
LINEAR TIME–VARYING FEEDBACK LAW FOR

VEHICLES WITH ACKERMANN STEERING

Abstract

In this paper, we propose an optimal state feedback control law for addressing point sta-

bilization and tracking problems of nonholonomic vehicles with Ackermann steering in a

unified manner. Unlike other feedback controllers that perform dynamic linearization of ve-

hicle models, the proposed optimal feedback controller provides the state feedback control

to the original nonlinear vehicle model for achieving excellent state-tracking performance.

In addition, nonlinear control techniques suggested in the literature to date require that the

desired trajectory of the robot is generated using persistently excited inputs. This may be

too restrictive and non-realistic hypothesis to mimic a real scenario. Here, we address this

issue by developing a smooth state–feedback control law that is formulated by modifying

the classical Pontryagin’s minimum principle. The proposed control law can be applied for

solving control problems of a general class of nonlinear affine systems. The proposed control

scheme offers a modular solution to other control techniques for a large number of mobile

robot applications. The theoretical results are validated through computer simulations.
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1 Introduction

Global asymptotic solutions of point stabilization and tracking problems of nonlinear affine

systems are still among the principle interests to the control community. A nonholonomic

vehicle with Ackermann steering is a nonlinear affine system where the Brockett’s theorem

proves the nonexistence of smooth state-feedbacks for its asymptotic stabilization on fixed

configurations as pointed out in [1]. Here, we propose a promising alternative solution to the

Brockett’s problem for a nonholonomic car-like vehicle (Ackermann steering vehicle) with a

linear time-varying state–feedback law. The proposed optimal feedback law is determined

by modifying the classical Pontryagin’s minimum principle [2]. By doing so, both point

stabilization and trajectory tracking problems of a nonholonomic vehicle are addressed as a

unified manner. In addition, the motivation of the proposed linear time–varying feedback

law stems from the fact that most of the research work suggested in the literature are

tailored towards developing complex nonlinear control laws to address tracking problems of

a simple unicycle–like robots. These control laws are powerful but they generally may be

quite complex. As such, we emphasize that there exists a linear time-varying control law to

address the tracking problem of nonlinear affine systems (in this paper, we consider vehicle

with Ackermann steering), where the control law is easy to understand in the sense that all

what a vehicle needs to track a pre–defined trajectory is a linear feedback operator which

will be detailed in section 3. Note that the proposed control law can easily be coupled with

navigation techniques for solving the robot navigation problem [3, 4].

Nonlinear feedback laws enable nonholonomic mobile robots to track a pre-defined tra-

jectory, to stabilize on fixed configurations, or to synchronize among multiple robots [5, 6].

These laws have been explored through a variety of control techniques, such as differen-

tial flatness and back-stepping [7, 8, 9], nonlinear control coupled with data fusion algo-

rithms [10, 11], and sliding mode control [12, 13, 14]. Recently, the trajectory tracking and
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the set-point stabilization problems of unicycle-type vehicles have been addressed in [15]. A

few papers have addressed the trajectory tracking problem of nonlinear affine systems using

time-varying feedback laws coupled with heuristics (see [16, 17, 18]). These techniques are

quite powerful to solve trajectory tracking problems of nonlinear affine systems but require

complex feedback law even for a simple unicycle-like affine systems [19]. In some cases, the

satisfactory tracking performance is achieved at the cost of vehicle’s model simplification,

see [20, 21], for example. Model predictive control techniques are quite popular and have

been extensively used for solving tracking problems of mobile robots in the optimal control

literature, see [22, 23, 24], however, they suffer from defining appropriate feedback laws for

partially observed states. Authors in [25, 26, 27] have recently adopted model predictive

control laws for solving the tracking problems of nonholonomic systems. Their results are

satisfactory at the cost of hardware needed to implement the control laws. Some researchers

tackled tracking and stabilization problems separately. See [28, 29, 30, 31], for tracking

problems, and [32, 33, 34] for stabilization problems. The trajectory tracking problem for

nonholonomic vehicles has been tackled by transverse function approach [35]. A salient

feature of this approach is the obtention of feedback laws that unconditionally achieve the

practical stabilization of arbitrary reference trajectories, including fixed points and non-

admissible trajectories. However, this approach requires comprehensive tuning of transverse

function parameters.

As a footnote, the aforementioned control techniques yield satisfactory tracking or stabi-

lization performance. They either require the model simplification by tuning its parameters

or need extensive derivations for feedback law even to solve problems of a simple unicycle-like

vehicle. To overcome some of these issues, such as the model simplification, for example,

Miah et al in [36, 37] introduced both time-varying and time-invariant feedback operators for

solving tracking problems of a class of semi-linear and affine nonlinear dynamic systems us-

ing Pontryagin’s minimum principle. These ideas are then exploited in solving tracking and

3



regulation problems of differential drive mobile robots in indoor environments (see [38, 39],

for example). This paper advances previous theoretical ideas using vehicles with Ackermann

geometry in tracking a pre-defined trajectories or in parking on a fixed configuration in finite

time (pre-defined). The work presented in [38] deals with an output (measurement) feedback

control law as opposed to state–feedback control law presented in this manuscript. In [39],

a state–feedback control law coupled with estimation is presented. As can be noted, both

papers deal with the problems of differential drive mobile robots. The current manuscript

emphasizes on how the tracking and stabilization problems can be addressed for a conven-

tional vehicle with Ackermann steering using a state feedback control law. In addition, here

we provide the proof of existence of such a control law for a general class of nonlinear affine

systems. Note that the proposed control law can be coupled with supervisor controllers,

such as the one presented in [40], to tackle vehicle slipage, which is not considered here in

order to avoid additional technical challenges.

The rest of the paper is outlined as follows. Section 2 illustrates the kinematic model of a

vehicle with Ackermann steering followed by the formulation of stabilization and trajectory

tracking problems as a unified manner. The main contribution of this paper, which is the

optimal smooth time-varying state feedback law, is described in section 3. A thorough

evaluation of the current work with some numerical computer simulations is presented in

section 4. Finally, conclusions with some future research avenue are drawn in section 5.

2 Vehicle Model and Problem Formulation

Fig. 1 shows the kinematic model of an Ackermann steering vehicle, where (xr, yr) and

(xf , yf ) are the active points of the rear and front wheels, respectively. Without loss of gener-

ality, its configuration at time t ≥ 0 is represented by the vector q(t) = [x(t) y(t) θ(t) φ(t)]T ∈

Q ⊂ R4, where (x(t), y(t)) is the Cartesian position of the midpoint of the line of length

2l connecting two axles dividing at their midpoints, θ(t) ∈ (−π, π] is the body orientation
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with respect to X-axis, and φ(t) ∈ (−π/2, π/2) is the steering angle of the front wheels with

respect to the vehicle body. The vehicle is subject to the nonholonomic constraints given by
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l
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Figure 1: Kinematic model of a vehicle with Ackermann geometry.

ẋ sin(θ + φ)− ẏ cos(θ + φ)− lθ̇ cosφ = 0 and ẋ sin θ − ẏ cos θ = 0, (1)

which act on each wheel to prevent it from slipping laterally. The constraints (1) can be

used to derive the vehicle’s (front wheel driving) kinematic model

q̇(t) =



cosφ(t) cos θ(t) 0

cosφ(t) sin θ(t) 0

1
l

sinφ(t) 0

0 1


νf (t)
ωf (t)

 ≡ F[q(t)]u(t), (2)

where the vehicle’s control input vector u(t) ≡ [νf (t) ωf (t)]
T ∈ U ⊂ R2, with νf (t) and

ωf (t) being the front wheels’ linear and steering velocities, respectively. In addition, due
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to the vehicle’s limit on its velocities, the inputs are constrained as |νf (t)| ≤ νmaxf , and

|ωf (t)| ≤ ωmaxf for t ∈ I ≡ [0, tf ], tf > 0, where νmaxf and ωmaxf is the maximum linear and

steering velocities of the vehicle. Let qd(t) be the desired (reference) trajectory that the

vehicle is supposed to track and e(t) = ‖q(t)− qd(t)‖R2 denotes its position tracking error,

for t ∈ I. The objective is to find the optimal control input u(t) ∈ Uad ⊂ R2 that governs the

state trajectory q(t) ∈ Q while minimizing the average cumulative position tracking error

Eavg = 1
tf

∫ tf
0
e(t)dt, tf > 0. Given the vehicle’s velocity constraint and its nonholonimic

constraint (1), the problem can be stated as follows:

inf
{q∈Q, u∈Uad}

[Eavg]. (3)

3 Linear Time-Varying State-Feedback Law

This section illustrates the design procedure of the optimal feedback gain, K(t), which is

the main contribution of this manuscript. For that, the linear state feedback control law is

defined as

u(t) = K(t)q(t), (4)

subject to (1), where K(t) 6= 0, t ∈ I, is the feedback gain for the vehicle model (2).

Assuming the fact that the sets U and Q are convex, K(t) must be chosen from a convex set

K ⊂ R2×4. Furthermore, due to constraint on the vehicle velocities, K(t) has to be chosen

from the admissible matrix space Kad ⊂ K. Substituting (4) in (2), yields the following

full-state feedback system:

q̇(t) = F[q(t)]K(t)q(t) ≡ f [q(t),K(t)], q(0) = q0, (5)
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where q0 6= 0 since the model (5) is a nonlinear homogeneous equation (drift-free system).

We emphasize that the linear time-varying gain matrix K(t) completely characterizes the

feedback law (4) for solving the both tracking and stabilization problems. In order to solve

both control problems (stabilization and tracking) as a unified manner, let us introduce the

cost functional as

J(K) = Φ[tf ,q(tf )] +

∫ tf

0

`[t,q(t,K)]dt =

1

2
[q(tf )− qd(tf )]

TP(tf )[q(tf )− qd(tf )] +
1

2

∫ tf

0

[q(t)− qd(t)]TQ(t)[q(t)− qd(t)]dt (6)

where the stabilization weight P(tf ) ∈ R4×4 and the tracking weight Q(t) ∈ R4×4 are

symmetric positive definite matrices that indicate the relative importance of the error com-

ponents along R4. If the vehicle’s purpose is to stabilize on a fixed configuration, then P(tf )

must be higher than Q(t) and the desired trajectory is set as a fixed configuration. However,

the opposite is true for the vehicle to track a desired trajectory. The performance index J(K)

in (6) depends on the feedback gain K(t) through the state variable q(t) as it is clear from

the feedback system (5). Note that Φ[·] and `[·] of (6) are represent the stabilization and

tracking cost functionals, respectively. The task now becomes solving the following regulator

problem:

inf
K∈Kad

[J(K)], (7)

which yields q(t) −→ qd(t) as J(K) −→ 0, for t ∈ I. It is important to point out that,

solving the problem (7) will eventually solve the problem (3). Hence, the problem (7) can

be solved if there exists an optimal feedback gain K∗(t), for t ∈ I.

Theorem 1 (Existence of optimal feedback gain K∗(t) ). Given the feedback system (5),

there exists an optimal feedback gain K∗(t) ∈ Kad that solves the regulator problem (7).

Proof. Using the well known Alaoglu’s theorem, Kad ⊂ K ⊂ R2×4 is a (weak star) w∗
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compact set and it suffices to prove that K 7−→ J(K) is sequentially weak star continuous.

Let {Ki, i ∈ N} ∈ Kad be a sequence and suppose Ki w∗
7−→ K∗. Since Kad is w∗ closed, we

have K∗ ∈ Kad, see [36]. Suppressing the variable t for clarity, let {qi, i ∈ N} and q∗

denote the solutions of the system (5) corresponding to {Ki, i ∈ N} and K∗, respectively.

Hence, the corresponding state equation becomes q̇i = f(qi,Ki) and q̇∗ = f(q∗,K∗), with

initial conditions qi(0) = q∗(0) = q0. The solutions of these two state-space models can

be described by qi(t) = q0 +
∫ t
0
f [qi(τ),Ki(τ)]dτ, and q∗(t) = q0 +

∫ t
0
f [q∗(τ),K∗(τ)]dτ.

Subtracting one from another, we get

qi(t)− q∗(t) =

∫ t

0

{
f [qi(τ),Ki(τ)]− f [q∗(τ),K∗(τ)]

}
dτ. (8)

Note that F(qi), i ∈ N and F(q∗) are uniformly bounded functions and satisfy Lipschitz

condition ‖F(qi) − F(q∗)‖ ≤ Lc‖qi − q∗‖, where Lc is the Lipschitz constant. Taking the

Euclidean norm in both sides of expression (8) and using the triangle inequality yield

‖qi(t)− q∗(t)‖ ≤ vi(t) +

∫ t

0

β(τ)‖qi(τ)− q∗(τ)‖dτ, where vi(t) =
∥∥∥∫ t

0

[
F(qi)(Ki −K∗)qi

]
dτ
∥∥∥,

β(t) = (c1(t)+c2(t)Lc) ∈ L+
1 (I), with c1(t) = sup{‖F(qi)‖}][sup{‖K‖}], c2(t) = sup{‖K‖‖q‖},

for i ∈ N , K ∈ K, and q ∈ Q (see [2, p. 273] for more details). Thus, it follows

from Gronwall inequality that ‖ qi(t) − q∗(t) ‖≤ vi(t) +
∫ t
0

exp{
∫ t
τ
β(τ1)dτ1}β(τ)vi(τ)dτ.

Clearly, vi(t) → 0, for t ∈ I, i ∈ N , as Ki w∗
7−→ K∗. Hence, qi

K∗
7−→ q∗. Since both

`(t, ·) and Φ(t, ·) are continuous on R4, we have `[t,qi(t)] −→ `[t,q∗(t)] for almost all t ∈ I

and Φ[t,qi(tf )] −→ Φ[t,q∗(tf )] as i → ∞. Thus it follows from the expression (6) that

limi→∞ J(Ki) = J(K∗) proving weak star continuity of J on Kad. Since Kad weak star com-

pact, J attains its minimum on Kad.

Theorem 1 guarantees that there exists an optimal feedback gain K∗ for the system (5).
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To solve for the optimal trajectory that minimizes the objective functional (6), we need to

derive the necessary conditions of optimality. These necessary conditions are most readily

found if the integrand of the cost functional (6) is recast in terms of Hamiltonian H :

I × R4 × R4 × R2×4 −→ R, which is expressed by

H[t,q(t),ψ(t),K(t)] = ψT (t)f [q(t),K(t)] + `[t,q(t)], (9)

where ψ(t) ∈ R4, t ∈ I, is a vector of Lagrange multipliers whose elements are the costates

of the system [2]. We now derive the necessary conditions of optimality feedback model (5).

Theorem 2 (Necessary Conditions of Optimality ). Since the optimal feedback gain K∗(t), t ∈

I exists, the optimal trajectory q∗(t), t ∈ I for the feedback model (5) can be obtained if there

exists an optimal multiplier ψ∗(t) ∈ C(I,R4) such that the triple {q∗,ψ∗,K∗} satisfies the

following necessary conditions:

H[t,q∗(t),ψ∗(t),K(t)] ≥ H[t,q∗(t),ψ∗(t),K∗(t)], K(t) ∈ K, t ∈ I, (10a)

q̇∗ =
∂H
∂ψ

[t,q∗(t),ψ∗(t),K∗(t)], q∗(0) = q0, t ∈ I, (10b)

ψ̇∗ = −∂H
∂q

[t,q∗(t),ψ∗(t),K∗(t), ψ∗(tf ) =
∂Φ

∂q
[tf ,q(tf )]. (10c)

The detailed proof of this Theorem is similar to the necessary conditions for the feedback

law of semi-linear dynamic systems given in our previous publication [38] and is omitted

here for conciseness purpose. Theorem 2 states that the feedback gain K∗ ∈ Kad provides

the necessary conditions for the vehicle to determine optimal control inputs for its actuator.

In order to solve for K∗, we express the gradient of the Hamiltonian defined in (9) and set
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it to zero,

HK ≡
∂H
∂K

= FT [q(t,K)]ψ(t)qT (t,K) = 0. (11)

Note that the expression in (11) is dependent on the gain K through the solution of the

state feedback model (5) for q(t,K). Hence, the problem boils down to finding K(t), t ∈ I,

such that the vehicle’s actual trajectory q(t), t ∈ I, and the costate trajectory from (10c)

satisfy (11). The optimal feedback gain K∗ can be determined by satisfying the Hamiltonian

inequality (10a). In other words, the choice of K is to be adaptively tuned to minimize the

vehicle’s tracking error.

Corollary 1 (Adapting the gain K ). Consider the vehicle’s feedback system (5) defined

over the time horizon I. Adapting the gain K according to the following offline update rule

Knew = Kold − εHK, for 0 < ε < 1 (12)

satisfies the Hamiltonian inequality (10a) and, hence, guarantees the convergence of the

vehicle’s trajectory to follow its reference trajectory or stabilize on a fixed configuration.

See [38] for its detailed proof. In the following, we numerically solve for the gain K such

that (11) is satisfied, aggregating the components described earlier. Let Ki ≡ Ki(t), t ∈ I,

be the gain at the i-th iteration of the optimization procedure. Find the optimal gain K∗

by repeating Steps 1–5 until the stopping criterion in Step 5 is met.

Step 1: Integrate the vehicle’s feedback system (5) with K ≡ Ki(t), t ∈ I.

Step 2: Solve costate equation (10c) backward for ψi.

Step 3: Define the Hamiltonian H(qi,ψi,Ki) as in (9).

Step 4: Compute the cost function J(Ki) using (6), the gradients of the Hamiltonian HK

using (11), and its corresponding intergrated norm
∫ tf
0
‖HK‖2dt.
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Step 5: If J(Ki) ≤ δ1 or
∫ tf
0
‖HK‖2dt ≤ δ2, for pre-defined small positive tolerance constants

δ1 and δ2, then Ki is regarded close enough to its optimal value, and so the algorithm is halted.

Otherwise, use the update rule Ki+1(tk) = Ki(tk) − εHK(tk) + λ∆Ki(tk) and ∆Ki(tk) =

Ki(tk) − Ki−1(tk) to adjust the piecewise-constant feedback gain for t ∈ [tk, tk+1, ] k =

0, . . . , N −1, N is the number of subintervals in I, ε is the step size, and λ is the momentum

constant (for faster convergence).

4 Simulation Results

We now illustrate the performance of the proposed optimal feedback controller using a car-

like vehicle with the body length of l = 30 cm. The vehicle’s velocities are constrained as

|ν|f ≤ νmaxf = 1.5 m·s−1 and |ωf | ≤ ωmaxf = 1 rad·s−1. The performance metrics adopted in

the current work are the vehicle’s state tracking error qe(t) = [xe(t), ye(t), θe(t), φe(t)]
T =

q(t) − qd(t) and the average cumulative position error, Eavg, over the time interval of I ≡

[0, 60] s, which allow us to make quantitive assessment of the proposed control method. The

elements of the feedback gain matrix K are initially set to 10−4. The sampling time period is

set to 0.6 s. The optimal feedback gain K∗(t) is computed using the optimization procedure

described in Section 3. The controller’s performance in solving the vehicle’s stabilization

and tracking problems is demonstrated in the following sections.

4.1 Parallel Parking

As stated in the literature, stabilizing a vehicle on a fixed configuration is more difficult

than tracking a reference trajectory. In this section, we present the vehicle’s parallel parking

ability which is actually the stabilization of the vehicle to a fixed configuration.

The stabilization performance of the proposed control scheme is evaluated by choosing

the weight matrices as P(tf ) = diag(1, 1, 1, 1) and Q(t) = diag(0.02, 0.02, 0.02), ∀ t ∈ I.
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Hence, the stabilization at the a fixed configuration is regarded 50 times as importance

as guiding the vehicle towards that configuration. The vehicle’s goal is to stabilize at the

position of (x, y) = (1, 8) m with the orientation of 0◦ and the desired orientation of the

front wheels is 45◦. The initial position and orientation of the vehicle are (1, 0) m and 0◦,

respectively. The vehicle’s parking performance is summarized in Fig. 2. Fig. 2(a) shows the

vehicle’s ability to stabilize on its target, where the hollow and solid arrows represent the

initial and final poses, respectively. The error, distance between the vehicle and its target,

shown in Fig. 2(c) represents how fast the vehicle is approaching towards the target with a

final error of ≈ 0, as expected. The optimal feedback gain, K∗(t), t ∈ [0, 60] s, corresponding

to the optimal trajectory is shown in Fig. 2(e). Initially, the values of all eight components

of the gain matrix K∗ are high due to the initial perturbation of the vehicle from the desired

target point. As expected, the gain K∗(t) converges to zero as the vehicle reached to target

point. It is important to articulate the fact that the values of K∗(t) at time t ∈ [0, 60] s

are admissible in the sense that the left and right wheel velocities in the feedback control

u∗(t) = K∗(t)q∗(t) satisfy the velocity constraints of the vehicle.

4.2 Trajectory Tracking

Let us consider that the vehicle has to follow a feasible and smooth desired trajectory given in

terms of cartesian positions (xd(t), yd(t)), for t ∈ I ≡ [0 60] s. For that, the vehicle’s desired

state trajectory must be generated from (xd(t), yd(t)). The desired Cartesian trajectory

(xd(t), yd(t)) is feasible when it satisfies the vehicle’s desired (reference) model from (2), i.e.,

q̇d(t) = f [qd(t),ud(t)], (13)

where qd(t) = [xd(t) yd(t) θd(t) φd(t)]T is the desired state of the vehicle with the suitable

initial condition xd(0) = [xd(0) yd(0) θd(0) φd(0)]T . We solve for the vehicle’s linear veloc-
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Figure 2: Controller’s performance for parallel parking and trajectory (eight-shaped) tracking
problems: (a) & (b) vehicle’s trajectory (hollow arrow: initial state, solid arrow: final state),
(c) & (d) error, and (e) & (f) optimal time-varying feedback gain, K∗(t).
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ity νd(t) (not the front wheel velocity, νdf (t)) and steering velocity ωf (t) by following the

procedure illustrated in [41]. Note that the vehicle’s body angle θd(t) ∈ (−π, π] and its

front wheels’ orientation φd(t) ∈ (−π/2, π/2). Substituting νd(t) = νdf (t) cosφ(t) and using

ωdf (t) yield the desired state trajectory of the vehicle, which is the solution of the desired

model (13). For the vehicle to track the desired state trajectory, the weight matrices of the

cost function (6) are chosen as P(tf ) = diag(1, 1, 2, 2) and Q(t) = diag(1, 1, 2, 2), ∀ t ∈ I.

Hence, trajectory tracking is given equal importance as just reaching the final destination.

We choose xd(t) = 1.5 sin(πt/30), yd(t) = 1.5 sin(πt/15), for t ∈ [0 60] s, as the refer-

ence eight-shaped trajectory and the vehicle’s initial state is (0.5, 0.5, 0, 45◦). The tracking

performance is revealed in Fig. 2. Fig. 2(b) reveals the vehicle’s tracking capability in such

a complex trajectory, where tracking error (see Fig. 2(d)) still remain approximately zero

until end of the trajectory. The bounded control velocities are generated from the optimal

feedback gain revealed in Fig. 2(f).

Given the satisfactory numerical results for solving tracking and stabilization problems of

vehicles with Ackermann steering, the proposed feedback law can be qualitatively compared

with the model predictive control law presented in [27] in that the proposed feedback law

does not rely on the complexity of the reference trajectory of the vehicle as opposed to [27].

In most cases, see [26, 27], for example, the reference trajectory has to be satisfied by the

robot’s kinematic model which is not the case considered in the present work.

5 Conclusion

In this paper, a novel linear time-varying optimal state feedback control law for solving two

main control problems (stabilization and tracking) of a nonholonomic vehicle with Acker-

mann geometry is proposed. The proposed technique relies on optimizing the linear feedback

gain taking into account the vehicle’s actuator constraints. The stabilization and tracking

problems are successfully solved with sufficiently small error, as expected. It is interesting
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to note that the vehicle model is not required to be linearized to follow a certain reference

trajectory in finite time. It is worth pointing out that the theoretical contribution for the

proposed control law presented herein opens the door for solving these problems of a general

class of nonlinear affine systems.
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