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KINEMATICS-BASED CHARACTERIZATION

OF THE COLLISION COURSE

F. Belkhouche∗ and B. Belkhouche∗∗

Abstract

The problem of collision course between a mobile robot and a

moving object is modeled in polar coordinates using the kinematics

equations. A model of the relative motion of the moving object

as seen by the robot is then derived. This model consists of the

relative velocities along and across the visibility line, and gives the

range rate and the turning rate of the moving object with respect

to the robot. The conditions for the collision course are derived

in terms of the robot’s and the moving object’s states. We define

two types of collision course: the exact collision course and the

weak collision course. The exact collision course always results in

a collision, and is clearly characterized by a given set of equations.

The weak collision course may become an exact collision course

near collision and allows an early detection of the collision course

in various scenarios. Several examples and scenarios illustrating the

theory are shown using simulation.
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1. Introduction

The ability to avoid collision with moving obstacles is nec-
essary for various applications of mobile robots. This abil-
ity significantly increases the mobility of a robot for navi-
gation, and thus allows the robot to perform other tasks.
Recently, research on robotics navigation has shifted from
static environments to dynamic environments [1–5]. Plan-
ning collision-free paths in dynamic environments requires
a dynamic collision avoidance system. Path planning in
dynamic environments is more difficult, where algorithmic
complexity issues are widely studied [6, 7]. Collision detec-
tion problems are discussed in different areas such as mo-
bile robotics, computer graphics and simulation, intelligent
transportation, and aerospace engineering. In general, col-
lision detection deals with the problem of checking whether
two objects overlap in space, or whether their boundaries
intersect as they move. Collision detection may have dif-
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ferent aspects; therefore, the same collision detection prob-
lems are seen from different perspectives in different fields.
For example, probability approaches are widely used in
aerospace engineering [8, 9]; however, these techniques are
not used in computer graphics. Various methods such as
spatio-temporal intersection, swept volume, and proxim-
ity and distance queries are discussed in the literature.
Several computer modeling techniques employ the swept
volume method, where the aim is to determine the overlap
between the swept volume and the moving obstacle. These
techniques are quite efficient for determining whether two
models overlap. However, false collision can be detected if
the time dimension is not added. Also, exact computation
of such volumes is time consuming, especially when objects
undergo a rotational motion.

Several researchers in robotics combine the collision
detection problem with path planning and navigation in
dynamic environments. Some of the earliest methods can
be found in [10–12], where collision detection with an
obstacle that moves with constant speed at fixed direction
is accomplished by computing a collision front, which is a
number of curve and line segments characterizing collision
points at a certain speed. Collision detection based on
the prediction of the future path of the obstacle using the
sensory system is discussed in [1, 5, 13]. In [13], the task is
achieved by a learning process. The training data consist
of trajectories of the obstacles obtained by means of video
cameras.

The velocity obstacle approach for collision detection is
suggested in [14]. This technique is among the most impor-
tant techniques for collision detection between a wheeled
mobile robot and a circular moving object. The veloc-
ity obstacle approach maps the dynamic environment into
the velocity space. The velocity obstacle is a first order
approximation of the robot velocities that would cause
collision. The drawback of this method is that collision
prediction may be inaccurate if the obstacle does not move
in a straight line. A collision cone approach is suggested
in [15] for collision detection and avoidance, where the
moving objects have arbitrary shapes. The collision cone
approach is based on the relative velocities of the robot
and the moving object. Important results are presented
and proven rigorously; however, the authors focus on the
non-accelerating case, which is relatively simple. Another
important work can be found in [16]. The method is based
on spacial decomposition of the relative motion (relative
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position, velocity, and acceleration), from which an ur-
gency function is derived and used. Algebraic expressions
are used in [17], and non-linear programming is used to
solve the problem in an optimal way.

Collision detection using the notion of a distance func-
tion is widely discussed [18–23]. The aim is to detect the
pair of the closest features between two objects. Differ-
ent algorithms for distance computation are discussed in
the literature. Two families of methods for distance com-
putation are widely used [16]: computational geometry
methods and iterative methods. For distance computation
between non-overlapping convex polytopes, the algorithms
suggested by Lin and Canny [21], and Gilbert et al. [22]
are among the most known algorithms. These algorithms
have been extended and improved in different ways by
other researchers [24–27]. Typically, distance and proxim-
ity collision detection methods are time consuming. Thus,
improving computation time is an important issue. This
problem is considered in [28, 29]. Other techniques for
collision detection based on distance functions use range
sensors [19]. These techniques are quite successful in prac-
tice. However, they may lead to wrong conclusion or false
alarm, since two approaching objects are not always in
a collision course. In [30], the authors used the smallest
polar angle criterion instead of the minimum distance for
the relative distance. Some of the previous methods can be
augmented by adding the element of time. This approach
is called the time configuration space [31–33]. In [34],
collision detection is performed using tactical sensors.

Note that many of the suggested methods [5, 10–12, 32]
are limited the simple particular case of linear or piecewise
linear motions, or constant speeds.

Our goal in this paper is to elaborate a new ap-
proach for collision course detection for robotics applica-
tions, without any assumptions on the motion of the robot
and the moving object. Our contribution consists of the
use of the relative kinematics equations, expressed in terms
of the velocity along and across the visibility line between
the robot and the moving object. We define two collision
types: the exact collision course and the weak collision
course. Here, we do not assume linear or piecewise linear
motions, or constant speeds. The main application of the
method is in robot navigation in dynamic environments,
where obstacles are moving with unknown motion.

This paper is organized as follows. In Section 2, the
problem is formulated. Definitions concerning the geom-
etry and kinematics quantities are introduced in Section
3. The relative kinematics models are also derived in this
section. In Section 4, collision with a stationary object
is discussed briefly. In Section 5, collision conditions be-
tween two geometric points are derived. The weak collision
course is then discussed in Section 6. These results are ex-
tended to the case of circular objects in Section 7. Finally,
an extensive simulation is used to illustrate our theory in
Section 8.

2. Problem Formulation

Let R denote a mobile robot moving in a two-dimensional
workspace W . We assume that the dynamics of the robot

can be described by a differential equation of the form
ṡr = f(sr, ur), where sr ∈Sr is the state of the robot and
ur ∈Ur is its control; Sr and Ur represent the state and
control spaces, respectively. B is an object moving in
the workspace. The motion of B is characterized by a
differential equation such as ṡb = f(sb, ub), where sb ∈Sb

is the state of the moving object, and Sb is the state
space. ub may be a control or command input of B. Let
Pr(t)= (xr(t), yr(t)) denote the trajectory of the robot,
where xr and yr are the robot’s coordinates in the inertial
frame of reference. In a similar way Pb(t)= (xb(t), yb(t))
denotes the trajectory of the moving object, and xb and yb
are the moving object’s coordinates in the inertial frame of
reference. Both Pb(t) and Pr(t) are assumed to be contin-
uous functions. Given the motion dynamics of the robot
and the moving object, our aim is to find the conditions
of the collision course between the robot and the moving
object as a function of the state variables sr and sb. We
assume that:

1. The robot does not have a priori knowledge regarding
the motion of the moving object. However, the mov-
ing object’s velocity and position are assumed to be
measurable in real time by the robot’s sensory system.

2. Both the robot and the moving object have circular
shapes. In order to simplify the analysis, the robot is
reduced to its reference point, and the moving object
is enlarged by the robot’s radius. This approach is
widely used in robotic navigation [1, 14].

3. The moving object is a rigid body, where all its points
move at the same velocity.

The robot moves in the horizontal plane according to
the following kinematics equations:

ẋr = vr cos θr

ẏr = vr sin θr

θ̇r = ωr

v̇r = ar

(1)

Under system (1), the robot state is given by sr = [xr, yr, θr,
vr]

T , where vr is the robot’s linear velocity, ar is its linear
acceleration, θr is the robot orientation angle, and ωr is
the robot angular velocity. The control input for the robot
is given by (ωr, ar). The moving object moves according
to the following kinematics equations:

ẋb = vb cos θb

ẏb = vb sin θb

θ̇b = ωb

v̇b = ab

(2)

The state space of the moving object is given by
sb = [xb, yb, θb, vb]

T , where vb is its linear velocity, ab is its
linear acceleration, θb is its orientation angle, and ωb is its
angular velocity. A relative position function is defined as
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Figure 1. Geometric representation of the robot and the
moving object in the horizontal plane.

Pd =(xd, yd), with xd =xb −xr, yd = yb − yr. If R and B
have radii ε1 and ε2, respectively, a collision occurs if:

‖Pd‖ = ε′1 + ε′2 (3)

where ε′1 → 0, ε′2 → ε1 + ε2.

3. Modeling the Kinematics and Geometry

Consider the geometry shown in Fig. 1. We define the
following quantities:

1. The visibility line �Vl is the imaginary straight line
that starts at the robot reference point and is directed
towards the moving object.

2. The visibility line angle γd is the angle from the refer-
ence line to the visibility line.

3. The relative range or distance between the robot and
the moving object reference points is denoted by ld.

Points b1 and b2 represent the upper and lower tangents
to the circle from the robot’s reference point. We also
define the following quantities:

4. The visibility lines between the robot and points b1
and b2 are given by �Vb1 and �Vb2, respectively.

5. The visibility line angles constructed based on �Vb1

and �Vb2 are γb1 and γb2, respectively. The distances
between the robot and points b1 and b2 are given by
lb1 and lb2, respectively.

6. The collision cone Ccon is defined as follows Ccon = {γ :
γ ∈ [γb1, γb2]}.

7. The collision front is the set of points on the enlarged
moving object circumference for which γ ∈ [γb1, γb2] is

satisfied. Let m denote a point on the collision front.
�Vm is the visibility line between R and m, γm is the
visibility line angle based on �Vm, and lm is the distance
between point m and R.

8. The direction of the linear velocities of the robot and
the moving object are �λr and �λb, respectively. The
direction of the linear velocity of the moving object at
points b1, b2 and m are �λb1, �λb2 and �λm, respectively.

9. The velocity ratio k is defined as follows:

k =
vb
vr

(4)

Clearly, γd and ld are given by:

l2d = x2
d + y2d, tan γd =

yd
xd

(5)

Similar to ld, the visibility line angle γd can be calculated
based on the robot and the moving object coordinates
when they are known. This is possible even if the moving
object and the robot are not visible to each other. Let �vr
and �vb be the velocity vectors for the robot and the moving
object, respectively. Consider the relative velocity vector:

�vbr = �vb − �vr (6)

The velocity vector �vbr can be decomposed into two com-
ponents in the Cartesian plane as follows:

vxbr = ẋd = vb cos θb − vr cos θr

vybr = ẏd = vb sin θb − vr sin θr
(7)

System (7) gives the relative motion in Cartesian coordi-
nates. Transformation to polar coordinates of systems (1)
and (2) yields the following system for the robot’s equation:

l̇r = vr cos(θr − γr)

lrγ̇r = vr sin(θr − γr)
(8)

θ̇r = ωr

v̇r = ar

where (lr, γr) gives the robot’s position in polar coordi-
nates, and for the moving object

l̇b = vb cos(θb − γb)

lbγ̇b = vb sin(θb − γb)
(9)

θ̇b = ωb

v̇b = ab

where (lb, γb) gives the moving object’s position in polar
coordinates. �vbr can be decomposed into two components
along and across the visibility line �Vl as follows:

�vbr = l̇d�u‖ + ldγ̇d�u⊥ (10)

where �u‖ and �u⊥ are the unit vectors along and across the
visibility line, respectively. By considering systems (8), (9)
and (6) we get:
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l̇d = vb cos(θb − γd)− vr cos(θr − γd)
(11)

ldγ̇d = vb sin(θb − γd)− vr sin(θr − γd)

It is easy to deduce from the sign of l̇d whether the robot
and the moving object are approaching or moving away
from each other. The second equation gives the turning
rate of the moving object with respect to the robot. The
kinematics model given by (11) becomes in the case of a
stationary object

l̇d = −vr cos(θr − γd)
(12)

ldγ̇d = −vr sin(θr − γd)

Equation (11) can be reduced to a system similar to (12) in
the case of a moving object by re-writing �vbr in a different
way. This allows us to write

v
‖
br = l̇d = −vbr cos(θbr − γd)

v⊥br = ldγ̇d = −vbr sin(θbr − γd)
(13)

with

vbr =
√
ẏ2d + ẋ2

d, tan θbr =
ẏd
ẋd

(14)

It is easy to see the similarity between equation (13) and
equation (12), which is derived for a stationary object. The
main advantage of equation (13) is that the collision detec-
tion with a moving object is reduced to a stationary object
situated at distance ld from the robot and orientation γd,
and thus very complex scenarios can be reduced to simple
ones. Note that equation (13) is reduced to equation (12)
when vb =0. We introduce the following definitions:

Definitions
Collision course: A collision course between the robot
and the moving object means that, given the instantaneous
motion profile and the geometric positions of the robot and
the moving object, a collision will take place in the future.

Pure pursuit: R is applying a pure pursuit towards
another object B if the velocity vector of R, �vr lies on
the visibility line �Vl between R and B. As a result the
orientation angle of R is equal to the visibility line angle:
θr = γd.

Deviated pursuit: Here R is not directly heading
towards B, but there exists a non-zero angle between
the velocity vector of R and the line of sight, that is:
θr = γd +α0, α0 is the deviation angle.

Exact collision course: Two moving objects R and
B are in a collision course if the visibility line angle rate
between them satisfies γ̇d =0, and a decreasing range.

Weak collision course: The weak collision course
between objects R and B is characterized by γ̇d → 0, and a
decreasing range.

Point collision course: A collision course between
two geometric points. It also characterizes the collision
course between a geometric point and a point on a moving
body.

Circle collision course: A collision course between a
circle shaped object and a geometric point.

Collision point: The collision point Pcol =(xcol, ycol)
is given by:

Pcol = Pr(tf ) = Pb(tf ) (15)

where tf > t ≥ 0 is the collision time.
Path intersection: The paths traced by the robot and

the moving object intersect if:

Pr(t1) = Pb(t2) (16)

with t1, t2 >t≥ 0. The intersection point Pint =(xint, yint)
satisfies: Pint =Pr(t1)=Pb(t2). Pint =Pcol when t1 = t2.

4. Case of a Stationary Object

In this section we briefly discuss the collision course with a
stationary object. Our analysis is based on (12). It is well
known [1, 14] that collision with a stationary circle takes
place when the instantaneous velocity vector direction of
the robot lies in the collision cone Ccon, that is:

�λr ∈ [�Vb1, �Vb2] (17)

or:

θr ∈ [γb1, γb2] (18)

In the pure pursuit towards a stationary object, the vis-
ibility line angle is constant. Characterizing the collision
using (18) does not take into account the collision course
resulting from the deviated pursuit. The deviated pursuit
is characterized by:

θr = γm + α0

γm ∈ [γb1, γb2]
(19)

with α0 ∈ (−π
2 ,

π
2 ). When α0 →±π

2 , (with α0 �=±π
2 ) we

talk about the weak deviated pursuit. Unlike the pure
pursuit collision course with a stationary object, the weak
deviated pursuit is not characterized by a constant value of
γd, except near collision. In this case, the distance robot-
object is decreasing very slowly, and the rate of change of
the visibility line angle is near its maximum value. This
makes the weak deviated pursuit collision course more
difficult to detect. The following result is a generalization
of condition (18) to the deviated pursuit.

Proposition 1. The robot is in a collision course with
the stationary circle if:

θr = γm + α0

γm ∈ [γb1, γb2]
(20)

with α0 ∈ (−π
2 ,

π
2 ).
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Proof: The proof is simple if we consider the range
rate equation in (12). �

A more general case resulting in the collision course
is when γd goes to an asymptotically stable position that
results in a decreasing range. The equilibrium solutions for
the visibility line angle rate in (12) are given by:

γ−
d = θr + 2πn (21)

γ+
d = π + θr + 2πn (22)

where n is an integer. Clearly, from the range rate equation,
solution γ−

d results in a decreasing range, while solution γ+
d

results in an increasing range. Based on this observation,
we have the following result.

Proposition 2. The robot is in a collision course
with the stationary circular object when γ−

d is an
asymptotically stable equilibrium solution for γm, with
γm ∈ [γb1, γb2].

Proof: If γ−
d is an asymptotically stable equilibrium

position for γd then, γd → θr +2πn= γ−
d with time, and as

a result cos(γ−
d − γd)→ 1 and l̇d < 0. The proof is similar

for any point m on the collision front. �
It is relatively easy to detect the collision course with

a stationary object due to the deviated pursuit. This can
be accomplished using the property stated as follows.

Proposition 3. When the robot is in a collision
course resulting from the deviated pursuit with a sta-
tionary object, it results that:

ldγ̇d
vr

= c0 = constant (23)

with c0 ∈ (−1, 1).

Proof: From the second equation in (12), we get
under the deviated pursuit

ldγ̇d
vr

= −sin(α0) (24)

This is also true for any point m on the collision front. For
the weak deviated pursuit, c0 is near ±1. �

Note that the range rate is constant when the robot’s
speed is constant, which means that under the deviated
pursuit, the robot approaches any point on the collision
front at the same rate.

5. Collision Course Between Two Moving Geomet-
ric Points

We begin our analysis by considering the case where both
the robot and the moving object are modeled as geometric
points. Finding the collision course conditions between
two geometric points is not necessarily simple. For exam-
ple, finding the collision course between two accelerating
geometric points is more difficult than finding the colli-
sion course between two non-rotating polygonal objects

moving in a constant direction with constant speed. Path
intersection is a necessary condition for collision, but not
sufficient. The path intersection is characterized by using
the instantaneous values of the orientation angles of the
robot and the moving goal. We have the following result:

Proposition 4. For forward motions, the paths
intersection can be characterized by the following con-
ditions:

A1 =
sin(θr − θb)

sin(θr − γd)
< 0 (25)

and

A2 =
sin(θr − θb)

sin(θb − γd)
< 0 (26)

We will see later that sin(θb − γd) and sin(θr − γd) have
the same sign when the paths intersect. The proof for
proposition 4 is as follows:

Figure 2. Path intersection.

Proof: Without loss of generality, consider the geo-
metric configuration of Fig. 2. The plane is divided by
the visibility line into two parts. The upper part, shown in
Fig. 2(a) corresponds to:

θb − γd ∈ (−π, 0) (27)

The lower part, shown in Fig. 2(b) corresponds to

θb − γd ∈ (0, π) (28)

It is clear that path intersection requires θr − γd and θb − γd
to belong to the same interval ((0, π) or (−π, 0)). There-
fore, sin(θb − γd) and sin(θr − γd) have the same sign. The
proof for each configuration is as follows:

Upper half

From Fig. 2(a), the paths of the robot and the moving
object intersect when

5



θr ∈ (θb, γd) (29)

From which it is possible to write

θr − θb ∈ (0, γd − θb) (30)

and

θr − γd ∈ (θb − γd, 0) (31)

Since sin(κ)=−sin(−κ), from the intervals given in (30),
(31) it turns out that sin(θr − θb) and sin(θr − γd) have
opposite signs. Thus, the real numberA1 is always negative
when the paths intersect.

Lower half

From Fig. 2(b), the paths of the robot and the moving
object intersect when

θr ∈ (γd, θb) (32)

From which it is possible to write

θr − θb ∈ (γd − θb, 0) (33)

and

θr − γd ∈ (0, θb − γd) (34)

Similarly to the previous case, sin(θr − θb) and sin(θr − γd)
have opposite signs. Thus, path intersection requires the
real number A1 to be always negative in this case also. The
proof is similar for the real number A2 in (26). �

Conditions (25) and (26) give a simple test for deter-

mining whether the velocity directions �λr and �λb intersect.
This test is instantaneous and valid for both constant and
time varying orientation angles. Our result concerning the
exact collision course is stated as follows.

Proposition 5. If (25) and (26) are satisfied for
forward motions, with

vr sin(θr − γd) = vb sin(θb − γd) (35)

then, the robot and the moving goal are in a collision
course.

Equation (35) expresses the collision course in terms
of the speeds, orientation angles, and positions. This can
be seen in the formula of the visibility line angle given in
(5). The proof for proposition 5 is stated as follows.

Proof: The proof is based on the time derivative of
the relative range ld. By using (35) and the equation
for the relative range between the robot and the moving
object, we get

l̇d =
vr sin(θr − γd)

sin(θb − γd)
cos(θb − γd)− vr cos(θr − γd) (36)

By using trigonometric identities, we get in terms of the
robot velocity

l̇d = vr
sin(θr − θb)

sin(θb − γd)
= A2vr (37)

or in terms of the velocity of the moving object vb

l̇d = vb
sin(θr − θb)

sin(θr − γd)
= A1vb (38)

Since A1 and A2 are negative, l̇d < 0 for forward motions.�

When the path intersection conditions and (35) are
satisfied, the relative range l̇d changes sign at the collision
point, i.e., when ld =0. Also, when this point is reached,
the visibility line angle γd switches by π (the new value
of γd equals the old value +π), and A1 and A2 become
positive. The following is a property of the collision course.

Proposition 6. When the robot and the moving
object are in a collision course, the visibility line angle
is constant.

Proof: This result is obtained directly from the sec-
ond equation in (11), which gives the rate of turn of the
visibility line angle. Using (35), we get γ̇d =0 in the sec-
ond equation in (11), which implies constant value for the
visibility line angle. �

From this proposition, it results that, when the robot
and the moving object are in a collision course, the visibility
lines at different times are parallel to each other.

6. Weak Collision Course

Equation (35) does not take into account the collision
course that corresponds to a non-constant visibility line
angle. We define the collision course resulting from (35)
as the exact collision course, and we define the collision
course corresponding to γ̇d �=0 as the weak collision course.
In many situations, the weak collision course results in an
exact collision course that appears suddenly just before
collision. Assume that vr >vb (the other case, when vb >vr
is similar). The weak collision course resulting from the
pure pursuit is characterized by

θ∗r = γd (39)

and the exact collision course formulated in terms of the
robot’s orientation angle is obtained from equation (35) as
follows:

θ∗∗r = sin−1(k sin(θb − γd)) + γd (40)

The difference between θ∗r and θ∗∗r describes the transition
from the pursuit and the exact collision course. Orientation
angles between θ∗r and θ∗∗r result in a collision. It is
important to note that there exist other weak collision
course scenarios that are not captured by the pursuit.
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7. Collision Course: Case of Circles

Here, we generalize our previous results. We saw that the
exact collision course in the case of geometric points is
characterized by a constant visibility line angle; and thus,
at any time, there are single values of θr, vr that lead to
collision. In the case of a circular moving object, there
exist intervals for θr, vr that lead to collision. Here, instead
of a collision point Pcol, we define a collision circle Ccol,
which has ε1 + ε2 as radius. We have the following result
concerning the exact collision course.

Proposition 7. The robot and the moving object
are in a collision course if

1. The robot is in a collision course with the moving
object’s reference point.

2. There exists a point m on the collision front for
which

vr sin(θr − γm) = vb sin(θb − γm) (41)

Proof: The proof is quite similar to the case of
geometric points. �

Proposition 8.

1. When k < 1. Let

θr1 = sin−1(k sin(θb − γb1)) + γb1 (42)

θr2 = sin−1(k sin(θb − γb2)) + γb2 (43)

Assume that θr1 <θr2. The collision course takes
place when

θr ∈ [θr1, θr2] (44)

When θr1 >θr2, it suffices to permute θr1 and θr2 in
(44).

2. When k > 1. Let

θb1 = sin−1

(
1

k
sin (θr − γb1)

)
+ γb1 (45)

θb2 = sin−1

(
1

k
sin (θr − γb2)

)
+ γb2 (46)

Assume that θb1 <θb2. The collision course takes
place when

θb ∈ [θb1, θb2] (47)

When θb1 >θb2, it suffices to permute θb1 and θb2 in
(47).

Proof: The proof is similar for both cases, thus we
consider only case 1. θr1 results in a collision with point b1,
and θr2 results in a collision with point b2. Therefore any
orientation angle between θr1 and θr2 results in a collision
with a given point in the collision front. �

Proposition 9.
The collision course between the robot and the cir-

cular object is given in terms of the speeds as follows

1. Let

vr1 =
vb sin(θb − γb1)

sin(θr − γb1)
(48)

vr2 =
vb sin(θb − γb2)

sin(θr − γb2)
(49)

Assume that vr1 <vr2. The collision course takes
place when

vr ∈ [vr1, vr2] (50)

When vr1 >vr2, it suffices to permute vr1 and vr2
in (50).

2. Let

vb1 =
vr sin(θr − γb1)

sin(θb − γb1)
(51)

vb2 =
vr sin(θr − γb2)

sin(θb − γb2)
(52)

Assume that vb1 <vb2. The collision course takes
place when

vb ∈ [vb1, vb2] (53)

When vb1 >vb2, it suffices to permute vb1 and vb2 in
(53).

Proof: The proof is similar for both cases, thus we
consider only case 1. vr1 results in a collision with point
b1, and vr2 results in a collision with point b2. Therefore
any speed between vr1 and vr2 results in a collision with a
given point in the collision front. �

Equations (44) and (50) state that the visibility line
angle varies, but within given limits. Propositions 7, 8
and 9 deal with the exact collision course, where the vis-
ibility line angle varies within a given interval. The next
result concerns the weak collision course characterized by
the pursuit. Now we discuss the collision course char-
acterization based on model (13), which transforms the
relative kinematics equations between two moving objects
to a kinematics model between the robot and a stationary
object. The following result concerns the exact collision
course.

Proposition 10. The exact collision course be-
tween the moving object and the robot is equivalent to
the pure pursuit under (13).

Proof: As we have seen the exact collision course
is characterized by yd =xd tan γd, with γd =constant. By
taking the derivative, we get ẏd = ẋd tan γd. From (13) it
turns out that γd = θbr, which indicates the pure pursuit.�

Under this formulation, the exact collision course be-
tween the robot and the moving circle can be described
as

7



θbr = γm

γm ∈ [γb1, γb2]
(54)

Recall that tan θbr =
�yd

�xd
, which is different from the orien-

tation angle of the robot. The deviated pursuit under (13)
results also in a collision course.

Proposition 11. The robot and the moving circle
are in a collision course when

θbr = γm + α0

γm ∈ [γb1, γb2]
(55)

with α0 ∈
(−π

2 ,
π
2

)
.

Proof: The proof is similar to the case of a stationary
object. �

The deviated pursuit is relatively simple in the case
of a stationary object. However, in the case of a moving
object, the model given by (13) provides an important
simplification of very complex scenarios.

8. Simulation

Our methods are illustrated using several simulation ex-
amples. These examples are carefully chosen to illustrate
various scenarios in both the exact and the weak collision
course. The paths of the robot and the moving object are
shown in the Cartesian frame of reference. We also show
other important quantities such as the rate of turn of the
visibility line angle as a function of time. Our simulation
is obtained using Matlab.

Figure 3. Exact collision course with points b1 and b2,
θr = θr1.

8.1 Example 1: Exact Collision Course

This example illustrates the exact collision course. This
scenario is shown in Fig. 3, where θr = θr1 result in a
collision with point b1, and θr = θr2 results in a collision
with b2. θr1 and θr2 satisfy the collision course equation
given in (42) and (43). The robot’s orientation angle profile

is shown in Fig. 4. Any orientation angle of the robot
θr ∈ [θr1, θr2] results in a collision with the moving object.
This interval is represented by shaded area in the figure.

Figure 4. Robot’s orientation angle profile θr(t).

8.2 Example 2: Transition from aWeak to an Exact
Collision Course

This example is to illustrate the transition from the weak
collision course due to the pure pursuit and the exact
collision course. The moving circular object starts from
point B0(0, 0) and moves in a vertical line at constant
speed, the robot starts from point R0(20, 20) and moves
with constant speed also. Three paths are shown for the
robot. In path (1), the robot is in an exact collision course
with B, with θr given by (39). In (2) the robot is in a weak
collision course with B, such that θr is given by (40). In
path (3), the robot moves with an orientation angle that
is between (39) and (40). Orientation angles between (40)
and (39) result in paths between (1) and (2) in Fig. 5,
ending up with a collision.

Figure 5. Comparison in the paths between the weak and
the exact collision course.

8.3 Example 3: Multiple Moving Objects

This example shows multiple moving objects. The collision
course is determined using the virtual plane and the colli-
sion cone. In the scenario shown in Fig. 6, collision takes
place with B3. This collision is easily detected by using the

8



virtual plane shown in Fig. 7, where the velocity vector of
B3 lies inside the collision cone. Note that in this example,
the robot is transformed into a stationary robot, while the
moving objects are replaced by the virtual moving objects
with new speeds and orientation angles.

Figure 6. A scenario showing multiple (4) moving objects
and a robot in the workspace, collision takes place with B3

.

Figure 7. Virtual plane for the scenario of Fig. 6. The
robot is transformed into a stationary robot, while the
moving objects Bi are transformed into virtual moving
objects, collision takes place with B3.

9. Conclusion

This paper deals with the problem of collision course char-
acterization between a wheeled mobile robot and a circular
moving object. The problem is modeled using relative
kinematics equations based on two different models. Two
types of collision course are defined: the exact collision
course and the weak collision course. The weak collision
course is more difficult to detect in general; however, in
many situations, it leads to an exact collision course. The
problem is first studied for two geometric points and gen-
eralized to the case of a circular object later. The collision
course conditions are derived as a function of the instanta-
neous states of the robot and the moving object. The state
consists of the positions, the speeds, and orientation angles.
This presents an important particularity of the method
compared with other methods. An extensive simulation is
carried out to illustrate different collision scenarios.
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