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Abstract 

Humans and primates are remarkably good at pattern recognition and outperform the best machine vision 

systems with respect to almost any measure. Building a computational model that emulates the 

architecture and information processing in biological neural systems has always been an attractive target. 

To build a computational model that closely follows the information processing and architecture of the 

visual cortex, in this paper, we have improved the latency-phase encoding to express the external stimuli 

in a more abstract manner. Moreover, inspired by recent findings in biological neural system, including 

architecture, encoding, and learning theories, we have proposed a feedforward computational model of 

spiking neurons that emulates object recognition of the visual cortex for pattern recognition. Simulation 

results showed that the proposed computational model can perform pattern recognition task well. In 

addition, the success of this computational model suggests a plausible proof for feedforward architecture 

of pattern recognition in the visual cortex. 
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1. Introduction  

The recognition of different patterns is a fundamental, frequently performed cognitive task [1]. During the 
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last decades, some remarkable progresses have been made in solving pattern recognition problems using 

non-biological methods, such as maximum entropy classifier [2], naive Bayes [3] and SVMs [4]. However, 

the performance of the biological visual system still outperforms the best machine vision system [5]. This 

situation motivates us to build a biologically plausible computational model for rapid and robust pattern 

recognition. 

The reason of rapid recognition in biological visual system has been attributed to a hierarchical and 

mainly feedforward computational model [6–8].   To develop a biological plausible computational model, 

another challenge is how information is encoded in the biological neural system. Traditionally, it is 

believed that neurons encode information through the firing rates of biological neurons (rate codes), and 

this encoding method has been widely used in different applications [9-11]. However, as precise 

spike-timing neural activities have been observed in many brain regions, including the retina [12–14], the 

lateral geniculate nucleus [15] and the visual cortex [16], the view that information in the brain is encoded 

by the timed spikes (temporal codes) rather than firing rate has received increasing attention [17], [18]. 

These observations have led to a more biologically plausible  neuron model, namely spiking neurons, 

which encode information by the firing times of spikes [19-20].  Networks of spiking neurons (SNNs) can 

acquire new knowledge through changing the synaptic efficiency. Recently, many supervised learning 

methods have been proposed to train the SNNs, such as remote supervised method (ReSuMe) [21] and 

perceptron-based spiking neuron learning rule (PBSNLR) [22], with the aim to ensure that the output 

neuron can fire a desired spike train when the corresponding input pattern are presented.  

The limitation of the original SNNs-based feedforward computational model [23] lies in its encoding 

scheme which did not incorporate any information extraction to preprocess the input patterns. Also, the 

learning efficiency of the existing model requires further improvements. This motivates us to develop an 

efficient computational model of spiking neurons for pattern recognition.  In this paper, we made the 

following contributions: 1) We have improved the existing latency-phase encoding to code the 
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information in a more concise manner. Experimental results demonstrated that the improved 

latency-phase encoding method requires less encoding neurons than traditional latency-phase encoding 

method. 2) We have bridged the gap between the above independent studies including encoding theories, 

architecture theories, and learning theories. In addition, we have proposed a unified computational model 

of spiking neural networks (SNNs) for pattern recognition. We have demonstrated that the computational 

model of SNNs can perform pattern recognition task well. In addition, the success of the proposed 

approach suggests a plausible proof for a class of feedforward models of object recognition in the visual 

cortex and could be applied to a lot of neurological experiments. 

2. Integrated Network for Pattern Recognition 

In this section, we begin by presenting the whole computational model of spiking neurons. Then, the 

corresponding schemes used in different sub-models are introduced. 

2.1 The Proposed Computational Model 

As shown in Fig. 1, the architecture of the proposed computational model composes of three functional 

parts: the encoding, the learning, and the classification part.  

 

Figure 1. The proposed computational model. A grayscale image is presented to the encoding part. 
Each neuron in S1 layer linearly integrates the information from its receptive field (e.g.,  the red 
rectangular block). A neuron in S1 layer competes with its neighbors through the MAX operation to 
strive for survival in C1 layer (e.g., the blue circle in S1 layer). Each encoding neuron is associated 
with a receptive field (e.g., the jacinth rectangular block) to convert the activations of C1 neurons 
into spatiotemporal patterns. These converted spike patterns are passed to the learning part. The 
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final decision is made in the classification part. 

     The encoding part is used to convert the features of external sensory stimulation into explicit 

firing times of action potentials (spikes). With a combination of supervised spike-timing-based 

learning, the learning part tunes the synaptic weights, which ensures that the output part can 

respond to certain patterns correctly. The classification part decides on the extracted feature spikes 

using a network of spiking neurons. 

2.2 Encoding Part 

 The original latency-phase encoding method is based on the pixel-level features, which makes a 

large number of redundant spike codes. The main idea of the improved latency-phase encoding is to 

apply a standard feature selection technique, then convert these features into explicit firing times 

by latency-phase encoding. 

2.2.1 Feature Extraction 

Inspired by a recent theory of the feedforward and hierarchical architecture in the visual cortex 

that accounts for the rapid and robust recognition performance, researchers proposed a 

computational model (HMAX) for pattern recognition [24]. With the usage of simple cells (SCs) and 

complex cells (CCs), the HMAX performs remarkably well in pattern recognition. The information 

flow in HMAX can be expressed as S1→ C1→ S2→ C2. In this paper, we have only adopted a 

simplified structure of two layers (only S1 and C1). In the S1 layer, difference of Gaussian (DoG) 

filters were used to mimic the neural processing mechanisms in the retina [5]. The function of DoG 

used here is 

                      , ( ) 3. ( )( ) ( ) ( )
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Where 
( )sG  is the 2-D Gaussian function with the parameter of ( )s . l  is the position of 

photoreceptor cell and 
cl  is the center position of the filter. Then the activation of the cell in S1 is 

computed as 
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where ( )I l  is the intensity of pixel l  in photoreceptor cells. 
iR  is the receptive field of the 

corresponding neuron i , and i  is the weight of the DoG filter.  

In the C1 layer, a MAX operation is implemented to increase invariance to size and position. Each 

neuron competes with its nearby neurons located within the same receptive field.  After the MAX 

operation, each survival neuron in C1 layer denotes a feature.  

2.3.2 Latency-Phase Encoding 

The final activations of neurons in C1 were used to produce spikes by latency-phase encoding [25]. 

The flowchart of the latency-phase coding scheme was illustrated in Fig. 2. Each encoding neuron 

was associated with a receptive field (RF) which consists of m × n cells. As shown in Fig. 2(c), the 

intensity value of a feature in C1 is converted to a action potential though a logarithmic intensity 

transformation, which was expressed as 

max( ) ln( 1)i i it f s t s                                                         (4) 

where it  is the spike time of neuron i , maxt  is the time duration of the encoding window,   is a 
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scaling parameter, and is  is the intensity of pixel i . Each cell in the receptive field has different 

subthreshold membrane oscillations (SMO). The SMO for the i th pixel in the receptive field is 

described as 

cos( )i iOSC t                                                                               (5) 

where   determines the number of oscillation cycles, and 
i  is the initial phase of the i th pixel in 

the receptive field. 
i is defined as 

0 ( 1)i i                                                                               (6) 

where 
0  is the  initial phase (in this paper 

0 0   ), and   is a constant phase gradient. After the 

intensity value was converted into a timed action potential, the alignment operation was 

implemented by reassigning each spike to the nearest peak of the corresponding SMO as illustrated 

in Fig. 2(d). As shown in Fig. 2(e), spikes generated from photoreceptor cells in the same receptive 

field were compressed into one sequence of spikes by the associated encoding neuron. The 

external stimulus can then be reconstructed using a simple inverse latency transformation process 

as shown in Fig. 2(f). 
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Figure 2. Illustration of the improved latency-phase coding method. (a) Stimulations intensities. (b) 
The information is converted into different spikes. (c) These converted spikes are assigned with 
their corresponding oscillations. (d) After converting the intensity value of each pixel into a timed 
action potential, the alignment procedure is implemented that the neurons fire only when the 
subthreshold membrane potential reaches their nearest peaks. (e)These spikes produced from the 
same receptive field in C1 layer are compressed into a sequence of spikes. (f) The compressed 
sequence of spikes could be reconstructed via phase reconstruction.  

2.3 Learning Part 

2.3.1 Spiking Neuron Model 

The leaky integrate-and-fire (LIF) model [26] is used in this paper. The membrane potential of the 

LIF neuron is expressed as 

  ( )f

ij j rest

j f

V t w K t t V                                                                       (7) 

where f

jt is the f th spike of presynaptic neuron j , and ijw  is the synaptic weight. restV is the rest 

potential of the LIF neuron. K denotes the normalized postsynaptic potential (PSP) kernel defined 

as 

  0 exp( ( ) ) exp( ( ) )f f f

j j m j sK t t V t t t t                                                                    (8) 

where m and s are two parameters that determine the shape of the postsynaptic potential (PSP). 

0V  normalizes postsynaptic potential so that the maximum value of the kernel  f

jK t t  is 1. When 

the membrane potential )(tV  of neuron reaches the firing threshold   at time rft  as 

( )rfV t      and      
( )

0
rfdV t

dt
                                                            (9) 

an action potential (spike) will be triggered. 

  In this paper, the firing threshold   is set to 1 mV.  After firing, ( )V t immediately starts 
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dropping to resting potential ( 0restV  ), and the neuron cannot fire regardless of the number of the 

input spikes. This phase is known as refractory period 
aR   (In this paper, 

aR is set to 3 ms).  

 

2.3.2 PBSNLR Learning rule 

 PBSNLR [22] was proposed to train the spiking neurons to output desired spike trains. 

Experimental results demonstrated that the learning performance and accuracy of PBSNLR were 

better than that of other learning methods. The PBSNLR [22] transformed the supervised learning 

task into a classification problem using the perceptron learning rule with the samples defined as 

follows. All desired firing times were regarded as positive samples and other time points were 

regard as negative samples. Then, these misclassified samples were trained as  

new old tW W P                if 1td  and ( )V t                                          (10) 

new old tW W P              if 0td  and ( )V t                                          (11) 

Where 1 2( , ,..., )t t t t

NP P P P , t

iP is the sum of PSPs induced by all the spikes that have arrived through 

the i th synapse at t. 1td  (or 0td  ) means t is the desired (or undesired) output time.  

2.4 Classification Part 

In the classification part, we predefine different spike sequences for different input patterns and 

the learning neuron is trained to fire a desired sequence of spikes when a corresponding pattern is 

present. In order to quantitatively evaluate the learning performance, a correlation-based measure 

of spike timing [27] was adopted to measure the similar degree between the target and observed 

output spike trains.  When the actual output spike train is the same with the desired output spike 
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train, the measure C = 1, and the  C decreases towards 0 for loosely correlated sequences of spikes. 

3. Simulation Results 

3.1 The Performance of the Improved Latency-Phase Encoding 

 

To demonstrate the improved latency-phase encoding, a 256 × 256 grayscale image (as the stimuli) 

was selected to show the encoding performance of the improved latency-phase encoding. In this 

simulation, the parameters were selected as: 0.0032a  ,
max 600t   100  , 2 / 68   , 

6m n  . 

 

(a) The original image (left), processing results in S1 (middle) and the results in C1 layer (right). 

 

(b) Spikes encoded by improved latency-phase encoding method (each red dot  denotes a spike) 

 

(c) Spikes encoded by original latency-phase encoding method 
Figure 3. The performance of the improved latency-phase encoding method. 
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  First, the image information (intensity) was transmitted to layer S1. DoG (difference of 

Gaussian) filter was used in layer S1 to mimic that how neural processing in the retina of the eye 

extracts details from external stimuli. The processing result in S1 was shown in the middle panel of 

Fig. 3(a). S1 neurons competed with local neighbors through the MAX operation to strive for 

survival in C1 layer. Through the MAX operation, the original image was sparsely presented in C1 

layer (right panel of Fig. 3(a)). The final activations of neurons in C1 were used to produce spikes 

through latency-phase encoding method. After encoding, the original image was converted into 

several sequences of spikes (Fig. 3(b)). Each spike generated by encoding neuron is denoted by a 

red dot. To make a comparison between our improved and the original latency-phase encoding 

methods, we showed the spike patterns which were encoded by original latency-phase encoding in 

Fig. 3(c). The number of encoding neurons needed in our method is 72, while the original method 

requires about 1024 encoding neurons. Thus, the improved latency-phase encoding is more 

efficient. Moreover, the spikes generated by our method was much less than that of the original 

method, which might decrease the complexity of processing the timing of spikes.  

3.2 Learning Performance  

To explore the learning capability of the proposed computational model on pattern recognition, we  

trained the proposed model to recognize three different images as shown in Fig. 4(a). After the 

encoding part, the three images were converted into three different spatiotemporal spike patterns. 

The three spike patterns were transmitted to the consecutive network for learning. To simplify the 

problem for a classification task, each desired pattern was defined as a spike train with three spikes, 

[50, 250, 450] ms for image1, [120, 320, 520] ms for image2, and [190, 390, 590] ms for image3.   
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 (a) Three different input patterns

  

 (b) Response of the output neuron.                      

 

(c) The correlation C between the desired and observed output spike trains 

Figure 4. The learning performance of the proposed computational model. 

Fig. 4(b) illustrated the evolution of the spike patterns generated by the output neuron for 

different input patterns. Before learning, the output neuron fired at random times, which was very 

different from the corresponding desired output spikes. After several learning epochs, spikes firing 

at undesired times disappeared and the observed output spikes approached the corresponding 

target spike patterns. After about 20 learning epochs, the neuro n in the classification part can 

generate desired output spike trains for every input pattern. The measure C plotted as a function of 

learning epoch is shown in Fig. 4(c), which indicates that the initial values of C were close to zero, 

and the values of C reached to 1 after 20 learning epochs, which meant that these three images can 
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be recognized perfectly. 

3.3 Generalization Capability 

 Despite the achievement in the applications of spiking neuron, most of them assume noise-free 

condition for learning and testing. This assumption, though fairly general, ignores the fact that 

noise widely exists in spiking neural networks (SNNs) and the neural response can be significantly 

disturbed by noise [22]. To study the generalization capability of the proposed computational model, 

we tested the performance of the trained computational model on noisy data and noisy conditions. 

Noisy data was simulated by adding partially occluded, salt-and-pepper noise to the input images, 

and noisy condition was simulated by injecting Gaussian white noise voltage to the output neuron. 

The partially occluded noise was specified by the area of occluded n, the salt-and-pepper noise was 

specified by the noise intensity d, and the background noise was specified by the variance b . For 

each kind of noise with different intensities, we tested the trained network with 50 noisy images, 

and the correlation C of a distance between the target and the observed output train was calculated. 

The experiment was performed according to two scenarios: the computational model was trained 

under noise-free conditions or the neuron was trained in the presence of noise.  

 

 Examples of different types of noise to the input images and networks  
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(b) Response of the computational model after noise-free training 

 

(c) Response of the computational model after noisy training 
Figure 5. The robustness of the proposed computational model.  

After training, we tested the performance of the generalization of the proposed model. The plots 

of C obtained after deterministic training and noisy training were shown in Fig. 5(b) and Fig. 5(c), 

respectively. In the first scenario, we observed that different types of noise had a great effect on the 

learning results and the correlation C dropped almost linearly with the invariance of noise. In 

contrast, the computational model was significantly less sensitive to noise if the noise training is 

performed. The model was more robust to different types of noise, and the correlation C kept a high 

value even in high level of noise. These results confirmed that the noisy training enables the neuron 

to precisely and more reliably reproduce target firing patterns even for the relatively high level of 

noise.  

4. Discussion and Conclusion 

In this paper, firstly we improved the latency-phase encoding method. By incorporating an 

information extraction to preprocess the input patterns, the encoding neurons and spikes of our 

method are much less than those of original latency-phase encoding method. As shown in Fig. 3, to 

encode a 256 × 256 grayscale image, the number of encoding neurons needed in our method is 72, 
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while the original method requires about 1024 encoding neurons. Therefore, the p roposed 

improved latency-phase encoding method is more efficient. 

There seems to be at least two directions that could be followed to further improve the 

performance of the proposed model. First, very recent experiments suggested tha t the addition of 

extra layers, in agreement with the structure of the visual cortex, might provide a significant gain in 

performance. Second, in order to extract the main features of the external stimuli, we applied 

traditional filter techniques, which were only suitable for analogue values. Future work will focus on 

the extraction of features from sequences of spikes. 
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