




Abstract— This paper addresses the problem of steering a

swarm of autonomous agents out of an unknown maze to some

goal located at an unknown location. This is particularly the case

in situations where no direct communication between the agents

is possible and all information exchange between agents has to

occur indirectly through information “deposited” in the
environment. To address this task, an  –greedy, collaborative

reinforcement learning method using only local information

exchanges is introduced in this paper to balance exploitation and

exploration in the unknown maze and to optimize the ability of

the swarm to exit from the maze. The learning and routing

algorithm given here provides a mechanism for storing data

needed to represent the collaborative utility function based on the

experiences of previous agents visiting a node that results in

routing decisions that improve with time. Two theorems show the

theoretical soundness of the proposed learning method and

illustrate the importance of the stored information in improving

decision-making for routing. Simulation examples show that the

introduced simple rules of learning from past experience

significantly improve performance over random search and

search based on Ant Colony Optimization, a metaheuristic

algorithm.

I. INTRODUCTION
This paper presents a randomized, distributed approach to

steer a swarm of agents out of any type of unknown maze to
a goal located at some unknown location using only locally
stored information and no direct communication between the
agents. This is an important problem not only for groups of
autonomous robots but also for minimum overhead
distributed routing and graph search problems for a wide
range of applications. The approach presented here employs a
collaborative reinforcement learning (RL) framework and is
based on formal results underlining the soundness of the
approach.

The problem of robot learning to escape a maze is not
new to the machine learning research community; it was
originally posed many decades back by H. Abelson and A. A.
diSessa in [1]. Since then, there has been a great deal of
research in robots learning to navigate in and escape from a
maze. In [5] an architecture for autonomous mobile agents is
proposed that maps a two-dimensional environment, and
provides safe paths to unexplored regions. In [6], algorithms
are proposed for two heterogeneous robots searching for each

M. Aurangzeb and F. L. Lewis are with the University of Texas at

Arlington Research Institute (UTARI), 7300 Jack Newell Blvd. S., Fort

Worth, TX 76118 USA (phone/fax: +817-272-5938; e-mail: {aurangze,

lewis}@uta.edu). M. Huber is with the Department of Computer Science

and Engineering, The University of Texas at Arlington, TX; email:

(huber@cse.uta.edu).

*This work was supported by the National Science Foundation ECCS-

1128050, the Army Research Office W91NF-05-1-0314, the Air Force

Office of Scientific Research FA9550-09-1-0278, and China NNSF

61120106011.

other in an unknown environment. In [7] an ultrasonic sensor
localization system for autonomous mobile robot navigation
in an indoor semi-structured environment is presented. To
efficiently navigate mazes, various approaches for automated
maze search have been implemented and several testing
environments have been proposed [2], [8]. In [3] a
knowledge-guided route search is proposed based on obstacle
adaptive spatial cells. Similarly, a neural network based
approach is used in [4] for a robot to solve a maze while
avoiding concave obstacles.

Besides these applications in robotics and route planning,
maze exploration is also used as a standard test benchmark
for artificial intelligence and machine learning techniques [9].
Along those lines, there is also some study showing that
antibodies in an immune system use a mechanism of learning
from their surroundings to efficiently fight antigens. This has
led scientists to use machine learning for the development of
artificial immune systems [10], [11], [12] which, in turn have
been tested on moving robots in mazes [10].

While most of the robotics learning work on maze
navigation deals with single or small groups of robots, swarm
intelligence (SI) is a class of decentralized algorithms based
on the cooperative behavior of a large number of agents to
achieve a common goal. These algorithms are based on
simple rules inspired by biological systems in nature. There
are a significant number of SI algorithms proposed in
literature [13], [14]. These include Ant Colony Optimization
(ACO) [15], [44], Artificial Bee Colony (ABC) [16],
Artificial Immune System (AIS) [17], Charged System
Search (CSS) [18], Cuckoo Search (CS) [19], [20], Firefly
algorithm (FA) [21], [22], Gravitational Search Algorithm
(GSA) [23], Intelligent Water Drops algorithm (IWD) [24],
Particle swarm optimization (PSO) [25], Multi-Swarm
Optimization (MSO) [26], River Formation Dynamics (RFD)
[27], Self-propelled particles (SPP) [28], and Stochastic
Diffusion Search (SDS) [29], [30]. These algorithms can be
applied to flocking behavior in discrete surroundings [32] and
to solve mazes. E.g. in [31], ACO is deployed to unknown
mazes. However, many of these algorithms have some
centralized elements and rely on empirical metaheuristics.
Unlike most of these algorithms, this paper presents an SI
approach with rigorous mathematical base that efficiently
addresses the problem of steering a swarm of agents through
an unknown maze to an unknown goal using only local
information exchange.

The fundamental maze exploration algorithm is random
search. In many cases this is the only available exploration
method. Other maze exploration algorithms are generally
deterministic in nature. The wall follower method [34], [35]
which coarsely corresponds to a depth-first search strategy,
works well with 2D perfect mazes [33], [34], [35], i.e. mazes
that do not contain loops and thus form a tree when

Efficient, Swarm-Based Path Finding in Unknown Graphs Using
Reinforcement Learning*

M. Aurangzeb, F. L. Lewis, and M. Huber

2013 10th IEEE International Conference on Control and Automation (ICCA)
Hangzhou, China, June 12-14, 2013

U.S. Government work not protected by U.S.
copyright

870

represented as a graph [36], but does not work for imperfect
mazes or to find a goal within the maze [33], [34]. An
improvement to the wall follower algorithm is the Pledge
Algorithm [34], [35], [1] which works with the help of a
compass. Another extension is Trémaux's algorithm which is
a sure algorithm for solving a maze that works where
passages are well-defined and where there is a provision to
draw lines on the floor [34]; it is based on bidirectional
double tracing. Similarly, there are some other algorithms to
explore a maze given complete knowledge of the maze [34],
[35]. However, these algorithms generally rely on geometric
properties of the maze or on extensive information storage
and are thus often not applicable to general mazes in
unknown spaces.

In this paper a randomized approach is presented to steer
a swarm of agents out of any type of unknown maze. The
approach uses distributed computations and principles of RL
[10], [37], [38] to achieve the goal and improve on random
and metaheuristic-based search. RL is a type of real-time
machine learning which refers to modifying one’s actions or
control policies based on learning from one’s experience. It is
inspired by learning mechanisms that occur in nature, where
living beings modify their control actions based on indirect,
potentially sparse feedback [10], [37], [38]. In a distributed
environment the scope for RL is wide. In this paper, the
agents not only learn from their own experiences, but also
from the experiences of their peers.

In this paper the structure of the maze is unknown to the
agents and the goal is positioned at some anonymous
location. A location is defined as an intersection point where
a routing decision is needed. The maze is represented as a
static graph [36] with locations in the maze taken as nodes
and adjacency of two locations represented as an edge
between the corresponding nodes in the graph. Agents here
do not possess any means of communicating directly with
each other and the only way information can be exchanged is
through limited information left at the nodes of the graph.
The swarm of agents is sent into the maze at a prescribed
location and all of these agents are free to move from one
node to the other in the graph along its edges, seeking for the
goal. As these agents move they jointly develop a distributed
database by updating information at memory nodes placed at
explored nodes of the graph based on their own local
experiences. The memory node network built in this form
helps an agent to intelligently choose an edge from one node
to another, using principles of RL [10], [37], [38]. The
algorithm of this paper is compared to ACO in Section III.
Simulation results show that the algorithm in this paper
outperforms ACO.

The contribution of this paper is to provide a rigorous
theoretical framework for an intelligent distributed search of
a maze by a swarm of agents. In Section II, a collaborative
RL based routing algorithm for path finding in a maze is
presented and two theorems are derived that show the
soundness of the learning and exploration approach and
illustrate the appropriateness and sufficiency of the local
information stored at the maze nodes by the proposed RL
approach. Based on this basic RL framework, a routing
scheme is presented in Section III. Simulation results are
presented in Section IV and show the superiority of the
proposed scheme over random search and the search based
on ACO and a combination of both of them. These

simulation results also show that the swarm of agents
achieves the goal as a swarm and not as separate agents.
Conclusions are presented in the Section V.

II. FORMULATION, ROUTING RESULTS ON FINITE GRAPHS,

AND DATA STRUCTURES

This section formally defines the problem of routing in an
unknown maze used in this paper by explaining the system
architecture and information structures on the agent and in
the memory nodes. For this, a graph theoretic formulation is
used [36]. Two theorems concerning routing in finite mazes
provide the basis for the data structures and show the
soundness of the collaborative reinforcement learning
approach.

In the problem definition used here, a swarm of agents is
sent into an unknown finite maze from a single location, and
the agents are required to reach an unknown goal location in
the maze by using only information available locally to each
agent. To do so, on visiting a node, an agent has to make a
routing decision about which edge to follow when leaving the
node. In this, it is desired to minimize information storage
and the number of data exchanges while significantly
improving upon the performance of random exploration by
each agent.

A. Representing a Maze as a Graph

To formalize the routing problem and objectives, graph
theory [36] is used. The unknown maze is represented as an

unknown undirected graph (,)G V E , where vertices V

correspond to the set of locations in the maze and | | | |G V

is the number of locations in G. A location or node is defined
as an intersection in the maze where a route decision is

needed. There is an edge { , } Ei j  if and only if the

locations i V and j V are adjacent in the maze. The

degree
i

d of node i is the number of edges incident on node i.

A swarm of N agents is sent into the graph G at some starting

node 1 V and the agents are required to reach a goal

located at some unknown node g V . Each agent must

make routing decisions using only information available
locally. It is assumed that at least one path exists from the

starting node 1 V to the goal g V . A path from node

1 V to the goal g V is defined as a finite sequence of

distinct vertices 1 2{1 , ,..., }
n

v v v g  with an edge

existing in G between each pair of consecutive vertices in the
sequence. The goal is reachable from node i if there exists a
path from node i to the goal.

Memory Nodes and Explored Subgraph

Any agent arriving at an unvisited node for the first time
places a memory node with a memory at that node, which is
then termed visited. This produces a growing network of

visited nodes
*

V that forms a graph
* * *
(,)G V E . Since

*
G

is grown by the agents starting from the same initial point

1 V and by traversing paths on G, G G
  is a

connected subgraph of G. Each node in G


 refers to the

871

corresponding node in G and G


 is referred to as the

explored subgraph of G.

B. Formal Routing Results for Finite Mazes

Here, two theorems are presented which show that certain

local information stored at each node
*

i V is sufficient for

routing in an unknown maze and yields performance far
better than random exploration of the maze by the agents.
This information at node i includes the number of agent

traversals, ()
ij

N t , of an edge { , }i j prior to time t, and the

number of times, ()
ij

t , that agents that traversed the edge

have subsequently returned to node i prior to t. Accumulation
of this minimal information, which is accelerated as the
number of agents in the maze becomes large, provides
routing information that allows the agents to reach the
unknown goal with probability tending to 1. This makes the
distributed, intelligent pursuit of the unknown goal by each

agent possible using only information related to ()
ij

N t and

()
ij

t , stored locally at the nodes and agents.

To demonstrate this, the first theorem shows that in any

finite graph without non-traversable edges, if ()
ij

N t becomes

large while the number of agents ()
ij

t returning to node i is

equal to zero, then the probability that the goal is reachable

from node i through a path containing edge { , }i j tends to 1.

Theorem 1. Let ()
ij

N t be the number of agents who

have passed node i along an edge { , }i j prior to time t.

Assume that ()
ij

t , the number of agents who have returned

to node i subsequently, is equal to 0, and that all edges are
traversable and have non-zero probabilities of being chosen

by the agents. Then, as ()
ij

N t and t increase, the probability

that there exists a path containing { , }i j from node i to the

goal tends to 1.
Proof: The maze is represented as a connected graph G.

Consider a node i from where ()
ij

N t agents have gone along

an edge { , }i j prior to time t. Let us assume that there is no

path leading to the goal from node i containing edge { , }i j .

Split each edge of the graph into a pair of directed edges and
consider the graph as a Markov chain. The chain does not
have self-loops at any node other than the goal which is an
absorbing node. Let the probability of going along any edge
be larger than 0. Then there is a nonzero probability p that an
agent will come back to node i in finite time t. Thus there is
some nonzero average rate of return, λ, of the agents back to

node i. As the number of agents ()
ij

N t increases the

probability that k agents will come back in time t, given that
there is no path leading to the goal from node i containing

edge { , }i j is given by the Poisson distribution [39].

 ()
() ; 0,1,2,...

!

k t
t e

p k k
k

    
From (1), for 0k 

(0) t
p e

 , which implies that

 (0 |) t
SP k e

    
where S=There exist a path from node i containing { , }i j

leading to the goal. This leads to

 (0)
(| 0)

()

t
S

S

P k
P k e

P

    
or

 ()
(| 0) 1

(0)

tS
S

P
P k e

P k

     
In (4), as time t increases, (0)P k  reaches 1 (due to

()
ij

t = 0) and ()SP  is fixed. Thus (| 0)SP k 

reaches 1. ■

The second result shows that if () 0
ij

t  at a node i ,

then the steady state probability of finding the goal is

maximized by following an edge { , }i j with the minimum

ratio
()

()

ij

ij

t

N t


.

Theorem 2. Let ()
ij

N t be the number of agents who

have passed an intermediate node i along edge { , }i j prior to

time t, and ()
ij

t the number of agents out of ()
ij

N t who

have returned to node i. Then as ()
ij

N t increases, the steady

state probability ()
S

p P s that there exists a path

containing { , }i j from node i to the goal is maximum for the

edge { , }i j for which the ratio
()

()

ij

ij

t

N t


 is minimum.

Proof: For an agent who is present at an intermediate
node i at some time t, the whole maze can be viewed as d
systems reachable from it where d is the degree of node i.
This view is shown in Fig. 1, where the systems are states of
a Markov chain, numbered 1… d, and the state g represents
the goal node g.
Supposing that these systems are randomly selected by the

agent at node i, let
j

p be the probability of return of an

agent from system j to node i. Also, let
jS

p be the

probability of going from the system j to the goal node, g,
which is an absorbing node. The probability that an agent

within system j remains within this system is
jT

p .Also, let

j
p be the probability to select a particular system from node

i so that the probability ()
S

p P s of reaching the goal is

maximized.

Using conditioning this probability can be written as


1

(|)
d

s ij

j

p P s j P


  
where

 (|) ,
sj ij j

P s j p P p   

872

Fig. 1: Visualization of maze as d systems

Substituting the values from (6) into (5), yields


1

j

d

s s j

j

p p p


  
For each system 1,2,...,j d ,

 1
jsj T j

p p p    
Substituting the value of

sj
p from (8) into (7) yields


1

(1)
j

d

s T j j

j

p p p p


    
or


1 1

1
j

d d

S T j j j

j j

p p p p p
 

      
Given that all edges have non-zero probabilities to be taken

by the agent, the steady state transition probability
jT

p of

keeping an agent within the same system is 0. The problem of

maximizing the probability
s

p of an agent to reach the goal

from the node i is thus transformed into the problem of

minimizing

1

d

j j

j

p p


 on the right hand side of (10). Since


1

1
d

j

j

p


   

the summation

1

d

j j

j

p p


 is convex and has the minimum


0

1

min
d

j j j

j

p p p


   
where

0
min()

j j
p p , when

000 1
j j

p j j p      .

This means that
s

p is maximized if the edge with minimum

probability of an agent coming back to node i is taken at time
t. Under the given assumption of equal complexity of the

systems, and given () :{ , }
ij

N t j i j E  is large enough, as

the time passes, the ratio
()

()

ij

ij

t

N t


 reaches the steady state

probability of return of an agent to node i. Therefore, the

greater the value of
()

()

ij

ij

t

N t


, the smaller are the chances of

finding the goal while going along the edge { , }i j . ■

C. Reinforcement Learning Definition

Theorem 1 and Theorem 2 in the previous section showed

the importance in routing of
()

()

ij

ij

t

N t


, the ratio of the number of

returns to node i after traveling along edge { , }i j and the

number of times that an agent traveled along that edge. This
section capitalizes on these results to derive a reinforcement
learning (RL) definition that will be used to build the
collaborative maze traversal algorithm proposed here.

To formulate the RL problem, the maze task can be
treated as a Markov Decision Problem with the nodes of the
maze graph representing states, edge choices being the
actions of the agent, and transitions being defined
deterministically through the edges of the graph. Based on
the results of Theorems 1 and 2, a reward function for the
agent m when traversing edge {i,j} in state i can be defined as  1 if , was previously traversed

()
0 otherwise

j

i j
r i

  
This reward function basically produces a negative

reward whenever the agent has looped back and no reward
otherwise.

Using this reward function and using an average reward
utility function, the agent can estimate the utility of traveling
along an edge in the form of a Q-function where

 ({ , }) ()
m j

Q i j E r i     
Since all agents have the same objective and the same

action space (and thus the same utility function), this utility
function can be maintained collectively by accumulating all
the rewards of the agents at the nodes, leading to a collective
utility function:

 ()
()

({ , }) ()
()

ijt

j

ij

t
Q i j E r i

N t

     
From this it can be seen that based on Theorem 2,

maximizing this utility by selecting edges that have
maximum utility is equal to maximizing the likelihood of
moving along edges that lead to the goal, illustrating the
soundness of the proposed RL scheme.

D. Data Structures of Agents and Nodes

To maintain and efficiently update the reward and utility
data used by the reinforcement learning agent, utility data has
to be maintained at the nodes of the network and sufficient
information to determine rewards have to be maintained by
the agents. The data structures presented here contain
parameters used to represent these values and to allow for
routing decisions by the agents for maze exploration. Upon
its arrival at a memory node, an agent exchanges data with
the memory node, and based on the principles of RL
presented in the previous section and supported by Theorem
1 and 2 updates the data structures and makes a decision
about which edge to follow on leaving the node.

Data Maintained by Visited Nodes

Each memory node
*

i V at the visited locations

maintains a time-varying matrix ()
i

R t of size 2
i

d  , where

i
d is the degree of the node i. This matrix is given by

873

 () [() ()]ii i
R t N t t  

Here, ()
i

N t and ()
i

t are vectors of length
i

d , each having

one entry corresponding to each edge incident on node i.

The vector ()
i

N t has the j-th entry equal to the number

of agents ()
ij

N t who have travelled along the edge { , }i j

prior to time t. The j-th entry in the vector ()
i

t is the

negative of the number of agents, out of ()
ij

N t , who have

returned to it. That is to say, () ()
ij ij

t t   . If none of the

agents who have gone along edge { , }i j have returned to

node i, then the j-th entry in vector ()
i

t is equal to zero.

According to Theorems 1 and 2, routing decisions that

select edge { , }i j on leaving node i are beneficial if the j-th

entry in the vector ()
i

t is equal to zero and detrimental as

the j-th entry in the vector ()
i

t becomes more negative.

The vector ()
i

t here represents accumulated rewards, with

element j of ()
i

t reflecting the rewards of all the agents

when traveling along { , }i j accumulated up to time t.

Data Maintained by Agents

Nodes
*

i V in the explored graph
*

G are identified by

EUI-64 IDs [40]. To compute its rewards and to be able to

update the information at the nodes, every agent m N

keeps track of the edges it has visited in the form of a finite

list
m

L of ordered pairs of EUI-64 IDs of nodes it has visited.

An entry of
m

L , ()
m

L l , is equal to ((,), (, 1))i m l i m l  , the

edge of
*

V previously traversed by agent m.

E. Node and Agent Data Updates

In this section the computational details for updating the
system data parameters, and thus the collective utility
function of the agents used for the RL algorithm, are
discussed. The node parameters are given in (13) and the

agent parameters are the list
m

L of edges it has visited. These

data parameters are updated based on only the local
information passed between an agent and the node at which it
currently resides. Based on the data updates, an agent makes
a routing decision by selecting an edge along which to
proceed on leaving the node.
The system parameter update mechanism works through
update algorithms operating at the agents and at the nodes.

Suppose that at time t there are n agents
1 2
, ,...

n
m m m at

some node
*

() : ()i t G i t g  . All these agents receive the

EUI-64 ID of the node, which is also referred to as ()i t , and

the parameter matrix ()
i

R t from the node ()i t .

The following update algorithm is performed by an agent
k

m

who is at node ()i t at time t. In the following algorithm

()
km

r t is a vector updated by the agent
k

m who is at node

()i t at some time t and of length equal to the degree of ()i t .

The algorithm has three steps: data update, routing decision,
and communicate to node.

Algorithm 1- Agent Update and Routing Decision

1) Data Update: Define,

* *

() : () 0 :{ (), }
k km m j

j Vr t r t i t j E  

Search
mn

L for ()i t

 (1)[()] 1 : t :

()() ()

km

m

mk

k

L l
r t l and

L l first coordinate i t

   
  

The update specified here implies that at most one

component of ()
k

m
r t is nonzero, which is -1. This nonzero

component corresponds to the edge the agent used when it
visited node i the previous time. The agent update to its RL
vector is

 ()() ()
k

mi i
r tt t    

2) Decision and Further Update: Select edge { , }i j to

follow on leaving node i based on the ratio of the

accumulated reward ()
ij

t and the number of agents ()
ij

N t

(i.e. based on the average reward utility Q-value in (12)).
This decision algorithm is given in Section III. Moreover, if
the agent reaches a previously visited node, it updates the

second coordinate of the corresponding entry in
mn

L to the

one it is going to visit; otherwise it will create a new entry in

mn
L .

3) Communicate: Form ()
km

e t , a vector of length
()i t

d

consisting of zero entries, with only one entry equal to 1 at

the position corresponding to the edge { , }i j selected.

Communicate ()
km

e t and ()
k

m
r t to ()i t . ■

In Algorithm 1, Step 1, an agent gives a negative reward

of -1 to the edge incident at ()i t which it followed when it

visited the node the previous time. This setback is

communicated to the node ()i t in the form of vector ()
k

m
r t .

Also, the agent communicates the edge taken at time t in the

form of ()
km

e t .

Upon receiving this information from the visiting agents,

node ()i t adds all rewards to ()
i

t to get the new RL

setback vector (1)
i

t  . The vector ()
i

N t is also updated

according to the decisions of the agents to compute

(1)
i

N t  . These actions are summarized in the following

algorithm.
Algorithm 2: Node Update Algorithm

Update RL gain and number of agents visiting node i.

874


1

(1) () ()
k

n

i i m

k

t t r t 


    

1

(1) () ()
k

n

i i m

k

N t N t e t


   (19)■

Equations (15) and (16) elaborate the updates of ()
i

R t of

node i on the basis of the RL feedbacks given by the visiting
agents to the incident edges and the edges taken by agents at
time t.

III. ROUTING IN A MAZE USING REINFORCEMENT LEARNING

This section describes the routing decision algorithm used
by each agent in deciding which edge to follow when leaving
a node i at time t. This corresponds to Step 2 of Algorithm 1,
the agent update and routing decision algorithm. This
algorithm uses exploitation of the data about the explored
graph to reach the goal. It also uses exploration to obtain data
about the unexplored portion of the maze. The importance of
balancing exploitation and exploration is well known in
reinforcement learning [37].

A. Exploitation of Information for Intelligent Routing

Routing in an unknown maze requires a balance between
using or exploiting available information to select the route
most likely to reach the goal, and exploring the unknown
portion of the maze. This balance has been formalized as the
‘exploitation vs. exploration’ dilemma [37].

According to Theorem 1 and 2, the data contained in

vectors () [() ()]ii i
R t N t t contains information that

can be used to make intelligent routing decisions.

Specifically, as the j-th entry ()
ij

N t of ()iN t becomes

large while the absolute value of the j-th entry

() ()
ij ij

t t   of ()
i

t is small, the probability is high

that the goal node is reachable by following edge { , }i j ,

which corresponds to exploiting the available information.
This RL based system proposes for an agent located at node

()i t to randomly take one of the edges
*{ (), }i t j that

maximize the collaborative utility, () / ()
ij ij

t N t .

Taking the edge with the highest Q-value (or equivalently

the lowest ratio
()

()

ij

ij

t

N t


 is a greedy form of routing decision.

Always following a greedy action, however, is not a good
strategy since there should always be a finite probability that
the agent will proceed along any edge in order to maintain a
finite probability of finding other, better paths. Allowing a
finite probability, say  , of following a different edge is

termed an  -greedy exploration policy and it has been

shown that  -greedy actions can preserve a good balance

between exploitation and exploration [37]. Here, it is
proposed that an agent follows the edge suggested by the RL
system, i.e. the one with the highest Q-value, with probability

(1) 1  , according to the  –greedy approach [37]. This

policy addresses the fact that in a graph with multiple paths to
the goal it may happen that a suboptimal path is found prior
to the complete exploration of the graph and thus, sufficient

exploration is required to fully explore the unknown graph.
The following mechanism is thus proposed for an agent to
make a routing decision in Step 2 of Algorithm 1.

The edge { (), }i t j to be taken by agents leaving node i is

selected with the following probability distribution.


*

*

1

({ (), }) 1

({ (), },)
id

P i t j

P i t j j j 




 
   

where
*{ (), }i t j is the edge suggested by the RL based

system.

B. Comparison with ACO

Ant Colony Optimization is a graph search algorithm
initially proposed by M. Dorigo [1]. This is a randomized
swarm steering algorithm to find a path within a graph. The
algorithm is inspired by the mechanism of optimization used
by ants in their colonies to find a minimum path to their food
[41], [42]. The ant colony algorithm proposed by Dorigo,
explores an unknown graph by multiple agents in a
distributed manner by using a centralized database [43]. The
algorithm implements two local decision policies: Trail and
attractiveness [1]. Further detailed about ACO can be seen at
[46].

IV. SIMULATION

This section presents the simulation setup and results for
agents exploring a maze using the methods proposed in this
paper. The RL-based search algorithm of Sections II and III
is simulated. The results are compared to those for agents
searching the maze with random search, with ACO and with
a hybrid ACO and random search system. It is shown that the
proposed RL approach significantly speeds up the search.

To measure effectiveness, an additional performance
measure is defined and used to evaluate the approaches.

Definition (Performance Measure): The size of a 2D

maze is defined as M LW , where L is the length of the

maze and W its width. The Performance Measure (PM) of a
search is defined as the ratio of the mean time T taken by the
first agent to reach the goal to the maze size M. That is to say.

 T
M

PM  (21)■

It is desired for this performance measure to be small.

A. Simulation Results

For the purpose of simulation several maze structures
were generated using the Matlab Maze Toolbox [45].
Outcomes of typical simulations are shown in Fig. 2. These
results are for mazes of size 55 with 10 agents exploring

them. All agents start at location (1,1) and their unknown

goal is present at location (5, 5) . These two locations are

numbered as maze cell 1 and 25 respectively along the
bottom left axes of Fig. 2. Fig. 2 (a) shows the case when the
agents explore the maze through random search and without
any intelligent decision-making. It is observed that the first
agent reaches the goal after 45 time steps. This is noted by
observing when the first point appears in the upper left plane
of the 3D graph. At the end of the simulation spanning 100
time steps, only 3 agents have reached the goal using random
search.

875

Fig. 2: Simulation results of Maze Exploration, (a) Random Search
(b) ACO (c) ACO and Random search (d) RL Based System

In [31], ACO is implemented to explore a penalty maze.
In this paper ACO is implemented for the maze as mentioned
above. Fig. 2 (b) shows the case when the agents explore the
maze through a local version of ACO without its global part
of Daemon Action so that the comparison between two
approaches can be made fairly. It is observed that the agents
mostly do not reach the goal. This happens since ACO takes
into account the number of agents that went through a path
and not the number of agents who visit the same node again.
In this way the agents get into stagnation of the search by
visiting the same set of nodes again and again. The ACO can
also be implemented along with random search. In this hybrid
system there are two types of agents, one following ACO and
others following the random search. The agents following
random search also deposit pheromones as the other agents
do. Fig. 2 (c) shows a typical case of maze search by the

hybrid system. In case of the hybrid system there is some
improvement as compared to simple random search and ACO
since now agents have pheromone deposition from random
agents to help other agents to get out of stagnation. This is
noted by observing when the first point appears in the upper
left plane of the 3D graph. After 100 time steps, 4 agents
have reached the goal using hybrid search.

Fig. 2 (d) shows a typical case when the agents are
equipped with the RL system based on Theorems 1 and 2 as
developed in Sections II and III. It is observed that the first
agent reaches the goal within 10 time steps, the minimum
time for this size of maze, while the next two reach the goal
within 16 time steps. At the end of the simulation, all agents
have reached the goal. Note that, as time passes, more and
more information is stored in the maze in the form of
memory nodes dropped by the agents, thus routing
successively improves.

In the second part of the simulation, results were obtained
for five different cases with different maze sizes M. Each of
these simulations was run M times and the mean time
required for the first agent to reach the goal, T is calculated in
each case. The performance measures PM for these maze
sizes and for various numbers of agents are calculated. Here,
it is observed that the performance measure PM for the RL-
equipped agents, is almost twice as small as that for agents
using the random search and hybrid search. The PM of a
system purely based on ACO is even higher than random
search-based and hybrid system. It is observed that the best
performance measure using random search and hybrid search
is approximately 1, while the performance measure using the
RL-based routing system is approximately 0.5. Moreover, the
graphs show that the RP-based system scales much better as
the maze size increases. Figures are excluded due to page
limit, and are available at [46].

V. CONCLUSION

This paper establishes a strategy for steering a swarm of
autonomous agents out of an unknown maze to some goal
located at an unknown location. The strategy is based on
principles of reinforcement learning. Two theorems show that
simple rules of learning from past experience make the maze
exploration significantly faster than standard random search.

Based on these results, a  –greedy RL routing algorithm,

that uses only local information exchanges, is developed in
Section III to balance exploitation and exploration of the
unknown maze. Simulation results show that maze
exploration using minimal information and based on RL is
far superior to exploration using random search, search based
on ACO and search based on hybrid ACO and random
search.

REFERENCES

[1] H. Abelson and A. A. diSessa, Turtle Geometry, MIT Press.

Cambridge, 1980.

[2] M. Jansen, M. Oelinger, K. Hoeksema, and U. Hoppe, “An Interactive

Maze Scenario with Physical Robots and Other Smart Devices,” in

Proceedings of the 2nd IEEE International Workshop on Wireless and

Mobile Technologies in Education, 2004.

[3] Y. Kobayashi, Y. Wada, and T. Kiguchi, “Knowledge Representation

and Utilization for Optimal Route Search,” IEEE Transactions on

Systems, Man, and Cybernetics-Part B, Cybernetics Vol. SMC-16,

No. 3, May/June 1986.

876

[4] S. X. Yang, and M. Meng, “Neural Network Approaches to Dynamic

Collision-Free Trajectory Generation,” IEEE Transactions on

Systems, Man, and Cybernetics-Part B, Cybernetics Vol. 31, No. 3,

June 2001.

[5] E. P. Silva Jr., M. A. P. Idiart, M. Trevisan, and P. M. Engel,

“Autonomous Learning Architecture for Environmental Mapping,”

Journal of Intelligent and Robotic Systems 39: 243-263, 2004.

[6] N. Roy, and G. Dudek, “Collaborative Robot Exploration and

Rendezvous: Algorithms, Performance Bounds and Observations,”

Autonomous Robots 11, 117-136, 2001.

[7] L. Moremo, J. M. Armingol, S. Garrido, A. de La Escalera, and M. A.

Salichs, “A Genetic Algorithm for Mobile Robot Localization Using

Ultrasonic Sensors,” Journal of Intelligent and Robotic Systems 34:

135- 154, 2002.

[8] Z. Cai and Z. Peng, “Cooperative Co-evolutionary Adaptive Genetic

Algorithm in Path Planning of Cooperative Multi-Mobile Robot

Systems,” Journal of Intelligent and Robotic Systems 33: 61-71, 2002.

[9] B. F. Goldiez, A. M. Ahmad and P. A. Hancock, “Effects of

Augmented Reality Display Settings on Human Wayfinding

Performance,” IEEE Transactions on Systems, Man, and Cybernetics-

Part C, Reviews Vol. 37, No. 5, September 2007.

[10] M. A. Wiering and H. van Hasselt, “Ensemble Algorithms in

Reinforcement Learning,” IEEE Transactions on Systems, Man, and

Cybernetics-Part B, Cybernetics Vol. 38, No. 4, August 2008.

[11] A. M. Whitbrook, U. Aickelin, and J. M. Garibaldi, “Idiotypic

Immune Networks in Mobile-Robot Control,” IEEE Transactions on

Systems, Man, and Cybernetics-Part B, Cybernetics Vol. 37, No. 6,

Dec. 2007.

[12] J. Suzuki and Y. Yamamoto, “Building an artificial immune network

for decentralized policy negotiation in a communication end system,”
in Proc. 4th World Conf. SCI, Orlando, FL, July 2000.

[13] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm intelligence from

natural to artificial systems, Oxford University Press, Inc. New York

1999

[14] D. Karaboga and B. Akay, “A survey: algorithms simulating bee

swarm intelligence,” Artificial Intelligence Review Vol. 31, Numbers

1-4, 61-85, DOI: 10.1007/s10462-009-9127-4, 2009.

[15] M. Dorigo, Optimization, Learning and Natural Algorithms, PhD

thesis, Politecnico di Milano, Italie, 1992.

[16] D. Karaboga, “An idea based on honey bee swarm for numerical

optimization,” Technical Report TR06, Erciyes University,

Engineering Faculty, Computer Engineering Department, 2005.

[17] D. Dasgupta, Z. Ji, and F. Gonzalez, “Artificial immune system (AIS)

research in the last five years,” in Proc Congress on Evolutionary

Computation, CEC '03, 2003.

[18] A. Kaveh and S. Talatahari, “A novel heuristic optimization method:

charged system search,” Springer Acta Mechanica , 2010.

[19] X.-S. Yang; and S. Deb, “Cuckoo search via Lévy flights,” World

Congress on Nature & Biologically Inspired Computing (NaBIC

2009). IEEE Publications. pp. 210–214, 2009.

[20] X.-S. Yang and S. Deb, “Engineering optimization by cuckoo search,"

Int. J. Mathematical Modeling and Numerical Optimizations Vol. 1,

No. 4, 330-343, 2010.

[21] X. F. Yang, “Firefly algorithms for multimodal optimization.

Stochastic Algorithms,” Foundations and Applications, SAGA 2009.

Lecture Notes in Computer Sciences. 5792. pp. 169–178, 2009.

[22] S. M. Farahani, A. A. Abshouri, B. Nasiri, and M. R. Meybodi, “Some

hybrid models to improve firefly algorithm performance,” Int. J.

Artificial Intelligence, Vol. 8 S(12), 97-117, 2012

[23] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “A Gravitational

Search Algorithm,” Journal of Information Science Vol 179, Issue 13,

pp 2232-2248, 2009.

[24] .H. S. Hosseini, “The intelligent water drops algorithm: a nature-

inspired swarm-based optimization algorithm," International Journal

of Bio-Inspired Computation 1 (1/2): 71–79, 2009.

[25] J. Kennedy, and R. Eberhart, “Particle Swarm Optimization,”

Proceedings of IEEE International Conference on Neural Networks,

IV. pp. 1942–1948, 1995.

[26] C. Li and S. Yang, “Fast Multi-Swarm Optimization for Dynamic

Optimization Problems,” in Proc. Fourth International Conference on

Natural Computation, ICNC '08, 2008.

[27] P. Rabanal, I. Rodríguez and F. Rubio, Using River Formation

Dynamics to Design Heuristic Algorithms, Lecture Notes in Computer

Science, 2007, Volume 4618, 2007.

[28] P. Degond, and S. Motsch, “Continuum Limit of Self-driven Particles

with Orientation Interaction,” SIAM Journal of Applied Math, arXiv:

0710.0293, 2007.

[29] J.M. Bishop, “Stochastic Searching Networks,” in Proc. 1st IEE Conf.

on Artificial Neural Networks, pp 329–331, London, 1989.

[30] P.D. Beattie, and J.M. Bishop, “Self-Localization in the 'Scenario'

Autonomous Wheelchair,”. Journal of Intelligent and Robotic Systems

22, pp 255–267, Kluwer Academic Publishers, 1998.

[31] D. Jones, D.A. Harrison, and A.J. Davies, “Experience Outweighs

Intelligence: an investigation into the use of Ant Colony Systems for

Maze Solving,” in Proceedings of the ACIS Fourth International

Conference on Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing (SNPD'03), 2003.

[32] “Maze. available online at http://en.wikipedia.org/wiki/Maze

[33] W. D. Pullen. “Maze classification” Internet:
http://www.astrolog.org/labyrnth/algrithm.htm#solve, January 24,

2011 [February 06, 2013]

[34] “Maze solving algorithm” Internet:

http://en.wikipedia.org/wiki/Maze_solving_algorithm [February 06,

2013]

[35] N. S. V. Rao, S. Kareti, and W. Shi, Robot Navigation in Unknown

Terrains: Introductory Survey of Non-Heuristic Algorithms, Report

prepared by Oak Ridge National Laboratory, July 1993.

[36] R. Diestel, Graph Theory, Fourth Edition. Springer Heidelberg

Dordrecht London New York, 2010.

[37] R. S. Sutton and A.G. Barto, Reinforcement Learning– An

Introduction, MIT Press, Cambridge, Massachusetts, 1998.

[38] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement

Learning: A Survey,” Journal of Artificial Intelligence Research, Vol.

4 pp. 237-285 1996.

[39] S.D. Poisson, “Research on the Probability of Judgments in Criminal

and Civil Matters,” Elibron Classics, 1838.

[40] IEEE: Guidelines for 64 bits global Identifier. March, 1997.

[41] S. Goss, S. Aron, J.-L. Deneubourg et J.-M. Pasteels, “Self-organized

shortcuts in the Argentine ant,” Nature wissenschaften, Vol. 76, pages

579-581, 1989

[42] J.-L. Deneubourg, S. Aron, S. Goss et J.-M. Pasteels, “The self-

organizing exploratory pattern of the Argentine ant,” Journal of Insect

Behavior, Vol. 3, page 159, 1990

[43] T. Stutzle, and H. Hoos, “Improvements on the Ant System:

Introducing the MAX-MIN Ant System,” I R.F. Albrecht G.D. Smith,

N.C. Steele (ed), Artificial Neural Networks and Genetic Algorithms.

Springer Verlag, Wien New York, Pages 245-249, 1998.

[44] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system:

optimization by a colony of cooperating agents,” IEEE Trans. Systems

Man Cybernet. B, 26 29–42, 1996.

[45] J. Kubica, “Toolbox to create a maze in MatLab” Internet:

http://www.ri.cmu.edu/, 2003, [November 2012].

[46] Aurangzeb, M., “Internal structure and Dynamic Decisions for
Coalitions on Graphs,” Doctoral Thesis, Department of Electrical
Engineering, University of Texas at Arlington. (In Preparation)

877

