such that F h = L(x)h.
In [K1] we have proved that every immediate function field (F |L, v) of transcendence de-
gree 1 over a tame field (L, v) is henselian rational (see also [K2] and [K7]). In contrast
to this result, we have:

Corollary 28 The immediate function fields (F |L,w) and (F |L, v) of the foregoing the-
orem are not henselian rational.

Proof: Suppose that (F |L, v) is henselian rational: F h = L(x)h with x ∈ F h. Since
(L, v) is henselian defectless, it is algebraically maximal. Hence in view of Theorem 3
of [KA], any pseudo–convergent sequence in (L, v) without a limit in (L, v) must be of
transcendental type. Note that x /∈ L since otherwise, F = L. By Theorem 1 of [KA],
x is the limit of a pseudo–convergent sequence in (L, v) without a limit in (L, v), which
is consequently of transcendental type. Hence by Lemma 24, (L, v) is existentially closed
in (F, v), contradicting the fact that L is not even existentially closed in F . This proves
that (F |L, v) is not henselian rational. The same argument holds with w in the place of
v. ✷

The function field F that we have constructed shows the following symmetry between
a generating Artin-Schreier extension and a generating purely inseparable extension of
degree p. On the one hand, we have the Artin-Schreier extension

L(x0, x1)|L(x1)

given by
xp
0 − x0 = x− txp

1 . (30)

On the other hand we have the purely inseparable extension

L(x0, x1)|L(x0)

given by

xp
1 =

1

t
(−xp

0 + x0 + x) .

21



¿From equation (30) it is immediately clear that the function field L(x0, x1) becomes
rational after a constant field extension by t1/p; namely

F (t1/p) = L(t1/p)(x0 + t1/px1) .

This shows that the base field L, not being existentially closed in the function field F ,
becomes existentially closed in the function field after a finite purely inseparable constant
extension, although this extension is linearly disjoint from F |L.

In our above example there exists also a separable constant extension L′|L of degree
p such that (F.L′)h is henselian rational. To show this, we take a constant d ∈ L and an
element a in the algebraic closure of L satisfying

t = ap − da ,

and we put L′ = L(a). If we choose d with a sufficiently high value, then we will have that
vdaxp

1 > 0. From this we deduce by Hensel’s Lemma that there is an element b ∈ L′(x1)
h

such that bp − b = −daxp
1. If we put z = x0 + ax1 + b ∈ L′(x0, x1)

h, we get that

zp − z = x− txp
1 + apxp

1 − ax1 − daxp
1 = x− ax1 + (ap − da− t)xp

1 = x− ax1 ,

which shows that
x1 ∈ L′(z) .

This in turn yields that b ∈ L′(z)h and consequently,

x0 = z − ax1 − b ∈ L′(z)h .

Altogether, we have proved that

L′(x0, x1)
h = L′(z)h

is henselian rational.

It can be shown that extension (30) could not be immediate if (L, v) resp. (L,w) would
satisfy property (5). This generates some hope that the crucial henselian rationality can
also be proved for immediate function fields over base fields which are not tame but satisfy
(PDOA).

Modifications of our construction.

Modification 1: We take m = p− 1 disjoint progressions (qi,j)j∈N , 1 ≤ i ≤ m, of prime
numbers qi,j such that for every i,

pj+1 < qi,j for all j ∈ N . (31)

Assume that xi are limits of the pseudo–convergent sequences




k
∑

j=1

s−1/qi,j





k∈N

, 1 ≤ i ≤ m . (32)
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Then again by use of Hensel’s Lemma, one shows that

vsK(s, x1, . . . , xk) =
k
∑

i=1

∑

j∈N

1

qi,j
Z

for every k ≤ m. Since the progressions are infinite and disjoint, the groups

vsK(s, x1, . . . , xk)/vsK(s, x1, . . . , xk−1)

are not finitely generated. This proves that xk is transcendental over K(s, x1, . . . , xk−1).
Hence, x1, . . . , xm are algebraically independent over K(s). Since L1|K(s) is algebraic,
they are also algebraically independent over L1 .

We replace (17) by

ξ1 = s−1/p and ξj+1 = (ξj −
m
∑

i=1

cis
−p/qi,j)1/p (33)

and (24) by

x̃0 := x0 −
k
∑

j=1

ξj and x̃i := xi −
k−1
∑

j=1

s−1/qi,j for 1 ≤ i ≤ m . (34)

A straightforward adaptation of our arguments then shows that if (L′|L, v) is an extension
such that L′v = Lv and x0, x1, . . . , xm, y ∈ L′ satisfy (21), then x1, . . . , xm are algebraically
independent over L. Hence if (L, v) is constructed with these modifications, then we obtain
in addition to the assertions of Theorem 3: If (L′|L, v) is an extension such that L′v = Lv
and (PDOA) holds in (L′, v), then trdegL′|L ≥ p− 1.

Modification 2: Instead of (5) we consider

∀X∃Y ∃X0 . . .∃Xpn−1 X = Y +Xpn

0 −X0 + tXpn

1 + . . .+ tp−1Xpn

pn−1 ∧ O(Y ) . (35)

We replace m = p − 1 by m = pn − 1 and choose our prime numbers qi,j such that for
1 ≤ i ≤ pn − 1,

pj+n < qi,j for all j ∈ N . (36)

We replace (17) by

ξ1 = s−1/pn and ξj+1 = (ξj −
m
∑

i=1

cis
−pn/qi,j)1/p

n

. (37)

We note that by a straightforward adaptation of the proof of Lemma 4 one shows that
under the assumptions of that lemma, PD(℘(X), tXp, . . . , tp−1Xp) holds. We leave the
further details to the reader. If (L, v) is constructed with these modifications, then we
obtain in addition to the assertions of Theorem 3: If (L′|L, v) is an extension such that
L′v = Lv and (PDOA) holds in (L′, v), then trdegL′|L ≥ pn − 1.

Modification 3: We work in K((sR)) instead of K((sR)). We take any set of Q-linearly
independent positive real numbers rℓ , ℓ ∈ I and set sℓ := srℓ . Now we do our original
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construction simultaneously for every sℓ . That is, we extend (K(sℓ | ℓ ∈ I), vs) to a
henselian defectless field (L,w) with value group wL =

∑

ℓ∈I Qrℓ . With this modification,
we obtain: If (L′|L, v) is an extension such that L′v = Lv and (PDOA) holds in (L, v),
then trdegL′|L ≥ (p−1) · |I|. Hence if I is infinite, then the transcendence degree will be
infinite. However, the modified extension L|K will also be of transcendence degree |I|; in
particular, L will not be a field of finite transcendence degree over its prime field. So we
ask:

Can (L, v) be constructed in such a way that all assertions of Theorem 3 hold
and that trdegL′|L is infinite for every extension (L′|L, v) for which L′v = Lv
and (PDOA) holds in (L′, v)?

5 Appendix: Images of polynomials in valued fields

By a generalized ball in a valued field (K, v) we mean a union over any nest of balls.
Note that B is a generalized ball in (K, v) if and only if for all a, b ∈ B we have that
Bv(a−b)(a) ⊂ B.

Generalized balls have the same property as ordinary balls: if the intersection of two
of them is nonempty, then they are comparable by inclusion. Hence we can define a nest
of generalized balls in the same way as a nest of balls. For every nest B of generalized
balls there is a nest B of closed balls such that for every ball B ∈ B there is some ball
B ∈ B with B ⊂ B. This can be found as follows. If B ∈ B is not the smallest ball in
B, then there is some a ∈ B which is not contained in any of the smaller balls. We pick
some smaller ball B0 ∈ B and an element a0 ∈ B0 . Then the closed ball B := Bv(a−a0)(a)
is contained in B and contains all smaller balls of B. If B ∈ B is the smallest ball in
B, then we pick some a ∈ B. If B is a singleton, then B = B∞(a) is already a closed
ball. Otherwise, we pick some b ∈ B different from a and set B := Bv(a−b)(a) ⊂ B. By
construction, the so-obtained set {B | B ∈ B} is a nest of closed balls, and we have that
⋂

B ⊆
⋂

B. Equality holds if B contains no smallest ball. Hence if (K, v) is spherically
complete, then every nest of generalized balls in (K, v) has a nonempty intersection.

Take any valued field (K, v) and let f be any map of K into itself. Assume that

for every nest B′ of closed balls in the image f(K) of f
there is a nest B of generalized balls in K such that:
for every B′ ∈ B′ there is B ∈ B satisfying that f(B) ⊆ B′.











(38)

Then f(a) ∈
⋂

B′∈B′ B′ for every element a ∈
⋂

B∈B B. Hence,

Lemma 29 If (K, v) is spherically complete and f has property (38), then (f(K), v) is
spherically complete.

To see that all polynomials f , viewed as maps on valued fields, have the property (38),
we just have to describe the preimages of closed balls under f . Beforehand, we note the
following. If (L, v) is any extension of (K, v) and B is a generalized ball in (L, v), then
B ∩K is a generalized ball in (K, v), or empty. Hence if C is any collection of generalized
balls in (L, v), then

C ∩K := {B ∩K | B ∈ C such that B ∩K 6= ∅}
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is a collection of generalized balls in (K, v). If B is a nest of generalized balls in (L, v),
then B ∩K is a nest of generalized balls in (K, v), if nonempty.

Lemma 30 Let f ∈ K[X ] be of degree n and B′ a generalized ball in (K, v). Then the
preimage f−1(B′), if nonempty, is the disjoint union of at most n uniquely determined
generalized balls in (K, v). If in addition K is algebraically closed and c is any element
of B′, then each of these balls contains at least one of the roots of the polynomial f − c.

Proof: First, we show our assertion for the case of K algebraically closed. Let B′ be a
generalized ball in (K, v). Let d be the leading coefficient and a1, . . . , an the roots of the
polynomial f − c. Then

v(f(a)− c) = v(f − c)(a) = v

(

d
n
∏

i=1

(a− ai)

)

= vd+
n
∑

i=1

v(a− ai) .

Assume that a ∈ f−1(B′) and pick k ∈ {1, . . . , n} such that v(a− ak) = maxi v(a− ai).
Now if v(b− ak) ≥ v(a− ak) then

v(b− ai) ≥ min{v(b− ak), v(ak − a), v(a− ai)} = v(a− ai)

for all i. It follows that

v(f(b)− c) = vd+
n
∑

i=1

v(b− ai) ≥ vd+
n
∑

i=1

v(a− ai) = v(f(a)− c) ,

which yields that f(b) ∈ B′. That is, b ∈ f−1(B′). Therefore,

Bv(a−ak)(ak) ⊂ f−1(B′) .

We set

Bk :=
⋃

{Bv(a−ak)(ak) | a ∈ f−1(B′) and v(a− ak) = max
i

v(a− ai)} , (39)

which is a generalized ball in (K, v), or empty. We conclude that

f−1(B′) =
⋃

1≤k≤n

Bk .

If Bj ∩ Bk 6= ∅, then one of them contains the other, say, Bj ⊆ Bk . Thus, to obtain a
disjoint union, we can just omit Bj . This proves the first assertion.

The fact that generalized balls with nonempty intersection are comparable by inclusion
can easily be used to show that the generalized balls in a disjoint union are uniquely
determined. Since c ∈ B′ was arbitrarily chosen, this also yields our second assertion.

Now assume that K is not algebraically closed. We choose any extension of v to K̃.
We associate a generalized ball B̃′ to B′ in the following way: we pick some a ∈ B′ and
set

B̃′ :=
⋃

{Bα(a, K̃) | α ∈ vK ∪ {∞} such that Bα(a,K) ⊂ B′} . (40)
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Then B̃′ ∩ K = B′. By what we have proved, f−1(B̃′) is a disjoint union of at most n
generalized balls in (K̃, v). Hence, f−1(B′) = f−1(B̃′)∩K is the disjoint union of at most
n generalized balls in (K, v), or empty. ✷

For the sake of completeness, let us mention that Bj ∩Bk 6= ∅ implies that Bj = Bk .
To see this, assume that Bj ⊆ Bk . Then in particular, aj ∈ Bk . That is, there is
some a ∈ Bk such that v(a − ak) = maxi v(a − ai) and aj ∈ Bv(a−ak)(ak). But then,
v(a − aj) ≤ v(a − ak) by the former and v(a − aj) ≥ v(a − ak) by the latter. Hence,
v(a−aj) = v(a−ak) and the ball Bv(a−ak)(ak) = Bv(a−aj )(aj) is contained in both Bj and
Bk . If a

′ ∈ Bk is such that v(a′ − ak) = maxi v(a
′ − ai) and Bv(a−ak)(ak) ⊆ Bv(a′−ak)(ak),

then aj ∈ Bv(a′−ak)(ak) and the same argument shows that Bv(a′−ak)(ak) ⊆ Bj . It follows
that Bk ⊆ Bj , so Bj = Bk .

In [K2], we show that if B′ is a closed ball in (K, v), then f−1(B′), if nonempty, is the
disjoint union of at most n uniquely determined closed balls in (K, v), provided that K
is algebraically closed (or, more generally, that vK is divisible).

Using the well-known theorem that the inverse limit of an inverse system of nonempty
compact hausdorff spaces is nonempty, one can prove the following:

Lemma 31 Let f be a map on an ultrametric space Y . Suppose that there is a natural
number n such that the preimage under f of every generalized ball is the union of at most
n generalized balls. Then f has property (38).

It follows that every polynomial f on a valued field has property (38). But here, we wish
to deduce this fact in a different way by using a stronger property of polynomial maps.
For any nest B′ in (K, v) we define f−1(B′) to be the collection of all generalized balls
which for some B′ ∈ B′ appear in the disjoint union representation of f−1(B′) given by
Lemma 30.

If (L, v) is any extension of (K, v) and C is a union of at most n nests of generalized
balls in (L, v), then C∩K is a union of at most n nests of generalized balls in (K, v). We
leave it as a simple exercise to the reader to prove that a collection C of generalized balls
is the union of at most n nests of generalized balls if and only if the maximal number of
pairwise disjoint generalized balls in C is at most n.

Lemma 32 For any nest B′ of generalized balls in (K, v) and every polynomial f ∈ K[X ]
of degree n, f−1(B′) is a union of at most n nests of generalized balls.

Proof: First, we show our assertion for the case of K algebraically closed. For every
choice of pairwise disjoint generalized balls B(1), . . . , B(k) ∈ f−1(B′) we have to show that
k ≤ n. There are finitely many balls B′

1, . . . , B
′
m ∈ B′ such that every B(i) appears in the

disjoint union representation of f−1(B′
j) for some j. Since B′

1, . . . , B
′
m are linearly ordered

by inclusion, we can choose some c in their intersection. Let a1, . . . , an be the roots of
f − c. Then by Lemma 30, every B(i) contains at least one aj . Hence, k ≤ n.

Now assume that K is not algebraically closed. We choose any extension of v to K̃.
To our nest B′ we associate a nest B̃′ of generalized balls in (K̃, v) in the following way:

B̃′ := {B̃′ | B′ ∈ B′} ,
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where B̃′ is defined as in (40). Then B̃′∩K = B′. By what we have proved above, f−1(B̃′)
is a union of at most n nests of generalized balls in (K̃, v). Hence, f−1(B′) = f−1(B̃′)∩K
is a union of at most n nests of generalized balls in (K, v). ✷

Among the finitely many nest of generalized balls that f−1(B′) consist of, at least one
nest B must satisfy (38). This proves:

Lemma 33 Take any valued field (K, v). Then all polynomials f ∈ K[X ] have the prop-
erty (38).

By virtue of Lemma 29, this proves Lemma 12.

Proof of Lemma 13: Suppose that f ∈ K[X ] is a polynomial such that f(K) is not an
optimal approximation subset of (K, v). Take some c ∈ K such that {v(c−x) | x ∈ f(K)}
does not have a maximum. Then the nest

B′ := {Bv(c−x)(c,K) ∩ f(K) | x ∈ f(K)}

of balls in f(K) does not contain a smallest ball, and
⋂

B′ is empty. By Lemma 33 we
can choose a nest B of generalized balls in (K, v) such that (38) holds. Then also

⋂

B is
empty. Therefore, B does not contain a smallest ball, and thus its coinitiality is a limit
ordinal, say, λ. We pick a coinitial chain (Bν)ν<λ of generalized balls in B. Then for every
ν < λ we pick some bν ∈ Bν \Bν+1 . We leave it as an exercise to the reader to show that
(bν)ν<λ is a pseudo–convergent sequence. If it would have a limit b in K, then b would lie
in
⋂

ν<λ Bν =
⋂

B. But the latter intersection is empty, so the sequence has no limit in
K.

Suppose that there were some ν0 < λ such that for all ν ≥ ν0 , the value v(f(bν)− c) is
constant, say, equal to β. As B′ contains the nonempty ball Bα(c,K)∩f(K) but does not
contain a smallest ball, there must be some ball in B′ of radius > β. This ball contains
none of the elements f(bν), ν ≥ ν0. But this contradicts the fact that B satisfies (38) and
(Bν)ν<λ is a coinitial sequence in B, with bν ∈ Bν . We thus find that the sequence (bν)ν<λ

does not fix the value of the polynomial f − c. This shows that (bν)ν<λ is of algebraic
type. Take g ∈ K[X ] to be a monic polynomial of minimal degree such that (bν)ν<λ does
not fix the value of g. If g were linear, say equal to X − b, then b would be a limit of
(bν)ν<λ. But (bν)ν<λ has no limit in K, so deg g > 1. Now if b is any root of g, then by
Theorem 3 of [KA], there is an immediate extension of v from K to the proper algebraic
extension K(b), showing that (K, v) is not algebraically maximal. ✷
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Department of Mathematics and Statistics, University of Saskatchewan,
106 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E6
email: fvk@math.usask.ca — home page: http://math.usask.ca/̃ fvk/index.html

28


