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Abstract— This paper addresses the problem of steering a 

swarm of autonomous agents out of an unknown maze to some 

goal located at an unknown location. This is particularly the case 

in situations where no direct communication between the agents 

is possible and all information exchange between agents has to 

occur indirectly through information “deposited” in the 
environment. To address this task, an  –greedy, collaborative 

reinforcement learning method using only local information 

exchanges is introduced in this paper to balance exploitation and 

exploration in the unknown maze and to optimize the ability of 

the swarm to exit from the maze. The learning and routing 

algorithm given here provides a mechanism for storing data 

needed to represent the collaborative utility function based on the 

experiences of previous agents visiting a node that results in 

routing decisions that improve with time. Two theorems show the 

theoretical soundness of the proposed learning method and 

illustrate the importance of the stored information in improving 

decision-making for routing. Simulation examples show that the 

introduced simple rules of learning from past experience 

significantly improve performance over random search and 

search based on Ant Colony Optimization, a metaheuristic 

algorithm. 

I. INTRODUCTION 
This paper presents a randomized, distributed approach to 

steer a swarm of agents out of any type of unknown maze to 
a goal located at some unknown location using only locally 
stored information and no direct communication between the 
agents.  This is an important problem not only for groups of 
autonomous robots but also for minimum overhead 
distributed routing and graph search problems for a wide 
range of applications. The approach presented here employs a 
collaborative reinforcement learning (RL) framework and is 
based on formal results underlining the soundness of the 
approach. 

The problem of robot learning to escape a maze is not 
new to the machine learning research community; it was 
originally posed many decades back by H. Abelson and A. A. 
diSessa in [1]. Since then, there has been a great deal of 
research in robots learning to navigate in and escape from a 
maze. In [5] an architecture for autonomous mobile agents is 
proposed that maps a two-dimensional environment, and 
provides safe paths to unexplored regions. In [6], algorithms 
are proposed for two heterogeneous robots searching for each 
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other in an unknown environment. In [7] an ultrasonic sensor 
localization system for autonomous mobile robot navigation 
in an indoor semi-structured environment is presented. To 
efficiently navigate mazes, various approaches for automated 
maze search have been implemented and several testing 
environments have been proposed [2], [8]. In [3] a 
knowledge-guided route search is proposed based on obstacle 
adaptive spatial cells. Similarly, a neural network based 
approach is used in [4] for a robot to solve a maze while 
avoiding concave obstacles.  

Besides these applications in robotics and route planning, 
maze exploration is also used as a standard test benchmark 
for artificial intelligence and machine learning techniques [9]. 
Along those lines, there is also some study showing that 
antibodies in an immune system use a mechanism of learning 
from their surroundings to efficiently fight antigens. This has 
led scientists to use machine learning for the development of 
artificial immune systems [10], [11], [12] which, in turn have 
been  tested on moving robots in mazes [10]. 

While most of the robotics learning work on maze 
navigation deals with single or small groups of robots, swarm 
intelligence (SI) is a class of decentralized algorithms based 
on the cooperative behavior of a large number of agents to 
achieve a common goal. These algorithms are based on 
simple rules inspired by biological systems in nature. There 
are a significant number of SI algorithms proposed in 
literature [13], [14]. These include Ant Colony Optimization 
(ACO) [15], [44], Artificial Bee Colony (ABC) [16], 
Artificial Immune System (AIS) [17], Charged System 
Search (CSS) [18], Cuckoo Search (CS) [19], [20], Firefly 
algorithm (FA) [21], [22], Gravitational Search Algorithm 
(GSA) [23], Intelligent Water Drops algorithm (IWD) [24], 
Particle swarm optimization (PSO) [25], Multi-Swarm 
Optimization (MSO) [26], River Formation Dynamics (RFD) 
[27], Self-propelled particles (SPP) [28], and Stochastic 
Diffusion Search (SDS) [29], [30]. These algorithms can be 
applied to flocking behavior in discrete surroundings [32] and 
to solve mazes. E.g. in [31], ACO is deployed to unknown 
mazes. However, many of these algorithms have some 
centralized elements and rely on empirical metaheuristics. 
Unlike most of these algorithms, this paper presents an SI 
approach with rigorous mathematical base that efficiently 
addresses the problem of steering a swarm of agents through 
an unknown maze to an unknown goal using only local 
information exchange. 

The fundamental maze exploration algorithm is random 
search. In many cases this is the only available exploration 
method. Other maze exploration algorithms are generally 
deterministic in nature. The wall follower method [34], [35] 
which coarsely corresponds to a depth-first search strategy, 
works well with 2D perfect mazes [33], [34], [35], i.e. mazes 
that do not contain loops and thus form a tree when 
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represented as a graph [36], but does not work for imperfect 
mazes or to find a goal within the maze [33], [34]. An 
improvement to the wall follower algorithm is the Pledge 
Algorithm [34], [35], [1] which works with the help of a 
compass. Another extension is Trémaux's algorithm which is 
a sure algorithm for solving a maze that works where 
passages are well-defined and where there is a provision to 
draw lines on the floor [34]; it is based on bidirectional 
double tracing. Similarly, there are some other algorithms to 
explore a maze given complete knowledge of the maze [34], 
[35]. However, these algorithms generally rely on geometric 
properties of the maze or on extensive information storage 
and are thus often not applicable to general mazes in 
unknown spaces. 

In this paper a randomized approach is presented to steer 
a swarm of agents out of any type of unknown maze. The 
approach uses distributed computations and principles of RL 
[10], [37], [38] to achieve the goal and improve on random 
and metaheuristic-based search. RL is a type of real-time 
machine learning which refers to modifying one’s actions or 
control policies based on learning from one’s experience. It is 
inspired by learning mechanisms that occur in nature, where 
living beings modify their control actions based on indirect, 
potentially sparse feedback [10], [37], [38]. In a distributed 
environment the scope for RL is wide. In this paper, the 
agents not only learn from their own experiences, but also 
from the experiences of their peers.  

In this paper the structure of the maze is unknown to the 
agents and the goal is positioned at some anonymous 
location. A location is defined as an intersection point where 
a routing decision is needed. The maze is represented as a 
static graph [36] with locations in the maze taken as nodes 
and adjacency of two locations represented as an edge 
between the corresponding nodes in the graph. Agents here 
do not possess any means of communicating directly with 
each other and the only way information can be exchanged is 
through limited information left at the nodes of the graph. 
The swarm of agents is sent into the maze at a prescribed 
location and all of these agents are free to move from one 
node to the other in the graph along its edges, seeking for the 
goal. As these agents move they jointly develop a distributed 
database by updating information at memory nodes placed at 
explored nodes of the graph based on their own local 
experiences. The memory node network built in this form 
helps an agent to intelligently choose an edge from one node 
to another, using principles of RL [10], [37], [38]. The 
algorithm of this paper is compared to ACO in Section III. 
Simulation results show that the algorithm in this paper 
outperforms ACO. 

The contribution of this paper is to provide a rigorous 
theoretical framework for an intelligent distributed search of 
a maze by a swarm of agents. In Section II, a collaborative 
RL based routing algorithm for path finding in a maze is 
presented and two theorems are derived that show the 
soundness of the learning and exploration approach and 
illustrate the appropriateness and sufficiency of the local 
information stored at the maze nodes by the proposed RL 
approach. Based on this basic RL framework, a routing 
scheme is presented in Section III. Simulation results are 
presented in Section IV and show the superiority of the 
proposed scheme over random search and the search based 
on ACO and a combination of both of them. These 

simulation results also show that the swarm of agents 
achieves the goal as a swarm and not as separate agents. 
Conclusions are presented in the Section V. 

II. FORMULATION, ROUTING RESULTS ON FINITE GRAPHS, 

AND DATA STRUCTURES 

This section formally defines the problem of routing in an 
unknown maze used in this paper by explaining the system 
architecture and information structures on the agent and in 
the memory nodes. For this, a graph theoretic formulation is 
used [36]. Two theorems concerning routing in finite mazes 
provide the basis for the data structures and show the 
soundness of the collaborative reinforcement learning 
approach. 

In the problem definition used here, a swarm of agents is 
sent into an unknown finite maze from a single location, and 
the agents are required to reach an unknown goal location in 
the maze by using only information available locally to each 
agent. To do so, on visiting a node, an agent has to make a 
routing decision about which edge to follow when leaving the 
node. In this, it is desired to minimize information storage 
and the number of data exchanges while significantly 
improving upon the performance of random exploration by 
each agent. 

A.  Representing a Maze as a Graph  

To formalize the routing problem and objectives, graph 
theory [36] is used. The unknown maze is represented as an 

unknown undirected graph ( , )G V E , where vertices V 

correspond to the set of locations in the maze and | | | |G V  

is the number of locations in G. A location or node is defined 
as an intersection in the maze where a route decision is 

needed. There is an edge { , } Ei j   if and only if the 

locations i V  and j V  are adjacent in the maze. The 

degree 
i

d  of node i is the number of edges incident on node i. 

A swarm of N agents is sent into the graph G at some starting 

node 1 V  and the agents are required to reach a goal 

located at some unknown node g V . Each agent must 

make routing decisions using only information available 
locally. It is assumed that at least one path exists from the 

starting node 1 V  to the goal g V . A path from node 

1 V  to the goal g V  is defined as a finite sequence of 

distinct vertices 1 2{1 , ,..., }
n

v v v g   with an edge 

existing in G between each pair of consecutive vertices in the 
sequence. The goal is reachable from node i if there exists a 
path from node i to the goal. 

Memory Nodes and Explored Subgraph  

Any agent arriving at an unvisited node for the first time 
places a memory node with a memory at that node, which is 
then termed visited. This produces a growing network of 

visited nodes 
*

V  that forms a graph 
* * *
( , )G V E . Since 

*
G  

is grown by the agents starting from the same initial point 

1 V  and by traversing paths on G, G G
   is a 

connected subgraph of G. Each node in G


  refers to the 
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corresponding node in G and G


 is referred to as the 

explored subgraph of G. 

B. Formal Routing Results for Finite Mazes 

Here, two theorems are presented which show that certain 

local information stored at each node 
*

i V  is sufficient for 

routing in an unknown maze and yields performance far 
better than random exploration of the maze by the agents. 
This information at node i includes the number of agent 

traversals, ( )
ij

N t , of an edge { , }i j  prior to time t, and the 

number of times, ( )
ij

t , that agents that traversed the edge 

have subsequently returned to node i prior to t. Accumulation 
of this minimal information, which is accelerated as the 
number of agents in the maze becomes large, provides 
routing information that allows the agents to reach the 
unknown goal with probability tending to 1. This makes the 
distributed, intelligent pursuit of the unknown goal by each 

agent possible using only information related to ( )
ij

N t and 

( )
ij

t , stored locally at the nodes and agents. 

To demonstrate this, the first theorem shows that in any 

finite graph without non-traversable edges, if ( )
ij

N t  becomes 

large while the number of agents ( )
ij

t  returning to node i is 

equal to zero, then the probability that the goal is reachable 

from node i through a path containing edge { , }i j  tends to 1.  

Theorem 1.  Let ( )
ij

N t  be the number of agents who 

have passed node i along an edge { , }i j  prior to time t. 

Assume that ( )
ij

t , the number of agents who have returned 

to node i subsequently, is equal to 0, and that all edges are 
traversable and have non-zero probabilities of being chosen 

by the agents. Then, as ( )
ij

N t  and t increase, the probability 

that there exists a path containing { , }i j  from node i to the 

goal tends to 1.  
Proof: The maze is represented as a connected graph G. 

Consider a node i from where ( )
ij

N t  agents have gone along 

an edge { , }i j  prior to time t. Let us assume that there is no 

path leading to the goal from node i containing edge { , }i j . 

Split each edge of the graph into a pair of directed edges and 
consider the graph as a Markov chain. The chain does not 
have self-loops at any node other than the goal which is an 
absorbing node. Let the probability of going along any edge 
be larger than 0. Then there is a nonzero probability p that an 
agent will come back to node i in finite time t. Thus there is 
some nonzero average rate of return, λ, of the agents back to 

node i. As the number of agents ( )
ij

N t  increases the 

probability that k agents will come back in time t, given that 
there is no path leading to the goal from node i containing 

edge { , }i j  is given by the Poisson distribution [39]. 

 ( )
( ) ; 0,1,2,...

!

k t
t e

p k k
k

    
From (1), for 0k   

(0) t
p e

 , which implies that 

 ( 0 | ) t
SP k e

    
where S=There exist a path from node i containing { , }i j  

leading to the goal.  This leads to  

 ( 0)
( | 0)

( )

t
S

S

P k
P k e

P

    
or 

 ( )
( | 0) 1

( 0)

tS
S

P
P k e

P k

     
In (4), as time t increases, ( 0)P k   reaches 1 (due to 

( )
ij

t  = 0) and ( )SP   is fixed. Thus ( | 0)SP k   

reaches 1. ■ 

The second result shows that if ( ) 0
ij

t   at a node i , 

then the steady state probability of finding the goal is 

maximized by following an edge { , }i j  with the minimum 

ratio 
( )

( )

ij

ij

t

N t


. 

Theorem 2. Let ( )
ij

N t  be the number of agents who 

have passed an intermediate node i along edge { , }i j  prior to 

time t, and ( )
ij

t  the number of agents out of ( )
ij

N t  who 

have returned to node i. Then as ( )
ij

N t  increases, the steady 

state probability ( )
S

p P s  that there exists a path 

containing { , }i j  from node i to the goal is maximum for the 

edge { , }i j  for which the ratio 
( )

( )

ij

ij

t

N t


 is minimum. 

Proof: For an agent who is present at an intermediate 
node i at some time t, the whole maze can be viewed as d 
systems reachable from it where d is the degree of node i. 
This view is shown in Fig. 1, where the systems are states of 
a Markov chain, numbered 1… d, and the state g represents 
the goal node g. 
Supposing that these systems are randomly selected by the 

agent at node i, let 
j

p  be the probability of return of an 

agent from system j to node i. Also, let 
jS

p  be the 

probability of going from the system j to the goal node, g, 
which is an absorbing node. The probability that an agent 

within system j remains within this system is 
jT

p .Also, let 

j
p  be the probability to select a particular system from node 

i so that the probability ( )
S

p P s  of reaching the goal is 

maximized.  

Using conditioning this probability can be written as 


1

( | )
d

s ij

j

p P s j P


  
where 

 ( | ) ,
sj ij j

P s j p P p   
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Fig. 1: Visualization of maze as d systems 

Substituting the values from (6) into (5), yields  


1

j

d

s s j

j

p p p


  
For each system 1,2,...,j d ,  

 1
jsj T j

p p p    
Substituting the value of 

sj
p  from (8) into (7) yields  


1

(1 )
j

d

s T j j

j

p p p p


    
or 


1 1

1
j

d d

S T j j j

j j

p p p p p
 

      
Given that all edges have non-zero probabilities to be taken 

by the agent, the steady state transition probability 
jT

p  of 

keeping an agent within the same system is 0. The problem of 

maximizing the probability 
s

p  of an agent to reach the goal 

from the node i is thus transformed into the problem of 

minimizing 

1

d

j j

j

p p


  on the right hand side of (10). Since 


1

1
d

j

j

p


   

the summation 

1

d

j j

j

p p


  is convex and has the minimum  


0

1

min
d

j j j

j

p p p


   
where

0
min( )

j j
p p , when

000 1
j j

p j j p      . 

This means that 
s

p  is maximized if the edge with minimum 

probability of an agent coming back to node i is taken at time 
t. Under the given assumption of equal complexity of the 

systems, and given ( ) :{ , }
ij

N t j i j E   is large enough, as 

the time passes, the ratio 
( )

( )

ij

ij

t

N t


 reaches the steady state 

probability of return of an agent to node i. Therefore, the 

greater the value of 
( )

( )

ij

ij

t

N t


, the smaller are the chances of 

finding the goal while going along the edge { , }i j . ■ 

C. Reinforcement Learning Definition  

Theorem 1 and Theorem 2 in the previous section showed 

the importance in routing of 
( )

( )

ij

ij

t

N t


, the ratio of the number of 

returns to node i after traveling along edge { , }i j  and the 

number of times that an agent traveled along that edge. This 
section capitalizes on these results to derive a reinforcement 
learning (RL) definition that will be used to build the 
collaborative maze traversal algorithm proposed here. 

To formulate the RL problem, the maze task can be 
treated as a Markov Decision Problem with the nodes of the 
maze graph representing states, edge choices being the 
actions of the agent, and transitions being defined 
deterministically through the edges of the graph. Based on 
the results of Theorems 1 and 2, a reward function for the 
agent m when traversing edge {i,j} in state i can be defined as  1 if ,  was previously traversed 

( )
0 otherwise

j

i j
r i

  
This reward function basically produces a negative 

reward whenever the agent has looped back and no reward 
otherwise. 

Using this reward function and using an average reward 
utility function, the agent can estimate the utility of traveling 
along an edge in the form of a Q-function where 

 ({ , }) ( )
m j

Q i j E r i     
Since all agents have the same objective and the same 

action space (and thus the same utility function), this utility 
function can be maintained collectively by accumulating all 
the rewards of the agents at the nodes, leading to a collective 
utility function: 

 ( )
( )

({ , }) ( )
( )

ijt

j

ij

t
Q i j E r i

N t

     
From this it can be seen that based on Theorem 2, 

maximizing this utility by selecting edges that have 
maximum utility is equal to maximizing the likelihood of 
moving along edges that lead to the goal, illustrating the 
soundness of the proposed RL scheme. 

D. Data Structures of Agents and Nodes 

To maintain and efficiently update the reward and utility 
data used by the reinforcement learning agent, utility data has 
to be maintained at the nodes of the network and sufficient 
information to determine rewards have to be maintained by 
the agents. The data structures presented here contain 
parameters used to represent these values and to allow for 
routing decisions by the agents for maze exploration. Upon 
its arrival at a memory node, an agent exchanges data with 
the memory node, and based on the principles of RL 
presented in the previous section and supported by Theorem 
1 and 2 updates the data structures and makes a decision 
about which edge to follow on leaving the node.  

Data Maintained by Visited Nodes 

Each memory node 
*

i V  at the visited locations 

maintains a time-varying matrix ( )
i

R t  of size 2
i

d  , where 

i
d  is the degree of the node i.  This matrix is given by  
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 ( ) [ ( ) ( )]ii i
R t N t t  

Here, ( )
i

N t  and ( )
i

t  are vectors of length 
i

d , each having 

one entry corresponding to each edge incident on node i. 

The vector ( )
i

N t  has the j-th entry equal to the number 

of agents ( )
ij

N t  who have travelled along the edge { , }i j  

prior to time t. The j-th entry in the vector ( )
i

t  is the 

negative of the number of agents, out of ( )
ij

N t , who have 

returned to it. That is to say, ( ) ( )
ij ij

t t   . If none of the 

agents who have gone along edge { , }i j  have returned to 

node i, then the j-th entry in vector ( )
i

t  is equal to zero.  

According to Theorems 1 and 2, routing decisions that 

select edge { , }i j  on leaving node i are beneficial if the j-th 

entry in the vector ( )
i

t  is equal to zero and detrimental as 

the j-th entry in the vector ( )
i

t  becomes more negative. 

The vector ( )
i

t  here represents accumulated rewards, with 

element j of ( )
i

t  reflecting the rewards of all the agents 

when traveling along { , }i j  accumulated up to time t.  

Data Maintained by Agents 

Nodes 
*

i V  in the explored graph 
*

G  are identified by 

EUI-64 IDs [40]. To compute its rewards and to be able to 

update the information at the nodes, every agent m N  

keeps track of the edges it has visited in the form of a finite 

list 
m

L  of ordered pairs of EUI-64 IDs of nodes it has visited. 

An entry of 
m

L  , ( )
m

L l  , is equal to ( ( , ), ( , 1))i m l i m l  , the 

edge of 
*

V  previously traversed by agent m. 

E. Node and Agent Data Updates  

In this section the computational details for updating the 
system data parameters, and thus the collective utility 
function of the agents used for the RL algorithm, are 
discussed. The node parameters are given in (13) and the 

agent parameters are the list 
m

L  of edges it has visited. These 

data parameters are updated based on only the local 
information passed between an agent and the node at which it 
currently resides. Based on the data updates, an agent makes 
a routing decision by selecting an edge along which to 
proceed on leaving the node. 
The system parameter update mechanism works through 
update algorithms operating at the agents and at the nodes. 

Suppose that at time t there are n agents 
1 2
, ,...

n
m m m  at 

some node 
*

( ) : ( )i t G i t g  . All these agents receive the 

EUI-64 ID of the node, which is also referred to as ( )i t , and 

the parameter matrix ( )
i

R t  from the node ( )i t .  

The following update algorithm is performed by an agent 
k

m  

who is at node ( )i t  at time t. In the following algorithm 

( )
km

r t is a vector updated by the agent 
k

m  who is at node 

( )i t at some time t and of length equal to the degree of ( )i t . 

The algorithm has three steps: data update, routing decision, 
and communicate to node. 

Algorithm 1- Agent Update and Routing Decision 

1) Data Update: Define,  

 
* *

( ) : ( ) 0 :{ ( ), }
k km m j

j Vr t r t i t j E    

Search 
mn

L  for ( )i t  

 ( 1)[ ( )] 1 : t :

( )( ) ( )

km

m

mk

k

L l
r t l and

L l first coordinate i t

   
  

The update specified here implies that at most one 

component of ( )
k

m
r t  is nonzero, which is -1. This nonzero 

component corresponds to the edge the agent used when it 
visited node i the previous time. The agent update to its RL 
vector is  

 ( )( ) ( )
k

mi i
r tt t    

2) Decision and Further Update: Select edge { , }i j  to 

follow on leaving node i based on the ratio of the 

accumulated reward ( )
ij

t  and the number of agents ( )
ij

N t  

(i.e. based on the average reward utility Q-value in (12)). 
This decision algorithm is given in Section III. Moreover, if 
the agent reaches a previously visited node, it updates the 

second coordinate of the corresponding entry in 
mn

L  to the 

one it is going to visit; otherwise it will create a new entry in 

mn
L . 

3) Communicate: Form ( )
km

e t , a vector of length 
( )i t

d  

consisting of zero entries, with only one entry equal to 1 at 

the position corresponding to the edge { , }i j selected. 

Communicate ( )
km

e t  and ( )
k

m
r t  to ( )i t . ■ 

In Algorithm 1, Step 1, an agent gives a negative reward 

of -1 to the edge incident at ( )i t  which it followed when it 

visited the node the previous time. This setback is 

communicated to the node ( )i t  in the form of vector ( )
k

m
r t . 

Also, the agent communicates the edge taken at time t in the 

form of ( )
km

e t . 

Upon receiving this information from the visiting agents, 

node ( )i t  adds all rewards to ( )
i

t  to get the new RL 

setback vector ( 1)
i

t  . The vector ( )
i

N t  is also updated 

according to the decisions of the agents to compute 

( 1)
i

N t  . These actions are summarized in the following 

algorithm. 
Algorithm 2: Node Update Algorithm 

Update RL gain and number of agents visiting node i. 
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
1

( 1) ( ) ( )
k

n

i i m

k

t t r t 


    

 

1

( 1) ( ) ( )
k

n

i i m

k

N t N t e t


    (19)■ 

Equations (15) and (16) elaborate the updates of ( )
i

R t  of 

node i on the basis of the RL feedbacks given by the visiting 
agents to the incident edges and the edges taken by agents at 
time t. 

III. ROUTING IN A MAZE USING REINFORCEMENT LEARNING 

This section describes the routing decision algorithm used 
by each agent in deciding which edge to follow when leaving 
a node i at time t.  This corresponds to Step 2 of Algorithm 1, 
the agent update and routing decision algorithm. This 
algorithm uses exploitation of the data about the explored 
graph to reach the goal. It also uses exploration to obtain data 
about the unexplored portion of the maze. The importance of 
balancing exploitation and exploration is well known in 
reinforcement learning [37]. 

A. Exploitation of Information for Intelligent Routing 

Routing in an unknown maze requires a balance between 
using or exploiting available information to select the route 
most likely to reach the goal, and exploring the unknown 
portion of the maze. This balance has been formalized as the 
‘exploitation vs. exploration’ dilemma [37].  

According to Theorem 1 and 2, the data contained in 

vectors ( ) [ ( ) ( )]ii i
R t N t t  contains information that 

can be used to make intelligent routing decisions. 

Specifically, as the j-th entry ( )
ij

N t  of ( )iN t  becomes 

large while the absolute value of the j-th entry 

( ) ( )
ij ij

t t    of ( )
i

t  is small, the probability is high 

that the goal node is reachable by following edge { , }i j , 

which corresponds to exploiting the available information. 
This RL based system proposes for an agent located at node 

( )i t  to randomly take one of the edges 
*{ ( ), }i t j  that 

maximize the collaborative utility, ( ) / ( )
ij ij

t N t .  

Taking the edge with the highest Q-value (or equivalently 

the lowest ratio 
( )

( )

ij

ij

t

N t


 is a greedy form of routing decision. 

Always following a greedy action, however, is not a good 
strategy since there should always be a finite probability that 
the agent will proceed along any edge in order to maintain a 
finite probability of finding other, better paths. Allowing a 
finite probability, say  , of following a different edge is 

termed an  -greedy exploration policy and it has been 

shown that  -greedy actions can preserve a good balance 

between exploitation and exploration [37]. Here, it is 
proposed that an agent follows the edge suggested by the RL 
system, i.e. the one with the highest Q-value, with probability 

(1 ) 1  , according to the  –greedy approach [37]. This 

policy addresses the fact that in a graph with multiple paths to 
the goal it may happen that a suboptimal path is found prior 
to the complete exploration of the graph and thus, sufficient 

exploration is required to fully explore the unknown graph. 
The following mechanism is thus proposed for an agent to 
make a routing decision in Step 2 of Algorithm 1. 

The edge { ( ), }i t j  to be taken by agents leaving node i is 

selected with the following probability distribution.  


*

*

1

({ ( ), }) 1

({ ( ), }, )
id

P i t j

P i t j j j 




 
   

where 
*{ ( ), }i t j  is the edge suggested by the RL based 

system. 

B. Comparison with ACO 

Ant Colony Optimization is a graph search algorithm 
initially proposed by M. Dorigo [1]. This is a randomized 
swarm steering algorithm to find a path within a graph. The 
algorithm is inspired by the mechanism of optimization used 
by ants in their colonies to find a minimum path to their food 
[41], [42]. The ant colony algorithm proposed by Dorigo, 
explores an unknown graph by multiple agents in a 
distributed manner by using a centralized database [43]. The 
algorithm implements two local decision policies: Trail and 
attractiveness [1].  Further detailed about ACO can be seen at 
[46]. 

IV. SIMULATION  

This section presents the simulation setup and results for 
agents exploring a maze using the methods proposed in this 
paper. The RL-based search algorithm of Sections II and III 
is simulated. The results are compared to those for agents 
searching the maze with random search, with ACO and with 
a hybrid ACO and random search system. It is shown that the 
proposed RL approach significantly speeds up the search. 

To measure effectiveness, an additional performance 
measure is defined and used to evaluate the approaches. 

Definition (Performance Measure): The size of a 2D 

maze is defined as M LW , where L is the length of the 

maze and W its width.  The Performance Measure (PM) of a 
search is defined as the ratio of the mean time T taken by the 
first agent to reach the goal to the maze size M. That is to say. 

 T
M

PM   (21)■ 

It is desired for this performance measure to be small.  

A. Simulation Results 

For the purpose of simulation several maze structures 
were generated using the Matlab Maze Toolbox [45]. 
Outcomes of typical simulations are shown in Fig. 2. These 
results are for mazes of size 55 with 10 agents exploring 

them. All agents start at location (1,1)  and their unknown 

goal is present at location (5, 5) . These two locations are 

numbered as maze cell 1 and 25 respectively along the 
bottom left axes of Fig. 2. Fig. 2 (a) shows the case when the 
agents explore the maze through random search and without 
any intelligent decision-making. It is observed that the first 
agent reaches the goal after 45 time steps. This is noted by 
observing when the first point appears in the upper left plane 
of the 3D graph.  At the end of the simulation spanning 100 
time steps, only 3 agents have reached the goal using random 
search. 
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Fig. 2: Simulation results of Maze Exploration, (a) Random Search 
(b) ACO (c) ACO and Random search (d) RL Based System 

In [31], ACO is implemented to explore a penalty maze. 
In this paper ACO is implemented for the maze as mentioned 
above. Fig. 2 (b) shows the case when the agents explore the 
maze through a local version of ACO without its global part 
of Daemon Action so that the comparison between two 
approaches can be made fairly. It is observed that the agents 
mostly do not reach the goal. This happens since ACO takes 
into account the number of agents that went through a path 
and not the number of agents who visit the same node again. 
In this way the agents get into stagnation of the search by 
visiting the same set of nodes again and again. The ACO can 
also be implemented along with random search. In this hybrid 
system there are two types of agents, one following ACO and 
others following the random search. The agents following 
random search also deposit pheromones as the other agents 
do. Fig. 2 (c) shows a typical case of maze search by the 

hybrid system. In case of the hybrid system there is some 
improvement as compared to simple random search and ACO 
since now agents have pheromone deposition from random 
agents to help other agents to get out of stagnation. This is 
noted by observing when the first point appears in the upper 
left plane of the 3D graph.  After 100 time steps, 4 agents 
have reached the goal using hybrid search. 

Fig. 2 (d) shows a typical case when the agents are 
equipped with the RL system based on Theorems 1 and 2 as 
developed in Sections II and III. It is observed that the first 
agent reaches the goal within 10 time steps, the minimum 
time for this size of maze, while the next two reach the goal 
within 16 time steps. At the end of the simulation, all agents 
have reached the goal. Note that, as time passes, more and 
more information is stored in the maze in the form of 
memory nodes dropped by the agents, thus routing 
successively improves.  

In the second part of the simulation, results were obtained 
for five different cases with different maze sizes M.  Each of 
these simulations was run M times and the mean time 
required for the first agent to reach the goal, T is calculated in 
each case. The performance measures PM for these maze 
sizes and for various numbers of agents are calculated. Here, 
it is observed that the performance measure PM for the RL-
equipped agents, is almost twice as small as that for agents 
using the random search and hybrid search. The PM of a 
system purely based on ACO is even higher than random 
search-based and hybrid system. It is observed that the best 
performance measure using random search and hybrid search 
is approximately 1, while the performance measure using the 
RL-based routing system is approximately 0.5. Moreover, the 
graphs show that the RP-based system scales much better as 
the maze size increases. Figures are excluded due to page 
limit, and are available at [46]. 

V. CONCLUSION  

This paper establishes a strategy for steering a swarm of 
autonomous agents out of an unknown maze to some goal 
located at an unknown location. The strategy is based on 
principles of reinforcement learning. Two theorems show that 
simple rules of learning from past experience make the maze 
exploration significantly faster than standard random search. 

Based on these results, a  –greedy RL routing algorithm, 

that uses only local information exchanges, is developed in 
Section III to balance exploitation and exploration of the 
unknown maze. Simulation results show that maze 
exploration using minimal information and based on RL is 
far superior to exploration using random search, search based 
on ACO and search based on hybrid ACO and random 
search.  
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